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We give the first correction to the suspension viscosity due to fluid elasticity for a dilute
suspension of spheres in a viscoelastic medium. Our perturbation theory is valid to O(φWi2)
in the particle volume fraction φ and the Weissenberg number Wi = γ̇ λ, where γ̇ is the
typical magnitude of the suspension velocity gradient, and λ is the relaxation time of the
viscoelastic fluid. For shear flow we find that the suspension shear-thickens due to elastic
stretching in strain “hot spots” near the particle, despite the fact that the stress inside the
particles decreases relative to the Newtonian case. We thus argue that it is crucial to correctly
model the extensional rheology of the suspending medium to predict the shear rheology of
the suspension. For uniaxial extensional flow we correct existing results at O(φWi), and
find dramatic strain-rate thickening at O(φWi2). We validate our theory with fully resolved
numerical simulations.

DOI: 10.1103/PhysRevFluids.3.013301

I. INTRODUCTION

The rheology of complex suspensions is of fundamental importance in many fields of science
and engineering. For most applications it not desirable, or practical, to resolve the details at the
scale of the polymers or particles in the suspension. A fundamental problem in rheology is the
development of methods to coarse-grain the microscopic fluid dynamics and thus create a useful
macroscopic continuum description of the stress-strain response of a complex suspension. This is a
difficult problem at the intersection of fluid dynamics and statistical mechanics.

A cornerstone of our theoretical understanding is so-called dilute suspension rheology [1]. This
approximation describes the stresses that arise due to isolated particles in a suspending medium, and
particle-particle interactions are neglected. Mathematically, it arises at first order in a perturbation
theory in the volume fraction φ of particles in the suspension [2].

Einstein [3,4] first devised an early form of dilute suspension rheology in his doctoral thesis. He
showed that the bulk shear viscosity η of a suspension of rigid, inertia-free, and neutrally buoyant
spheres in a Newtonian fluid is

η = (1 + 2.5φ + · · · )μ, (1)

where μ is the viscosity of the suspending fluid in the absence of any particles. The suspension
viscosity increases because the particles resist deformation. Their internal stresses increase, which
results in an O(φ) increase in the suspension viscosity. In a seminal paper, Batchelor [1] described
how to generalize Einstein’s calculation to compute the complete suspension stress tensor. He termed
the increased particle stress the “stresslet” contribution, because of its relation to the symmetric first
moment of surface tractions over the particle surface.

When the suspending medium is viscoelastic, for example by the addition of polymers, there are
two mechanisms that change the resulting suspension stress. First, the stresslet contribution may
change, because the surface tractions change. Second, in contrast to the Newtonian case, there is
additional stress in the fluid phase due to the polymers stretching in the flow gradients induced by
the particle. We call this latter contribution the “particle-induced fluid stress” [5].
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Experiments with suspensions of spherical particles in viscoelastic fluids show shear thickening
at low (<10%) volume fractions of particles [6–8]. In contrast, Newtonian suspensions shear-thin
or thicken only at rather high volume fractions φ > 30%–40%, because of particle interactions
[9]. These observations indicate that dilute suspension rheology may be useful to understand the
mechanism of shear thickening of viscoelastic suspensions.

The first deviation from a Newtonian fluid for a viscoelastic fluid medium is described by the
second-order fluid [10], which is an approximation in slow flows or, equivalently, fast relaxation of
the elastic fluid. It is valid to linear order in the Weissenberg number Wi = γ̇ λ, where γ̇ is the typical
magnitude of the fluid velocity gradient, and λ is the relaxation time of the viscoelastic fluid. Koch
and Subramanian [11,12] first calculated the correct rheology of a dilute suspension of spheres in
a second-order fluid, after several earlier attempts with conflicting results [13–20]. Recently Yang
et al. [5] could discriminate between the different theoretical calculations by fully resolved numerical
simulations. But in the second-order fluid limit there is no correction to the shear viscosity. While
there are second-order fluid corrections to the normal stress differences due to fluid elasticity [11,12],
Einstein’s result (1) remains the leading order correction to the suspension viscosity.

Yang et al. [5] and Koch et al. [21] independently studied suspension stress in shear flow by
numerical simulation and a semianalytical theory, respectively. They both found that as Wi is
increased from vanishingly small values, the stresslet contribution to the dilute suspension shear
viscosity decreases, but the particle-induced fluid stress increases. Thus both found that the net
effect is shear thickening of viscosity and the first normal stress.

In this paper we analytically calculate the suspension stress for any linear motion of the suspension,
by a perturbation theory to O(φWi2). As a particular case we find the correction to the Einstein
viscosity (1) due to fluid elasticity. Our calculation reveals how shear thickening arises from strain
“hot spots” in the disturbance flow around particles. In addition we analyze the stress in extensional
flow, which is a fundamental rheological flow, and important in applications where, for example, a
suspension is injected into a mold.

II. THEORY

A. Dilute suspension rheology

We consider an inertia-free suspension of rigid spherical particles of radius a in a viscoelastic
medium. We take the macroscopic flow to be a linear flow U = E · x + O · x, where the rate of
strain E is symmetric and the vorticity tensor O is antisymmetric. The linear flow includes both
the simple shear and extensional flows that are fundamental to rheology. In the following we first
explain the general averaging procedure, we then give the details of the microscopic problem and
how to calculate the average.

The macroscopic stress at a point x in the suspension is an ensemble average of the microscopic
stress σ (x), taken over all possible configurations of the suspension [1,2]. In a dilute suspension it is
unlikely that two particles are close enough to interact, and for low volume fraction φ the ensemble
average is approximated by [2]

σ (x) =
∫

σ (x | y)P ( y) d y + O(φ2). (2)

Here σ (x | y) is the stress at x conditioned on the presence of a sphere centered at y, and P ( y)
is the probability to find a sphere at y. Equation (2) embodies the fact that we expect to find only
a single particle within a volume V ∼ φ−1. In a spatially homogenous suspension the probability
P ( y) = φ/Vp is uniform, where Vp is the volume of a sphere, and the disturbance fields due to the
presence of a particle depend only on r = x − y.

It follows that the correct microscopic problem to solve, at this order, is that of a single particle
centered at r = 0 in an asymptotically large volume of radius R ∼ φ−1/3. Outside this volume we
expect to find additional particles, and the assumptions that led to Eq. (2) are invalid. The problem

013301-2



EINSTEIN VISCOSITY WITH FLUID ELASTICITY

formulation must be closed by a far field boundary condition for |r| ∼ R that ensures a self-consistent
theory, which we introduce after giving the equations of motion.

The ensemble average (2) thus reduces to

σ = φ

Vp

∫
V

σ (r) d r = φ

Vp

∫
Vp

σ (r) d r + φ

Vp

∫
Vf

σ (r) d r, (3)

where V is the volume of the domain, including Vp, and the fluid volume Vf = V − Vp. The stress
σ inside the particle is unknown, but via the divergence theorem and continuity of stress it is given
by the stresslet of a freely suspended particle [1]

φ

Vp

∫
Vp

σ (r) d r = φ

Vp

∫
Sp

r(σ · n)dS = φ

Vp

S. (4)

B. Governing equations

The microscopic flow u is governed by the momentum equation and the incompressibility
condition

∇ · σ = 0, ∇ · u = 0, (5)

where σ is the stress tensor field. In the following all variables are nondimensionalized: r ′ = r/a,
t ′ = γ̇ t , u′ = u/(γ̇ a), σ ′ = σ/(μγ̇ ), where μ is the shear viscosity at Wi = 0 and γ̇ = √

2Tr E E.
We subsequently drop the primes from the notation. We use the Oldroyd-B constitutive model for
the stress in a viscoelastic fluid. It represents a thermal bath of entropic springs, modeling polymers,
that are transported and stretched by the fluid. The model captures the rheology of an elastic fluid
without shear thinning. The steady Oldroyd-B equations read [10]

σ = −pδ + 2(1 − μr )e + μr�,

� + Wi[(u · ∇)� − a · � − � · aT] = a + aT. (6)

Here p is the pressure, μr� is the stress due to the elastic polymers, and a is the flow gradient tensor
with elements aij = ∂ui/∂rj . The strain tensor is defined as e = (a + aT)/2, and the vorticity tensor
o = (a − aT)/2, so that a = e + o. The constitutive model has two parameters: the relaxation time λ

that appears in the Weissenberg number Wi = γ̇ λ, and the relative concentration of polymers given
by the ratio μr = μp/(μs + μp) of the solvent (μs) and polymer (μp) contributions to the shear
viscosity μ = μs + μp at Wi = 0. The center-of-mass velocity v and the angular velocity ω of the
particle are determined by the condition that it is force- and torque-free.

C. Boundary conditions

The boundary condition on the surface of the sphere is the usual no-slip condition. The asymptotic
far field boundary condition when |r| ∼ R is determined by two self-consistency conditions. First,
the suspension flow is linear by assumption, so the microscopic model must satisfy

∇u = E + O. (7)

This implies that the flow field settles down to its mean value as |r| ∼ φ−1/3. Any correction due to
the presence of another particle is of higher order in φ [2]. Second, the ensemble average

(u · ∇)� = 0 (8)

in a homogenous suspension [21,22] (see also Appendix B). This implies that also the stress field
settles down to its mean value as |r| ∼ φ−1/3. In summary,

u ∼ u, σ ∼ σ , |r| ∼ φ−1/3. (9)
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This argument is a mean field theory in the sense that we assume a macroscopic average field, and
then determine the microscopic model to satisfy this assumption upon averaging. We demonstrate
in Appendix B that these conditions indeed give a consistent theory.

Viscous flow problems in unbounded domains are often complicated by the slow algebraic decay
of the disturbance fields, giving unphysical or divergent integrals. The self-consistency condition
is in effect a regularization of those integrals, and our argument is akin to the regularization used
to calculate the O(φ2) rheology in a Newtonian suspension [23]. They considered an unbounded
fluid domain, but instead invoked the asymptotic properties of u and σ when evaluating the integrals
corresponding to our Eq. (3). We show in Appendix B that this procedure gives the same result as
ours.

If one chooses to approximate the microscopic problem with an unbounded flow without
regularization, it appears that the volume-averaged stress is not equal to the ensemble-averaged
stress, even in a statistically homogenous suspension [11,21,22]. This apparent ergodicity breaking
has led to confusion regarding the correct averaging procedure, where some terms required ensemble
averaging, whereas others could be volume-averaged [11,17,21,22]. We remove this ambiguity by
correctly imposing the mean field conditions.

D. Averaging

It follows from Eq. (3) and (4), and the Oldroyd-B constitutive equation (6) that

σ = −〈p〉F δ + 2E + φ

Vp

S + μrWi〈a� + �aT〉F , (10)

where

〈a〉F ≡ φ

Vp

∫
Vf

a dV (11)

is short-hand for the integral over the fluid volume in Eq. (3). In Eq. (10) we used that the integrals
〈e〉F = E, and 〈(u · ∇)�〉F = 0 given the boundary conditions (9). In the following we omit any
isotropic terms in the average stress, because they do not contribute to the suspension rheology.
We denote the symmetric part of any tensor â ≡ (a + aT)/2. With the perturbation ansatz � =
�(0) + Wi �(1) + · · · we have

σ = 2E + φ

Vp

S + μrWi[2〈â · a〉F + 2〈a · aT〉F ]

+μrWi2[2〈â · a · a〉F + 6〈 ̂a · a · aT〉F − 4〈 ̂a · [(u · ∇)e]〉F ], (12)

where the stresslet S must be evaluated to O(Wi2), the integrals in the first bracket must be evaluted
to O(Wi), and those in the second bracket to O(1).

The integrals over the quadratic and cubic terms are calculated by splitting a = a + a′, and noting
that 〈a′〉F = φE. This is because the average strain in the fluid phase is (1 + φ)E, to compensate
for the fact that there is no strain inside the particle. The remaining integrals of the type 〈a′ · a′〉F ,
〈a′ · a′ · a′〉F , and 〈a′ · [(u · ∇)e]〉F are evaluated using the flow solutions that satisfy the boundary
conditions (9) to O(1) in φ, which gives an accurate result to O(φ).

We evaluate the stresslet via the Lorentz reciprocal theorem [24,25]:

S = 20π

3
E +

∫
Sp

̂r(σE · n) dS +
∫

V

MT · ∇ · σEdV. (13)

Here σE = μr (� − 2e) is the nonlinear part of the stress tensor, and M is the rank three tensor such
that M : E is the Stokes solution for a sphere in a otherwise quiescent fluid, but with a strain flow
E · r on the surface. See Appendix C for a detailed derivation of Eq. (13).
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We must know the flow and stress fields associated with the microscopic problem to O(Wi) to
evaluate the average (12) and the stresslet (13) to O(φWi2). The required flow and stress fields are
given by a regular perturbation theory in Wi,

u = u(0) + Wi u(1) + · · · , � = �(0) + Wi �(1) + · · · ,

p = p(0) + Wi p(1) + · · · , ω = ω(0) + Wi ω(1) + · · · . (14)

We follow the method described in Ref. [25] to calculate these solutions. We perform the necessary
algebra and integrations to evaluate Eqs. (12) and (13) using the MATTE software in Mathematica [26].

III. NUMERICAL METHODS

The numerical evaluations of the bulk stress is obtained by using a massively parallel flow solver
based on an unstructured finite volume formulation. Details for the solver can be found in Ref. [5] and
the references therein. In those previous studies, the full Navier-Stokes equation was solved and the
only modification we have made in this study is to remove the convective term such that the solver is an
unsteady Stokes solver. At steady state, i.e., when the stresslet components and the particle-induced
fluid stress components display a relative change of less than 0.001 over a characteristic time scale,
the solutions discretely satisfy the governing equations (5) and (6).

The computation domain is a cubic box with a sphere at the center. For the shear flow results,
we use the same boundary conditions as reported in Ref. [5]. At the sphere surface, the velocity
corresponds to the solid body rotation of the sphere with angular velocity ω, which is determined
by iterating until the nondimensionalized torque is less than 0.01. Equal and opposite velocities
are applied on two walls of the computation box to drive the shear flow and periodic boundaries
are applied on the remaining four walls. Note that we don’t need to apply boundary conditions for
the polymer stress in this case because the two walls and sphere surface have zero mass flux. For
the extensional flow results, we impose zero velocity on the sphere surface and u = E · r on the
computational box. In this case, since there is mass flux through the computation box, we also impose
the ensemble-averaged value of the polymer stress at the computation box to match the boundary
conditions (9).

We have tested for mesh, time, and domain size convergence. Results change by less than 1.5%
when we decrease the mesh size by a factor of 2, decrease the time step by a factor of 5, and increase
the domain size by a factor of 2. We use a computation box that is 12 times the particle size. The
mesh consists of tetrahedral elements that are finer on the sphere surface (0.03 particle diameters)
and coarser on the boundary of the computation box (0.5 particle diameters) for a total of 2.5 million
control volumes.

To extract the dependence of the stresslet on the value of the Weissenberg number we must subtract
the O(1) Newtonian contribution. Despite the numerical results for the viscosities being within 1.5%
of the theoretical Newtonian values at small values of Wi, subtracting the theoretical value is not
precise enough to make a power law on a log-log scale. We therefore fit a curve η = a + bWi2 (or
a + bWi + cWi2 for extensional flow) to the three data points with lowest Wi, and use a as the value
to subtract. The values of a are within 1.5% of the theoretical Newtonian value for all data sets shown.

IV. RESULTS

We give our results in rounded decimal form for a concise and useful presentation. The exact
expressions may be found in Appendix A.

A. Shear viscosity

When the suspension flow is a simple shear flow U = y x̂, we find that the shear viscosity ηS = σxy

is

ηS = 1 + 2.5φ + (0.62 − 0.03μr )φμrWi2. (15)
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FIG. 1. Comparison of the theoretical results (lines) to fully resolved numerical simulations (markers) of
the particle contribution to the suspension viscosities, as function of Wi. Top row shows suspension shear
viscosity, bottom row extensional viscosity in uniaxial strain. Left panels show stresslet contribution, right
panels particle-induced fluid stress. In all panels markers are numerical results for μr = 0.68 (red crosses),
μr = 0.5 (green squares), and μr = 0.01 (blue circles). The solid lines show the O(Wi2) theoretical results
from Eqs. (16) and (20). The dotted lines show the O(Wi) terms of Eq. (20).

The suspension is shear thickening. The thickening is a consequence of two competing mecha-
nisms. To show this we consider the components of the O(φWi2) contribution, ηS = 1 + 2.5φ +
φμr (αstresslet

S + αfluid
S ):

αstresslet
S = −1.43Wi2 − 0.06μrWi2,

αfluid
S = 2.05Wi2 + 0.03μrWi2. (16)

There is a negative, shear-thinning, contribution from the stresslet component, meaning that the
stress in the sphere decreases due to the elasticity of the suspending fluid. The angular velocity
also decreases at O(Wi2) [27]: ωz = −1/2 + μrWi2/4. Thus both the symmetric and antisymmetric
moments of the surface tractions decrease at this order. On the other hand, the average polymer stress
in the fluid phase gives a strong positive contribution to the shear viscosity. Our interpretation is that
the polymers “absorb” some of the stress that would otherwise have gone to surface traction on the
particle. But that results in stretched polymers in the fluid around the particle that, on average, incur
an even larger extra stress in the suspension. The net result is that the suspension shear-thickens. We
compare our analytical result to fully resolved numerical simulations in Fig. 1 (top row).

We further elucidate the mechanism of thickening by splitting the gradient a = e + o in Eq. (12).
The resulting strain and vorticity correlations represent contributions from different flow types to the
O(φWi2) viscosity correction. We present the contributions from all integrals, as well as the stresslet,
in Fig. 2, for μr = 1. It is clear that the shear thickening is due to the particle-induced fluid stress
in regions of flow around the particle with a strong straining component, represented by the integral
〈e · e · e〉F . The gradients in the regions fore and aft of the particle are strain-dominated, in the sense
that the gradient tensor has three real eigenvalues. In the shear direction, however, the gradients are
mixed strain and rotation. Regions of mixed flow diminish the effect of the strain, represented by the
negative contributions of for example 〈e · o · o〉F . Nevertheless, the net result is thickening due to
the regions of strain-dominated flow. We demonstrate this correlation in Fig. 3, which displays the
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FIG. 2. Contributions to the O(φWi2) suspension shear viscosity for μr = 1. The leftmost six bars represent
contributions from gradient correlations in Eq. (12) with a = e + o. The seventh bar represents the effect of the
convective term. These seven bars add up to αfluid

S .

local flow type side by side with the local contribution to the O(φWi2) particle-induced fluid stress.
The flow type is represented by the eigenvalue discriminant of the gradient tensor [28], and the stress
contribution is the integrand in the second bracket of Eq. (12).

We compare our theory to the semianalytical results by Koch et al. [21] for small values of Wi.
We digitized the data from their Figs. 1 and 2 and compare to the relevant expressions from our
theory in Fig. 4. The first two panels show the two contributions to the stresslet:

SA =
∫

Sp

̂r(σE · n) dS, (17)

SB =
∫

V

MT · ∇ · σEdV. (18)

The third panel shows the particle-induced fluid stress. While the digitized data are too crude to make
a quantitative comparison to a Wi2 power law, we see that the data are in good qualitative agreement
with the theory.

The calculation by Koch et al. [21] is valid to linear order in μr . This approximation neglects the
feedback mechanism that the elastic stresses modify the flow velocity field, which in turn generates
new elastic stresses, which is represented by terms proportional to μ2

r in our calculation. Our result

FIG. 3. Section in flow-shear plane of two fields: (a) Flow type, represented by the gradient eigenvalue
discriminant � = (Tr a2)3 − 6(Tr a3)2. Positive values of � imply strain-dominated flow where a has three real
eigenvalues. (b) Integrand forO(φWi2) contribution toαfluid

S [thexy component of the second bracket in Eq. (12)].
The shear-thickening contributions to the suspension shear viscosity comes from regions of strain-dominated
flow.
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FIG. 4. Comparison of theory (solid lines) to data (markers) presented in Figs. 1 and 2 in Koch et al. [21].
Left panel: Surface integral component of stresslet in reciprocal theorem, Eq. (17). Center panel: Volume integral
component of stresslet in reciprocal theorem, Eq. (18). Right panel: Particle-induced fluid stress.

shows that their model is a good approximation to O(φμrWi2), because the terms of O(φμ2
r Wi2)

are very small.
Finally, we note that the normal stress differences are unaffected at O(φWi2), and at O(φWi) we

recover the known results [5,21].

B. Extensional viscosity

For uniaxial elongational flow U = x x̂ − 1
2y ŷ − 1

2z ẑ we find that the elongational viscosity ηE =
(σxx − σyy)/3 is

ηE = 1 + μrWi + 3μrWi2 + 2.5φ + φμr (2.68Wi + 9.36Wi2 − 0.1μrWi2). (19)

In this flow the leading correction to the viscosity is O(φWi). Our result at this order differs from that
of Greco et al. [17] because they mistakenly evaluated the average over the fluid volume in Eq. (3)
to O(1) instead of O(φ) [19,22]. They therefore report only the stresslet contribution, which is in
agreement with our result for the stresslet. We separate the contributions from the stresslet and the
particle-induced fluid stress as ηE = 1 + μrWi + 3μrWi2 + 2.5φ + φμr (αstresslet

S + αfluid
S ):

αstresslet
E = 0.89Wi + 3.2Wi2 − 0.17μrWi2,

αfluid
E = 1.79Wi + 6.16Wi2 + 0.08μrWi2. (20)

Both stresslet and particle-induced fluid stress thicken the suspension, and the dominant contribution
arises from the fluid stress around the particle. We note that the coefficient of Wi2 is so large that the
second order result is important already for Wi ≈ 0.1 (Fig. 1, bottom row.)

V. CONCLUSIONS

We have calculated the stress in a dilute suspension of rigid spherical particles in an elastic fluid
to O(φWi2). This revealed the first effects of elasticity on the suspension viscosity. When shearing
the suspension we found that the stress in the particle phase decreases relative to the Newtonian case,
but in return the stress in the elastic fluid surrounding the spheres increases. The net result is that the
suspension is shear thickening. The main contribution to this thickening is the enhanced polymer
stress in the straining regions of the fluid surrounding the spheres. This is significant because it
implies that it is crucially important to correctly model the extensional rheology of the suspending
fluid, in order to model the shear rheology of the suspension.

The available measurements of shear rheology in viscoelastic particle suspensions display shear
thickening [6–8]. It is, however, not possible to extract an Wi2 trend from their data for quantitative
comparison. Further, the suspending fluids in the experiments were characterized by their shear
rheology alone. We now believe that a successful quantitative comparison to experiment requires
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modeling the extensional rheology of the suspending medium. Thus, we argue that experimental
measurements correlating the suspension rheology to the extensional rheology of the suspending
medium will be valuable to further our understanding of complex suspensions at all values of Wi.

The contributions proportional to μ2
r Wi2 represent the elastic stress disturbing the flow field,

which in turn generates new elastic stresses. This effect is very small at this order of approximation,
and therefore the O(μr ) semianalytical theory for low polymer concentration [21] is a good
approximation at least up to O(φWi2).

We also gave the first correction to the extensional rheology of the suspension. In this case both
the stresslet and particle-induced fluid stresses contribute to significant thickening of the suspension
with increasing strain rate. A recent experiment [29] shows strain-rate thickening in a rather dense
suspension (φ = 40%). We are, however, not aware of any experimental measurements of the
extensional viscosity of a dilute suspension of spheres in an elastic fluid.
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APPENDIX A: EXACT RESULTS

In the main text we present our results in rounded decimal form for convenience. For reference,
the exact results are for shear flow:

ηS = 1 + 5
2φ + φμr

(
αstresslet

S + αfluid
S

)
, (A1)

αstresslet
S = − 83 645

58 344 Wi2 − 29 405
504 504μrWi2,

αfluid
S = 115

56 Wi2 + 5
196μrWi2. (A2)

For uniaxial extensional flow:

ηE = 1 + μrWi + 3μrWi2 + 5
2φ + φμr

(
αstresslet

S + αfluid
S

)
(A3)

with

αstresslet
E = 25

28 Wi + 62 215
19 448 Wi2 − 29 405

168 168μrWi2,

αfluid
E = 25

14 Wi + 345
56 Wi2 + 15

196μrWi2. (A4)

APPENDIX B: ON THE BOUNDARY CONDITIONS

Here we give some detail to the averaging integrals mentioned in the main text. For the case of
the average velocity gradient, and for the convective term in the polymer stress, we demonstrate that
our calculation and the regularization scheme of O’Brien [23] are equivalent. We also demonstrate
explicitly that considering an unbounded domain without employing any regularization gives an
inconsistent result.

In the following the full domain is denoted by V , and S∞ is a far field surface at the asymptotically
large distance R (taken to φ−1/3 in the main text, but to ∞ in case of an unbounded domain.) The
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ensemble average of a quantity a is, in the dilute approximation,

a = φ

Vp

∫
V

a(r) dV, (B1)

of which Eqs. (3) and (4) display the case of the stress tensor.

1. Average of the velocity gradient

The average ∂jui = Eij + Oij by assumption in the mean field theory. The direct calculation is,
by the divergence theorem,

∂jui = φ

Vp

∫
V

∂juid V = φ

Vp

∫
S∞

uinj dS. (B2)

Our boundary condition requires ui ∼ (Eik + Oik)rk , when r ∼ φ−1/3:

φ

Vp

∫
S∞

(Eik + Oik)rknj dS = Eij + Oij , (B3)

where we used that φ/Vp = 1/V , and∫
S

nirj dS =
∫

V

∂irj dV = V δij (B4)

for any closed domain V bounded by the surface S.
The method in Ref. [23] amounts to arguing that in the differential surface element dS, r samples

a large enough region to achieve statistical stationarity for u, and therefore u may be replaced by its
statistical average in the integral. This obviously yields the same integral as our boundary condition.

Finally, should one assume an unbounded domain approximation for u, the leading order flow
field is

ui = (Eik + Oik)rk − 5

2r5
Eklrirkrl + O

(
1

r4

)
, (B5)

one finds

φ

Vp

∫
S∞

uinj dS = Eij + Oij − 5φ

2Vp

Ekl

∫
S∞

ninknlnj d = Eij + Oij − φEij . (B6)

Here we took S∞ to be a sphere at distance R, as R → ∞. The integral is convergent as R → ∞
because u decays at the same rate as the surface element dS grows. However, the result does not
satisfy the mean field theory to O(φ).

2. Average of the convective term

The general argument for why (u · ∇)� = 0 is as follows. The ensemble average commutes with
the gradient operator, and u is divergence-free, so

(u · ∇)� = ∇ · u� − (∇ · u)� = ∇ · u� = ∇ · u�. (B7)

Split u = u + u′ and � = � + �′, where primed quantities denote fluctuations around the mean.
Then

∇ · u� = ∇ · u� + ∇ · u′�′ = (u · ∇)� + ∇ · u′�′ = 0. (B8)

Because � and u′ are statistically homogenous in the spatial variables by assumption, the gradient
of their averages vanish. This argument was given earlier by Koch and Subramanian [11] and
Rallison [22].
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The direct calculation from the microscopic problem proceeds by the divergence theorem:

uk∂k�ij = φ

Vp

∫
V

uk∂k�ij dV = φ

Vp

∫
S∞

uknk�ij dS. (B9)

The polymer stress vanishes inside the particle, and uknk = 0 on the particle surface. Our boundary
condition requires uk ∼ (Ekl + Okl)rl , and �ij ∼ �ij , when r ∼ φ−1/3:

φ

Vp

∫
S∞

uknk�ij dS ∼ φ

Vp

∫
S∞

(Ekl + Okl)rlnk�ij dS. (B10)

The tensor � is spatially homogenous by assumption, so �ij is a constant. The integral vanishes
because Ekk = Okk = 0.

The argument of O’Brien [23] leads to the same conclusion. In that case we would argue that both
u and � are statistically stationary within the surface element dS and may therefore be replaced by
their ensemble averages in the integral.

Finally, let us evaluate the volume-averaged convective term using the leading order flow solutions
in an unbounded domain without any regularization. The far field asymptotes of those fields read

uknk ∼ (Ekl + Okl)rlnk + O

(
1

r2

)
,

�ij ∼ 2Eij − 5
Eikrkrj + Ejkrkri + δijEklrkrl

r5
+ 25

Eklrirj rkrl

r7
+ O

(
1

r5

)
. (B11)

After a bit of algebra it follows that

φ

Vp

∫
S∞

uknk�ij dS ∼ φ

(
12

7
EikEkj − 4

7
δijEklElk

)
, R → ∞. (B12)

The integrand decays as 1/r2, which gives a convergent, but inconsistent result for the integral. We
note that the volume average may also be evaluated directly as a volume integral. In that case a
scaling analysis indicates that the integral is divergent, because the integrand decays as 1/r3. But
that contribution vanishes identically upon integration of the angular variables, and the remaining
radial integrals in fact decay as 1/r6 or faster, yielding the result in Eq. (B12).

APPENDIX C: RECIPROCAL THEOREM

Let u and σN denote the flow field and Newtonian stress tensor of a flow that is governed by the
equation of motion

∂jσ
N
ij = fi, ∂iui = 0. (C1)

The general form of Lorentz reciprocal theorem is [24]∫
S

ũiσ
N
ij nj dS −

∫
V

ũi∂jσ
N
ij dV =

∫
S

ui σ̃ij nj dS −
∫

V

ui∂j σ̃ij dV, (C2)

where ũ and σ̃ are the flow and stress fields of an auxiliary Newtonian flow problem in the same
geometry but with different boundary conditions. The volume integral is over a volume of fluid,
and the surface integrals are to be taken over all boundaries of V with surface normals pointing out
from V .

Take the auxiliary problem to be the Stokes flow governed by

∂j σ̃ij = 0, ∂i ũi = 0,

ũi = Ẽikrk on particle surface, (C3)

ũi → 0, r → ∞.
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Then ∫
S

ũiσ
N
ij nj dS −

∫
V

ũifi dV =
∫

S

ui σ̃ij nj dS. (C4)

We apply this theorem to our problem by noting that

σ = σN + σE, (C5)

where

σN = −pδ + 2e, σE = μr (� − 2e). (C6)

Thus ∫
S

ũiσijnj dS =
∫

S

ũiσ
E
ij nj dS +

∫
S

ui σ̃ij nj dS −
∫

V

ũi∂jσ
E
ij dV . (C7)

The surface integral on the left hand side is related to the stresslet because ũi = Ẽikrk on the surface
of the particle. The volume integral is well defined because ũi → 0,r → ∞. The auxiliary flow is
thus the disturbance flow around a sphere in a straining flow, and it decays as 1/r2 as r → ∞. It is
given by

ũi = 1

r5
Ẽij rj + 5

2

(
1

r5
− 1

r7

)
Ẽjkrirj rk, p̃ = 5

r5
Ẽjkrj rk. (C8)

Split the surface integrals into the integral over the particle surface Sp and the far-field surface
S∞ that we take to be a sphere at r = R∞. Using the boundary conditions for both u and ũ we have

Ẽik

∫
Sp

rkσijnj dS =
∫

S∞
ũiσij nj dS −

∫
S∞

ũiσ
E
ij nj dS + Ẽik

∫
Sp

rkσ
E
ij nj dS

−
∫

S∞
uiσ̃ij nj dS + εilkωl

∫
Sp

rkσ̃ij nj dS +
∫

V

ũi∂jσ
E
ij dV . (C9)

Here ω is the angular velocity of the particle. Starting from the left have the sought stresslet

Ẽik

∫
Sp

rkσijnj dS = ẼikSik, (C10)

Next, ∫
S∞

ũiσij nj dS −
∫

S∞
ũiσ

E
ij nj dS =

∫
S∞

ũiσ
N
ij nj dS ∼ 8π

3
ẼikEik, R∞ → ∞. (C11)

Here we used that σN ∼ 2E + O(1/r2) and ũ ∼ 5
2 r(r r : Ẽ)/r5 + O(1/r4), as r → ∞. Next,

Ẽik

∫
Sp

rkσ
E
ij nj dS = ẼikS

E
ik (C12)

is the stresslet due to the nonlinear polymer surface traction. Then

−
∫

S∞
uiσ̃ij nj dS ∼ 4πẼikEik, R∞ → ∞, (C13)

where we used that

σ̃ij ∼ 5

r5
(Ẽikrkrj + Ẽjkrkri) − 25

r7
Ẽklrkrlrirj + O(1/r5),

ui ∼ Eikrk + O(1/r2), r → ∞. (C14)
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Finally,

εilkωl

∫
Sp

rkσ̃ij nj dS = 0, (C15)

because the particle in the auxiliary problem is torque-free.
Taken together we have, as R∞ → ∞,

ẼikSik = 20π

3
ẼikEik + ẼikS

E
ik +

∫
V

ũl∂jσ
E
lj dV . (C16)

Finally, by renaming the dummy indices and expressing ũl = MlikẼik in the volume integral, we
eliminate Ẽ and arrive at the theorem stated in the main text:

S = 20π

3
E +

∫
Sp

̂r(σE · n) dS +
∫

V

MT · ∇ · σEdV. (C17)

APPENDIX D: DERIVATION OF NONLINEAR STRESS

In this Appendix we employ a shorthand for contraction of rank two tensors, so that a · � is
written simply a�, in the interest of keeping the expressions brief. There are no outer products of
rank two tensors in this paper.

Starting from the constitutive equation

� + Wi[(u · ∇)� − a� − �aT] = a + aT, (D1)

insert � = �(0) + Wi �(1) + Wi2 �(2) and compare order by order:

�(0) = a + aT, (D2)

�(1) = −[(u · ∇)�(0) − a�(0) − �(0)aT], (D3)

�(2) = −[(u · ∇)�(1) − a�(1) − �(1)aT]. (D4)

Inserting Eq. (D2) in Eq. (D3), and that result into Eq. (D4), find

�(1) = a(a + aT) + (a + aT)aT − (u · ∇)(a + aT)

= aa + aTaT + 2aaT − (u · ∇)(a + aT)

= 2âa + 2aaT − (u · ∇)(a + aT)

= 4âe − 2(u · ∇)e, (D5)

�(2) = a[aa + aTaT + 2aaT − (u · ∇)(a + aT)] + [aa + aTaT + 2aaT − (u · ∇)(a + aT)]aT

− (u · ∇)[aa + aTaT + 2aaT − (u · ∇)(a + aT)]

= aaa + 3aaTaT + 3aaaT + aTaTaT − a[(u · ∇)(a + aT)] − [(u · ∇)(a + aT)]aT

− (u · ∇)(aa + aTaT + 2aaT) + (u · ∇)2(a + aT)

= 2̂aaa + 6 ̂aaaT − 2 ̂a[(u · ∇)(a + aT)] − 2(u · ∇)(âa + aaT) + (u · ∇)2(a + aT)

= 4âae + 4̂aeaT − 4 ̂a[(u · ∇)e] − 4(u · ∇)âe + 2(u · ∇)2e. (D6)
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Thus

σE = μrWi[4âe − 2(u · ∇)e]

+ μrWi2[4âae + 4̂aeaT − 4 ̂a[(u · ∇)e] − 4(u · ∇)âe + 2(u · ∇)2e]. (D7)

To be consistent to O(Wi2) the flow fields in the first bracket must be evaluated to O(Wi), whereas
the fields in the second bracket require only the O(1) Stokes flow solution.
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