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We study, using direct numerical simulations, the effect of geometrical confinement on
heat transport and flow structure in Rayleigh-Bénard convection in fluids with different
Prandtl numbers. Our simulations span over two decades of Prandtl number Pr, 0.1 � Pr �
40, with the Rayleigh number Ra fixed at 108. The width-to-height aspect ratio � spans
between 0.025 and 0.25, while the length-to-height aspect ratio is fixed at one. We first find
that for Pr � 0.5, geometrical confinement can lead to a significant enhancement in heat
transport as characterized by the Nusselt number Nu. For those cases, Nu is maximal at a
certain � = �opt and the maximal relative enhancement generally increases with Pr over the
explored parameter range. As opposed to the situation of Pr � 0.5, confinement-induced
enhancement in Nu is not realized for smaller values of Pr, such as 0.1 and 0.2. The Pr
dependence of the heat transport enhancement can be understood in its relation to the
coverage area of the thermal plumes over the thermal boundary layer (BL) where larger
coverage is observed for larger Pr due to a smaller thermal diffusivity. We further show that
�opt is closely related to the crossing of thermal and momentum BLs and find that Nu declines
sharply when the thickness ratio of the thermal and momentum BLs exceeds a certain
value of about one. In addition, through examining the temporally averaged flow fields
and two-dimensional mode decomposition, it is found that for smaller Pr the large-scale
circulation is robust against the geometrical confinement of the convection cell. We further
found that �opt exhibits a power-law relation with Pr as �opt = 0.11 Pr−0.060±0.004. Together
with the result �opt = 29.37 Ra−0.31 found by Chong et al. [Phys. Rev. Lett. 115, 264503
(2015)], our findings provide a more complete picture of the geometrical confinement.
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I. INTRODUCTION

Thermally driven flows are ubiquitous phenomena in nature and industrial applications. Turbulent
Rayleigh-Bénard (RB) convection in a fluid layer heated from below and cooled from above
is the classical model for studying such phenomena. This model has been used to investigate
important issues related to the heat transport and flow dynamics in a broad range of research
fields, including astrophysics, geophysics, and engineering [1–5]. In the past decade, extensive
studies of RB convection have been conducted using experimental, numerical, and theoretical
approaches [6–9]. In RB convection, the control parameters that govern the turbulent flow are
the Rayleigh number Ra and the Prandtl number Pr. In addition, the geometry of the container
also plays an important role, in particular, the diameter-to-height aspect ratio �. Studies of RB
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convection usually concern global heat transport across the system and also the problem of heat
flow optimization. It is particularly important in passive thermal management, which is sometimes
indispensable in industrial and engineering applications. Various methods to passively enhance heat
transport have been found in RB studies. For instance, in RB cells with rough surfaces [10–14],
heat transport can be enhanced significantly as the roughness modifies the thermal boundary
layers, leading to more frequent emission of thermal plumes. Examples also include RB flows
with polymer additives [15–19]. Furthermore, heat transport can also be enhanced by adding
a stabilizing force in addition to thermal driving such that highly coherent thermal plumes are
formed [20–23].

Many of the studies on RB convection in the past decade [20,22–30] have been devoted to
the investigation of how varying the geometrical control parameter can influence heat transport
and flow properties. These can be separated into two categories: One with an aspect ratio larger
than one and the other with the aspect ratio smaller than one. The present study focuses on
the latter situation, i.e., RB convection under geometrical confinement. Huang et al. [20] have
found that for a RB cell with Pr = 4.3, the Nusselt number Nu can increase on decreasing the
width-to-height aspect ratio �, while the flow strength is reduced monotonically at the same time.
The numerical work by Chong et al. [22] has further extended the study to a much expanded range
of parameters of 1/64 � � � 1 and 107 � Ra � 1010, at fixed Pr = 4.38. They have discovered
that the confinement-induced heat transport enhancement only occurs over a particular range of �

for a given Ra. For weakly confined geometry, Nu is found to be insensitive to the decrease in �

until the cell width becomes smaller than the average spacing between the thermal plumes near
the thermal boundary layers. In other words, there exists an onset aspect ratio for enhancement
which is found to as �c = 12.42 Ra−0.21 [22]. When � is below the onset value, the so-called
plume-controlled regime sets in. Within this regime thermal plumes condensate into giant (or super)
plumes at the opposite boundary layers, which enables them to more efficiently cool down or
heat up the corresponding plate. In this regime, Nu increases continuously on decreasing � until
the severely confined regime is entered [30]. The boundary between the two regimes suggests an
optimal aspect ratio at which Nu is maximized and the dependence of �opt on Ra is given by
�opt = 29.37 Ra−0.31. On the other hand, the study by Wagner and Shishkina [29] revealed that the
existence of the plume-controlled regime depends strongly on Pr, as well as Ra. For example, for
Pr = 0.786 with 1/10 � � � 1 and 105 � Ra � 107, no significant enhancement in Nu was found.
All this calls for an in-depth study on the influence of Pr on confinement-induced Nu enhancement.
Another issue to be studied is the flow dynamics, which depends strongly on the geometrical control
parameters. For a convection cell with an aspect ratio around one, it is known that there exists a
persistent large-scale circulation (LSC) of a single-roll flow pattern [31–34]. When the aspect ratio
becomes much larger than one, the LSC turns into horizontally adjacent multiple rolls [26,35–37]. In
contrast, LSC becomes unstable when the aspect ratio is reduced to less than one, as reflected by the
increased flow reversals or cessations, for both three-dimensional [38,39] and quasi-two-dimensional
configurations [40,41].

In this paper we present a comprehensive direct numerical simulation (DNS) study of the
effect of Pr on heat transfer enhancement for RB convection under geometrical confinement.
In addition to heat transport, we also analyze how Pr influences the confinement-induced
change in global flow structures. The rest of the paper is organized as follows. In Sec. II
we describe the numerical method and the simulation parameters. In Sec. III we first present
the dependence of the global Nusselt number and Reynolds number on the aspect ratio for
different Pr. Furthermore, an analysis on the local quantities, such as temperature fluctuations,
velocity fluctuations, and boundary layer thickness, is presented. We then compare the global
flow structures for different Pr and �, both qualitatively, via temporally averaged flow fields
and quantitatively via two-dimensional (2D) mode decomposition. In Sec. IV we summarize our
findings.
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FIG. 1. Schematic diagram of the RB cell.

II. NUMERICAL METHODS AND SIMULATION PARAMETERS

The velocity field u is described by the Navier-Stokes equation within the Oberbeck-Boussinesq
approximation together with the incompressibility condition. The temperature field T satisfies the
advection-diffusion equation. The nondimensional form of these equations is given by

∂u/∂t + u · ∇u + ∇p = (Pr/Ra)1/2∇2u + Tz, (1)

∂T/∂t + u · ∇T = (PrRa)−1/2∇2T, (2)

∇ · u = 0, (3)

where the dimensionless control parameters are the Rayleigh number Ra = β̂ĝ�T̂ Ĥ 3/ν̂κ̂ and
the Prandtl number Pr = ν̂/κ̂ (symbols with a circumflex represent dimensional parameters;
those without a circumflex represent nondimensional parameters). Here β̂, ν̂, and κ̂ denote the
thermal expansion coefficient, kinematic viscosity, and thermal diffusivity of the fluid and ĝ is
the gravitational acceleration pointing vertically. Also, �T̂ = T̂bottom − T̂top defines the temperature
difference between the top and bottom plates separated by the cell height Ĥ . The physical quantities
are solved in dimensionless form, with the cell height Ĥ for the length scale and the free-fall time
(Ĥ /β̂ĝ�T̂ )1/2 for time scale, and the velocities are normalized by the free-fall velocity (β̂ĝ�T̂ Ĥ )1/2.
The temperature is made dimensionless by T = (T̂ − T̂m)/�T̂ , with T̂m = (T̂bottom + T̂top)/2 and T̂

being the dimensional temperature. The DNSs are conducted in a box, presented in Fig. 1 together
with the nomenclature and coordinates. For the domain boundaries, all walls are set to be nonslip
and impermeable. The vertical walls are adiabatic, while the top and bottom plates are isothermal
with Ttop = −0.5 and Tbottom = 0.5 after normalization.

The equations are solved by a fourth-order finite-volume method on staggered grids. The Göttingen
group used the GOLDFISH code as in Refs. [13,42], while the Hong Kong group used the CUPS code
(Chinese University of Hong Kong Pencil Code simulation for turbulent convection), which is a well-
tested extension [43,44] of the code [45]. A requirement for obtaining reliable results in DNS studies
is to resolve the Kolmogorov (ηk) and the Batchelor (ηb) length scales. The global estimation of both
scales in dimensionless form are given by ηk = √

Pr/[Ra(Nu − 1)]1/4 and ηb = 1/[Ra(Nu − 1)]1/4.
From these relations we can see that the smallest length scale to be resolved for Pr > 1 is ηb, whereas
for Pr < 1, ηk becomes the smallest scale. Also, sufficient resolution is needed inside the boundary
layers, as suggested by Shishkina et al. [46], and thus a nonuniform mesh with denser grid points
in the boundary layer regions is adopted in our simulations. Based on the above requirements, 768
vertical grid points were used for Pr = 0.1 and 256 vertical grid points were used for Pr = 40.
The statistical data are collected after a statistical steady state has been reached as judged by the
convergence of global Nu. Figure 2 shows examples of Nu time series after reaching a statistical
steady state from where the oscillation about a certain mean value can be seen. We also notice that
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FIG. 2. Segment of Nusselt numbers versus time after reaching a statistical steady state for (a) Pr = 0.1,
� = 0.25, and Ra = 108 and (b) Pr = 10, � = 0.25, and Ra = 108. Three different curves show the time series
of the Nusselt number calculated by globally averaged viscous dissipation (Nuεu

), thermal dissipation (NuεT
),

and layer averaged heat flux (Nuh), respectively. See the text for details.

the oscillation amplitudes of Nu depend on Pr. For small Pr, the oscillation amplitude of Nuh is larger
than that of Nuεu

and NuεT
; for large Pr, Nuεu

almost coincides with Nuh instantaneously, while the
oscillation amplitude of NuεT

is smaller than that of the other two. (The definitions of Nuh, Nuεu
and

NuεT
are given below.)

We present simulations of 90 cases in total. To study how Pr affects heat transfer and flow dynamics
with respect to geometrical confinement, over two decades of Pr (0.1 � Pr � 40) have been covered
and all fixed at the same Ra, which is 108. The width-to-height aspect ratio � = W/H has been
varied from 0.025 to 0.25 while the length-to-height aspect ratio was fixed at 1. The details of all the
simulated cases including their meshes and check on the resolution requirements are summarized in
Table I.

III. RESULTS AND DISCUSSION

A. Nusselt number and Reynolds number

We first examine the Nusselt number Nu and the Reynolds number Re. The evaluation of Nu
is based on three different methods. The first one is to estimate global Nu through the formula
Nuh = 〈(Ra Pr)1/2uzT − ∂T /∂z〉x,y,t , where the symbol 〈·〉x,y,t represents averaging over time and
the entire horizontal plane. By taking the average of Nuh across every horizontal plane, we can
obtain the first estimation of Nu. Other ways to estimate Nu make use of the exact relations
Nuεu

= 〈εu〉(Ra Pr)1/2 + 1 and NuεT
= 〈εT 〉(Ra Pr)1/2, where 〈εu〉 and 〈εT 〉 represent, respectively,

the viscous and thermal dissipation rates averaged over time and the entire volume [47,48]. We
obtain the numerically measured Nu by their mean value and the error of Nu is estimated by half of
their standard deviation among Nu obtained with the three methods. The evaluation of Re is based
on the formula Re =

√
〈u2〉(Ra/Pr), where 〈u2〉 represents the root-mean-square value of velocities

averaged over time and the entire domain.
The Pr dependence of Nu for different values of � is shown in Fig. 3(a). For comparison, we also

plot Nu as a function of Pr as estimated by Grossmann-Lohse (GL) theory with updated parameters
[47,49] (shown as the black solid line). It can be seen that for � = 0.25 both the varying trend
and the magnitude of Nu agree well with the GL theory. However, on decreasing �, the curves
begin to deviate from the GL prediction since the effect of confinement sets in. According to Chong
et al. [22], there exists an onset � above which the confinement effect is negligible. They have
shown that the onset � is around 0.25 for Ra = 108 and Pr = 4.38 [see Fig. 1(a) in Ref. [22]].
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TABLE I. Simulation parameters and the global convective heat flux (all at Ra = 108). Columns from left
to right indicate Pr, �, the number of grid points in the three spatial directions Nz × Nx × Ny , the averaged grid
spacing in the vertical direction compared to the Kolmogorov length scale �z/ηk (or to the Batchelor length
scale �z/ηb), the number of grid points in the thermal NT and momentum Nu boundary layers (actual grid
points and the requirement according to [46]), the averaging time tavg in free-fall time units, the Nusselt number
Nu, and the version of numerical code (GOLDFISH from the Göttingen group [13,42] or CUPS from the Hong
Kong group [43,44]). For the evaluation of Nu and its error, we refer to Sec. III A.

Pr � Nz × Nx × Ny �z/ηk �z/ηb NT Nu tavg Nu Code

0.1 0.025 768 × 768 × 28 0.77 0.24 40/2 20/1 200 13.36 ± 0.01 CUPS

0.050 768 × 768 × 42 0.84 0.27 30/3 15/1 184 18.62 ± 0.06 CUPS

0.075 768 × 768 × 64 0.87 0.27 27/3 13/1 184 20.83 ± 0.10 CUPS

0.085 768 × 768 × 68 0.89 0.28 25/3 12/1 156 22.80 ± 0.12 CUPS

0.100 768 × 768 × 84 0.90 0.28 24/3 12/2 144 23.72 ± 0.14 CUPS

0.125 768 × 768 × 100 0.91 0.29 23/3 11/2 178 24.81 ± 0.19 CUPS

0.150 768 × 768 × 128 0.91 0.29 23/3 11/2 178 25.11 ± 0.21 CUPS

0.200 768 × 768 × 168 0.91 0.29 22/3 11/2 158 25.37 ± 0.26 CUPS

0.250 768 × 768 × 200 0.92 0.29 22/3 11/2 141 26.14 ± 0.35 CUPS

0.2 0.025 560 × 560 × 18 0.75 0.34 28/2 17/1 200 13.78 ± 0.02 CUPS

0.050 560 × 560 × 32 0.85 0.38 19/3 12/2 320 21.41 ± 0.04 CUPS

0.075 560 × 560 × 46 0.89 0.40 16/3 10/2 320 25.49 ± 0.10 CUPS

0.085 560 × 560 × 52 0.90 0.40 16/3 9/2 320 26.74 ± 0.12 CUPS

0.100 560 × 560 × 60 0.91 0.41 15/4 9/2 320 27.95 ± 0.14 CUPS

0.125 560 × 560 × 74 0.92 0.41 15/4 9/2 160 28.86 ± 0.17 CUPS

0.150 560 × 560 × 88 0.91 0.41 15/4 9/2 320 28.15 ± 0.20 CUPS

0.200 560 × 560 × 116 0.91 0.41 15/4 9/2 480 28.47 ± 0.22 CUPS

0.250 560 × 560 × 144 0.91 0.41 15/4 9/2 160 28.35 ± 0.31 CUPS

0.5 0.025 384 × 512 × 48 0.71 0.50 29/3 24/2 674 14.90 ± 0.04 GOLDFISH

0.050 384 × 512 × 48 0.81 0.57 20/3 16/3 1349 23.92 ± 0.05 GOLDFISH

0.075 384 × 512 × 74 0.86 0.61 16/4 13/3 750 30.57 ± 0.06 GOLDFISH

0.085 384 × 512 × 78 0.87 0.61 8/4 6/3 210 31.89 ± 0.08 CUPS

0.100 384 × 512 × 98 0.88 0.62 15/4 12/3 880 32.87 ± 0.07 GOLDFISH

0.125 384 × 512 × 100 0.87 0.62 15/4 12/3 564 32.70 ± 0.09 GOLDFISH

0.150 384 × 512 × 128 0.87 0.62 15/4 12/3 681 32.58 ± 0.07 GOLDFISH

0.200 384 × 512 × 160 0.87 0.61 15/4 12/3 588 31.75 ± 0.06 GOLDFISH

0.250 384 × 512 × 200 0.86 0.61 16/4 13/3 473 31.22 ± 0.05 GOLDFISH

0.786 0.025 384 × 512 × 48 0.57 0.50 29/3 27/2 672 15.00 ± 0.03 GOLDFISH

0.050 384 × 512 × 48 0.65 0.58 19/3 18/3 1336 24.83 ± 0.02 GOLDFISH

0.075 384 × 512 × 74 0.70 0.62 15/4 14/4 739 32.74 ± 0.03 GOLDFISH

0.085 384 × 512 × 78 0.70 0.62 8/4 7/4 210 33.39 ± 0.04 CUPS

0.100 384 × 512 × 98 0.71 0.63 14/4 13/4 750 34.42 ± 0.06 GOLDFISH

0.125 384 × 512 × 100 0.70 0.62 15/4 13/4 749 34.09 ± 0.06 GOLDFISH

0.150 384 × 512 × 128 0.70 0.62 15/4 13/4 700 33.99 ± 0.06 GOLDFISH

0.200 384 × 512 × 160 0.70 0.62 15/4 14/4 611 32.44 ± 0.03 GOLDFISH

0.250 320 × 320 × 96 0.83 0.73 8/4 7/3 520 31.47 ± 0.06 CUPS

1 0.025 384 × 512 × 48 0.51 0.51 28/3 28/3 786 15.42 ± 0.03 GOLDFISH

0.050 384 × 512 × 48 0.58 0.58 19/3 19/3 934 25.23 ± 0.05 GOLDFISH

0.075 384 × 512 × 74 0.62 0.62 15/4 15/4 996 32.88 ± 0.04 GOLDFISH

0.085 384 × 512 × 78 0.63 0.63 8/4 7/4 420 34.41 ± 0.08 CUPS

0.100 384 × 512 × 98 0.63 0.63 14/4 14/4 972 35.15 ± 0.06 GOLDFISH

0.125 384 × 512 × 100 0.63 0.63 14/4 14/4 817 34.83 ± 0.04 GOLDFISH

0.150 384 × 512 × 128 0.62 0.62 15/4 14/4 748 34.10 ± 0.05 GOLDFISH

0.200 384 × 512 × 160 0.62 0.62 15/4 15/4 707 32.90 ± 0.05 GOLDFISH
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TABLE I. (Continued.)

Pr � Nz × Nx × Ny �z/ηk �z/ηb NT Nu tavg Nu Code

0.250 384 × 512 × 200 0.62 0.62 15/4 15/4 837 32.11 ± 0.05 GOLDFISH

2.5 0.025 384 × 512 × 48 0.33 0.52 26/3 33/4 1126 17.24 ± 0.01 GOLDFISH

0.050 384 × 512 × 48 0.37 0.59 18/3 23/5 2000 27.42 ± 0.04 GOLDFISH

0.075 384 × 512 × 74 0.39 0.62 15/4 19/5 989 33.79 ± 0.03 GOLDFISH

0.085 384 × 512 × 78 0.40 0.63 7/4 9/5 420 35.51 ± 0.11 CUPS

0.100 384 × 512 × 98 0.40 0.63 14/4 18/5 1086 35.73 ± 0.04 GOLDFISH

0.125 384 × 512 × 100 0.40 0.63 14/4 18/5 1009 35.44 ± 0.03 GOLDFISH

0.150 384 × 512 × 128 0.40 0.63 14/4 18/5 829 34.83 ± 0.04 GOLDFISH

0.200 384 × 512 × 160 0.39 0.62 15/4 19/5 669 33.50 ± 0.04 GOLDFISH

0.250 384 × 512 × 200 0.39 0.62 15/4 19/5 538 32.92 ± 0.04 GOLDFISH

4.38 0.025 256 × 256 × 16 0.38 0.80 11/3 16/5 300 18.35 ± 0.01 CUPS

0.050 256 × 256 × 20 0.43 0.90 7/4 11/6 400 28.70 ± 0.08 CUPS

0.075 256 × 256 × 28 0.45 0.93 9/4 13/6 500 33.51 ± 0.08 CUPS

0.085 256 × 256 × 28 0.45 0.93 6/4 9/7 300 35.14 ± 0.11 CUPS

0.100 256 × 256 × 36 0.45 0.95 6/4 9/7 640 35.41 ± 0.11 CUPS

0.125 256 × 256 × 38 0.45 0.94 6/4 9/7 370 34.63 ± 0.18 CUPS

0.150 256 × 256 × 68 0.45 0.94 9/4 13/6 350 34.13 ± 0.07 CUPS

0.200 256 × 256 × 68 0.45 0.93 6/4 9/6 350 33.30 ± 0.08 CUPS

0.250 256 × 256 × 72 0.44 0.92 7/4 10/6 380 32.20 ± 0.09 CUPS

10 0.025 256 × 256 × 8 0.17 0.53 20/3 36/6 413 18.41 ± 0.11 CUPS

0.050 256 × 256 × 16 0.19 0.60 10/4 17/8 600 29.62 ± 0.07 CUPS

0.075 256 × 256 × 24 0.20 0.63 9/4 16/9 510 34.26 ± 0.08 CUPS

0.085 256 × 256 × 24 0.20 0.63 6/4 11/9 508 35.20 ± 0.12 CUPS

0.100 256 × 256 × 26 0.20 0.63 8/4 14/9 375 34.98 ± 0.10 CUPS

0.125 256 × 256 × 26 0.20 0.63 9/4 16/8 180 33.88 ± 0.04 CUPS

0.150 256 × 256 × 42 0.20 0.62 9/4 16/8 345 32.85 ± 0.06 CUPS

0.200 256 × 256 × 60 0.19 0.62 9/4 16/8 270 32.19 ± 0.08 CUPS

0.250 256 × 256 × 64 0.19 0.61 9/4 16/8 560 31.65 ± 0.10 CUPS

20 0.025 256 × 256 × 8 0.18 0.81 12/3 27/8 490 18.82 ± 0.11 CUPS

0.050 256 × 256 × 16 0.20 0.91 10/4 21/10 945 30.10 ± 0.04 CUPS

0.075 256 × 256 × 24 0.21 0.95 9/4 18/11 751 35.25 ± 0.13 CUPS

0.085 256 × 256 × 24 0.21 0.95 6/4 13/11 509 35.81 ± 0.12 CUPS

0.100 256 × 256 × 26 0.21 0.95 7/4 16/11 375 35.53 ± 0.15 CUPS

0.125 256 × 256 × 34 0.21 0.93 9/4 19/11 687 33.43 ± 0.05 CUPS

0.150 256 × 256 × 42 0.21 0.92 9/4 20/10 728 32.09 ± 0.04 CUPS

0.200 256 × 256 × 60 0.21 0.92 9/4 20/10 378 31.89 ± 0.02 CUPS

0.250 256 × 256 × 64 0.21 0.92 9/4 19/10 300 31.19 ± 0.10 CUPS

40 0.025 256 × 256 × 8 0.13 0.81 12/3 32/10 875 19.40 ± 0.14 CUPS

0.050 256 × 256 × 16 0.14 0.91 10/4 24/13 560 30.44 ± 0.05 CUPS

0.075 256 × 256 × 24 0.15 0.95 9/4 22/14 952 35.75 ± 0.05 CUPS

0.085 256 × 256 × 24 0.15 0.95 6/4 16/14 270 37.04 ± 0.05 CUPS

0.100 256 × 256 × 26 0.15 0.95 7/4 20/14 1000 35.70 ± 0.05 CUPS

0.125 256 × 256 × 34 0.15 0.94 9/4 23/13 700 33.71 ± 0.02 CUPS

0.150 256 × 256 × 42 0.15 0.93 9/4 23/13 322 32.12 ± 0.06 CUPS

0.200 256 × 256 × 60 0.15 0.92 9/4 24/13 504 31.37 ± 0.04 CUPS

0.250 256 × 256 × 64 0.15 0.92 9/4 22/13 280 32.11 ± 0.16 CUPS
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FIG. 3. (a) Global Nusselt number Nu and (b) normalized global Nusselt number versus Pr, for different
�, where Nu0 is the value obtained at � = 0.25. The black solid line is the Pr dependence of Nu estimated by
Grossmann-Lohse theory [47,49].

Here, with different Pr explored, we further suggest that the cases of � = 0.25 can be regarded as
a baseline representing unconfined RB convection according to their agreement with GL theory (at
least within our explored Pr range). Another feature that can be seen in Fig. 3(a) is the weak Pr
dependence of Nu for large Pr, which was also observed experimentally by Xia et al. [50]. Such a
weak dependence has also been predicted by GL theory [51] and recently a numerical and theoretical
work by Shishkina et al. [52] has even shown that Nu is totally independent of Pr for the regime of
large Pr.

With the Nu value for� = 0.25 taken as the baseline for unconfined convection, we plot in Fig. 3(b)
the normalized Nu versus Pr for the different values of �. In addition to showing the general trend that
Nu increases with Pr in the present parameter range [which can also be seen in Fig. 3(a)], Fig. 3(b)
also shows that, broadly speaking, upon geometrical confinement an enhancement in Nu sets in when
Pr � 1 and the enhancement increases with decreasing � up to a certain value. Then a sharp drop in
Nu occurs.

Next we examine the enhancement effect in more detail by plotting the normalized Nu versus �

for a given Pr, which is shown in Fig. 4(a). With this, the Pr dependence of the system’s response
to confinement can be classified as follows. The cases with Pr � 0.5 appear to belong to one group,
for which a regime with significant enhancement of Nu exists upon decreasing �. The cases with
Pr = 0.1 and 0.2 belong to the second group, for which no significant Nu enhancement is seen. We
define “significant enhancement” as a more than 2% increase in Nu compared to Nu0, which is about
twice the maximum percentage error of Nu. We also find that the Reynolds number Re exhibits
an apparent and monotonic decrease with �, as shown in Fig. 4(b). These results are in agreement
with the previous finding that slower flow can indeed transport more heat [20]. For the cases with
enhanced heat transport, Nu reaches a maximum value upon further confinement, after which heat
transport efficiency declines sharply and the optimal aspect ratio �opt can be defined through this
trend.

Figure 4(c) shows the dependence of �opt on Pr in a log-log plot. In order to estimate �opt more
accurately, a quadratic fit has been made to the three points in the neighborhood of the peak position
in Fig. 4(a). The figure reveals that there is a power-law relationship between the two quantities
and the fitting of respective data yields �opt = 0.11 Pr−0.060±0.004. It is worthwhile to recall that the
relationship between �opt and Ra has been found previously [22], where �opt and Ra follow a much
stronger power-law relation �opt = 29.37 Ra−0.31. In Fig. 4(d) we further examine the maximum
enhancement versus Pr. The data are somewhat scattered, but a general trend is that the amount of
enhancement increases with Pr within the explored parameter range. For instance, for Pr = 0.5 the
enhancement is ∼5.3%, while for Pr = 40 the enhancement is 15.3%.
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FIG. 4. Normalized (a) global Nusselt number and (b) Reynolds number versus �, for different Pr, where
Nu0 and Re0 are the values obtained at � = 0.25. (c) Optimal aspect ratio �opt (if it exists) versus Pr, where
the dashed line represents the best power-law fit �opt = 0.11 Pr−0.060±0.004. (d) Maximum Nu enhancement
Nu(�opt)/Nu0 versus Pr.

B. Joint probability density function of velocity and temperature fluctuations

To gain further insight into how the bulk flow is modified by geometrical confinement, especially
for fluid with different Pr, we now focus on the local quantities. One such local measurement that is
able to reveal bulk flow properties is the joint probability density function between the temperature
and vertical velocity at the midheight of the cell, which is shown in Fig. 5. The figure can be
interpreted from two perspectives, either at fixed � with varying Pr or at fixed Pr with varying
�. First, as Pr increases (from top to bottom along the columns), the shape of distribution function
shrinks horizontally, meaning that for larger Pr the extreme events for velocity become less probable.
This feature can be understood as the fluid flow becomes less turbulent for larger Pr, which is revealed
by decreasing Re with increasing Pr. Second, as � decreases with fixed Pr (from left to right along the
rows), the shape change of the distribution functions leads us to identify two competing effects. On the
one hand, geometrical confinement slows down the bulk flow due to stronger drag from the sidewalls
and hence it is less probable for large velocities to occur. On the other hand, confinement leads to the
formation of highly coherent plumes [20] and thus the temperature distribution is elongated since hot
(cold) plumes become hotter (colder) when they reach the midheight. However, the bulk properties
observed here cannot explain why Nu enhancement has not been realized for Pr = 0.1 and 0.2. As
can be seen, increasing plume coherency in the bulk has also been realized for Pr = 0.1, but in such
case there is no heat transport enhancement globally. This observation suggests that instead of a bulk
property, other quantities may also play important roles in heat transport enhancement, for example,
the local properties at the edge of the boundary layer (BL).
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FIG. 5. Joint probability density function for the temperature T and vertical velocity uz (both are
dimensionless) evaluated at midheight for Pr = 0.1, 1, and 10 with � = 0.25, 0.1, and 0.025.

C. Physical quantities in thermal boundary layers

Figure 6(a) shows the temperature standard deviation σT evaluated at the edge of thermal BL
versus �/�opt, where the estimation of temperature BL thickness λT is based on the peak location of
vertical temperature standard deviation profiles σT (z) =

√
〈T 2〉x,y,t − 〈T 〉2

x,y,t . Here we normalize
� by �opt to better illustrate how the quantities vary as the optimal point is approached. Indeed, the
local quantities taken from the thermal BL allow us to observe the differences attributed to Pr. For
large Pr cases, we clearly see that σT increases as � is reduced towards �opt. Also worth noting is that
the trend is more pronounced for the few largest values of Pr. This may be understood by recognizing
that larger Pr corresponds to smaller thermal diffusivity and so the plumes are able to better preserve
their heat content when traversing to the opposite end. Conversely, for too large thermal diffusivity,
i.e., the cases of Pr = 0.1 and 0.2, the plumes most severely lose their heat content to the ambient
fluid. Thus, we do not observe an appreciable increase of σT at the thermal BL for those cases.

In addition, plume coverage is also important in characterizing heat transport enhancement by
confinement as revealed in Refs. [22,23]. The estimation of plume coverage requires the extraction
of cold (hot) plumes over the hot bottom (cold top) BL and is defined as the area satisfying ±(T −
〈T 〉x,y) � cσT,0. Here σT,0 is the common threshold for the same Pr, which is σT (z = λT ) for � =
0.25. The empirical parameter c is chosen to be 0.5. We have tested different choices of c and found
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FIG. 6. (a) Temperature standard deviation σT evaluated at the edge of thermal BL normalized by σT,0

(obtained at � = 0.25 for a given Pr) versus rescaled aspect ratio �/�opt. Note that �opt is ill defined for
Pr = 0.1 and 0.2 and we take �opt = 0.25 for convenience. (b) Areal coverage of cold plumes over the edge
of the (hot) bottom thermal BL Apl normalized by its value obtained at � = 0.25 (denoted by Apl,0) versus
�/�opt.

that our main conclusions do not depend on the particular choice of its value. Figure 6(b) shows
the normalized coverage of cold plumes over the edge of the (hot) bottom thermal BL versus the
rescaled aspect ratio �/�opt. For large Pr cases, it shows clearly that, as �opt is approached, the
plume coverage is increased significantly. This suggests that the bottom (top) BL is cooled down
(heated up) more efficiently, which also results in a thinner and more uniform BL [22]. Again, such
an increase in plume coverage is largely absent for very low Pr, i.e., Pr = 0.1 and 0.2. One the whole,
we see that the properties of both σT and plume coverage at the edge of the thermal BL can explain
the behavior of the Pr dependence of Nu in response to confinement.

D. Crossing of momentum and temperature boundary layers

In a recent study [23], it has been shown that the relative thickness of thermal and momentum
BLs plays a major role in determining the optimal transport. To understand the Pr-dependent optimal
point found in this work, we follow the same idea. Using the proposal made by Chong et al. [23], the
thickness λp of the momentum BL may be defined by the peak location of the vertical profile
of the stress s(z) = 〈(∂xu)2 + (∂yv)2 + (∂zw)2〉x,y,t . The edge of the momentum BL as defined
can be thought of as the location where plume merging and convolution take place such that the
strongest convergence of fluid element gives rise to the maximum normal stress. Figure 7(a) shows
the normalized momentum BL thickness versus the rescaled aspect ratio �/�opt for different Pr. First,
for Pr � 0.5, we observe that the momentum BL becomes thinner as � is reduced towards �opt. The
amount of decline in thickness increases with Pr. Specially, a 20% decrease is seen for Pr = 0.5 and a
50% decrease for Pr = 40. In contrast, such a decrease is absent for the cases of Pr = 0.1 and 0.2. We
next examine the ratio of the thicknesses of the thermal and momentum BLs λT /λp versus �/�opt,
which is presented in Fig. 7(b). It is found that the ratio of BLs thicknesses generally increases with
decreasing � for Pr � 0.5 but again, not for Pr = 0.1 and 0.2. At a certain �/�opt close to one,
the thermal and momentum BLs have comparable thickness such that the location of the maximum
normal stress coincides with that of maximum temperature fluctuation. This BLs crossing leads to the
strongest coupling of normal stress and temperature fluctuation, which is a favorable condition for
plume emission [23]. However, when the confinement becomes too severe, the momentum BL will
be nested deeply inside the thermal one. Previous works have shown that temperature fluctuations
decrease sharply within the thermal BL [53,54]. Therefore, when the momentum BL becomes much
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FIG. 7. (a) Momentum boundary layer thickness λp normalized by λp,0, the one obtained at � = 0.25 for
a given Pr, versus rescaled aspect ratio �/�opt. (b) Ratio of the temperature boundary layer thickness to the
momentum one λT /λp versus �/�opt.

thinner than the thermal BL, the convergence of fluid will occur at positions of much-reduced thermal
instability and thus is not favorable for plume emission and heat transport. To provide evidence of
such coupling, we have examined the normalized temperature standard deviation at the edge of
momentum BL σT /σT,0 versus thickness ratio λT /λp as shown in Fig. 8(a). When the momentum
BL becomes thinner and approaches the thickness of the thermal BL, an increase of σT at the edge of
the momentum BL is observed. However, when the thickness ratio becomes much larger than one, σT

drops sharply. As the figure suggests, BL crossing entails the strongest coupling between the normal
stress and temperature standard deviation that is crucial to heat transport. To further demonstrate this,
we plot Nu against the thickness ratio in Fig. 8(b). It can be seen that the optimal transport occurs for
a thickness ratio around one, namely, between 1.08 and 1.32 (the shaded strip), and it again justifies
that the BL crossing is intimately related to the optimal point.

FIG. 8. (a) Normalized temperature standard deviation σT /σT,0 versus thickness ratio λT /λp , where σT is
evaluated at the edge of momentum BL. (b) Nusselt number Nu versus λT /λp .
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FIG. 9. Time-averaged temperature and velocity fields midway along the confinement direction for three
different Pr, which are Pr = 0.1, 1, and 10, and for four different �, which are � = 0.25, 0.15, 0.085, and
0.025. The magnitude of the velocity is represented by the length of the arrows in nondimensional units and the
temperature is coded in color.

E. Global flow structures

We now examine the changes in flow pattern brought about by confinement for fluid with different
Pr. Figure 9 displays temporally averaged mean velocity fields along the x-z plane at midwidth
together with temperature fields. We illustrate the properties of the mean flow field using four
different � (0.25, 0.15, 0.085, and 0.025, from left to right) and three different Pr (0.1, 1 and 10,
from top to bottom). We first consider the case of Pr = 0.1 and � = 0.25. It demonstrates a typical
flow pattern in RB convection where there exists a well-defined LSC with two counterrotating corner
rolls. For such a case, plumes most likely detach near sidewalls; therefore, hot and cold regions form
on either side of the cell and the mean temperature field provides such a footprint. Due to the existence
of corner rolls, plumes no longer impinge the opposite plates head on but rather at an angle as they
are being steered. As � decreases to � = 0.15 and further to 0.085, besides the reduced flow speed,
the shape change of LSC is observed. As the figure suggests, the size of the LSC shrinks while the
two corner rolls grow under confinement. With further confinement to � = 0.025, the shape of LSC
becomes greatly distorted and impingement of plumes becomes head on.

With Pr increased to 1, the variation of the flow pattern under confinement exhibits a different
behavior. For � = 0.25 at this Pr, the LSC still persists, but larger corner rolls are seen as compared
to the cases with Pr = 0.1. However, when � is further reduced to 0.15, the mean field displays a
four-roll pattern as opposed to a single-roll flow structure. Some earlier studies had revealed that a
time-averaged four-roll pattern can be brought about by the superposition of two flow fields with
opposite flow directions [44,55]. The change of flow pattern indicates that the LSC becomes less
stable and therefore flow reversals occur more frequently. Upon further confinement to � = 0.085,
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FIG. 10. Schematic diagram of the 2D Fourier modes um,n
x and um,n

z as defined in the text.

the four-roll flow pattern still persists. However, when � reaches 0.025, the flow becomes dominated
by vertical motions such that columnar structures appear in the temperature field. For Pr = 10, the
single-roll structure has already broken down to a four-roll one at � = 0.25. This demonstrates that
the LSC under confinement becomes less stable for larger Pr. Upon further confinement to � = 0.025,
the flow field again exhibits the formation of columnar plumes and vertically aligned structures.

A more quantitative approach to study the flow pattern and strength of LSC is via the so-called 2D
mode decomposition method [29,56,57]. We remark that this 2D technique is suitable here because
our configurations are quasi-2D and the circulations are largely within the x-z plane. We apply the
decomposition algorithm to a set of vertical cross sections from instantaneous flow fields taken at
midwidth, with the planar velocity field (ux,uz) being projections into the Fourier modes given as

um,n
x = 2 sin(mπx) cos(nπz), (4)

um,n
z = −2 cos(mπx) sin(nπz). (5)

Usually, the first four modes are considered [29,57], i.e., m,n ∈ {1,2}, but now, we also consider
the modes of m = 3 and n = 1 and of m = 4 and n = 1 to represent the columnar structure
as found in the mean field. To give an impression of how these modes look like, we draw
their corresponding flow patterns in Fig. 10. As suggested in Ref. [29], the projection is done
componentwise on individual snapshots such that the time series of Am,n

x (t) = 〈ux(t)um,n
x 〉x,z and

Am,n
z (t) = 〈uz(t)um,n

z 〉x,z are obtained. Then a value Mm,n representing the mode contribution can be

evaluated by Mm,n = 〈
√

(Am,n
x )2 + (Am,n

z )2〉t .
In Fig. 11 we compare the contributions of each mode Mm,n as a function of � for different Pr.

Similar to the mean field, we have chosen Pr = 0.1, 1, and 10 for demonstration. First we consider
Pr = 0.1 at � = 0.25. The value of M1,1, which represents the single-roll structure, is at least 4 times
larger than that of other modes. Upon decreasing �, the first mode M1,1 becomes less dominant over
other modes but is still the largest one. When � reaches about 0.075, M1,1 declines sharply and
becomes comparable to M2,2, which represents the four-roll structure. From the discussion in the
preceding section, this is an indication that the LSC is being suppressed by confinement. When

FIG. 11. Magnitudes of the four 2D modes Mm,n as a function of the aspect ratio � for Pr = 0.1, 1, and 10.
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FIG. 12. Phase diagram showing the existence of the LSC in the �-Pr parameter space. Red circles represent
cases where the value of M1,1 (single-roll mode) is the largest compared to the other three modes; otherwise,
the cases are represented by blue diamonds.

confinement is increased further to � = 0.025, the magnitudes of M1,1 and M2,2 remain comparable
to each other. For Pr = 1, M1,1 is still the mode with the largest magnitude at � = 0.25 but its
value is only 1.5 times larger than that of others. The most prominent feature here is that the M2,2

mode overtakes the M1,1 mode below � = 0.15, indicating the formation of a four-roll flow pattern.
Our quantitative result again demonstrates that the LSC is less stable for larger Pr. The mode M2,2

dominates until � = 0.025, where M2,1 and M4,1 become comparable to M2,2, which could indicate
the formation of vertically aligned flow structures. For Pr = 10, the mode M2,2 dominates until
� = 0.075, where M3,1 begins to have comparable magnitude to M2,2. It again demonstrates the
formation of columns for highly confined RB. This method enables us to quantify the strength of
LSC and judge the presence of LSC by considering whether M1,1 is the largest mode among others.
Figure 12 gives the phase diagram illustrating when to expect the existence of LSC in the �-Pr
parameter space.

IV. CONCLUSION

We have studied the role played by the Prandtl number Pr in geometrical confinement in terms of
its effect on heat transport and flow structures, through DNS with 0.1 � Pr � 40, 0.025 � � � 0.25,
and Ra fixed at 108. With regard to global convective heat transport, it was found that the existence, and
the amount, of heat transport enhancement brought about by confinement depends strongly on Pr. For
Pr � 0.5, significant heat transport enhancement has been observed but not for Pr = 0.1 and 0.2. We
were able to define an optimal aspect ratio �opt at which Nu is maximized for cases with enhancement.
The Pr dependence of �opt was found to follow a power-law relationship �opt = 0.11 Pr−0.060±0.004.
Together with the result �opt = 29.37 Ra0.31 found in Ref. [22], they present a more complete picture
of geometrical confinement. With regard to the amount of enhancement, the maximum enhancement
generally increases with Pr over the explored parameter range, ranging from 5.3% to 15.3% as
Pr increased from 0.5 to 40 (for Ra = 108, as the maximum enhancement also depends on Ra).
Through the joint probability density function between vertical velocity and temperature standard
deviations at midheight, we were able to identify two competing effects due to confinement. On the
one hand, confinement reduces the flow strength; on the other hand, plumes become more coherent as
revealed by the temperature distribution function. However, compared to these bulk properties, local
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quantities at the edge of thermal BL including plume coverage and temperature standard deviation
were found to play more important roles in determining the global heat transport. It helps us to
understand why larger Pr produces larger enhancement and why no enhancement is observed for
smaller values of Pr, such as 0.1 and 0.2. To explain �opt, we have examined the relative thickness of
thermal and momentum BLs λT /λp. It was suggested in Ref. [23] that the BL thickness ratio near
unity actually corresponds to the situation with strongest coupling between the normal stress and
the temperature fluctuations. This optimal coupling between the two quantities leads to the optimal
transport. Our results with different Pr at Ra = 108 support this physical picture and again justify
that optimal transport occurs when λT /λp is around one. We have in addition studied the global flow
structure by examining the temporally averaged flow fields and through a 2D mode decomposition.
A consequence of the geometrical confinement is the weakening of LSC, which is manifested by the
fact that the single-roll flow structure is replaced by a multiple-roll structure in the time-averaged
flow field. It is also supported by results from the 2D mode decomposition that the M1,1 mode no
longer dominates. We further show that the LSC persists over a wider range of � for smaller Pr. A
phase diagram for the LSC existence is shown in Fig. 12. In the future, it would also be interesting to
extend the present study to Ra beyond 108 in a way to complete the parameter space of Nu(Ra,Pr,�).
In addition to being of fundamental interest, those results would also be useful for passive thermal
management.
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