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This Rapid Communication derives the Zagarola-Smits scaling directly from the gov-
erning equations for zero-pressure-gradient turbulent boundary layers (ZPG TBLs). It has
long been observed that the scaling of the mean streamwise velocity in turbulent boundary
layer flows differs in the near surface region and in the outer layer. In the inner region of
small-velocity-defect boundary layers, it is generally accepted that the proper velocity scale
is the friction velocity, uτ , and the proper length scale is the viscous length scale, ν/uτ . In
the outer region, the most generally used length scale is the boundary layer thickness, δ.
However, there is no consensus on velocity scales in the outer layer. Zagarola and Smits
[ASME Paper No. FEDSM98-4950 (1998)] proposed a velocity scale, UZS = (δ1/δ)U∞,
where δ1 is the displacement thickness and U∞ is the freestream velocity. However, there
are some concerns about Zagarola-Smits scaling due to the lack of a theoretical base. In
this paper, the Zagarola-Smits scaling is derived directly from a combination of integral,
similarity, and order-of-magnitude analysis of the mean continuity equation. The analysis
also reveals that V∞, the mean wall-normal velocity at the edge of the boundary layer, is a
proper scale for the mean wall-normal velocity V . Extending the analysis to the streamwise
mean momentum equation, we find that the Reynolds shear stress in ZPG TBLs scales as
U∞V∞ in the outer region. This paper also provides a detailed analysis of the mass and
mean momentum balance in the outer region of ZPG TBLs.

DOI: 10.1103/PhysRevFluids.3.012601

I. INTRODUCTION

A zero-pressure-gradient turbulent boundary layer (ZPG TBL) occurs when a uniform stream
flows parallel over a flat plate. Despite its simple geometry and intensive research over a century, the
statistical behavior of ZPG TBLs is still not fully understood. The most widely accepted description
of a turbulent boundary layer is the classical one in terms of an inner region and an outer region.
In the inner region, it is generally accepted that the proper velocity scale is the friction velocity, uτ ,
which is defined by the wall shear stress as uτ ≡ √

τwall/ρ, and the proper length scale is the viscous
length scale, ν/uτ , where ν is the kinematic viscosity of the fluid.

In the outer region, a proper length scale is the boundary layer thickness, δ, while integral and
displacement thicknesses have also been used. However, there is no consensus on the velocity scales
for the outer region. Some researchers use uτ as the outer velocity scale [1], and some have used U∞
[2]. Mixed scaling has also been proposed for the Reynolds stresses in the outer region of ZPG TBLs
to account for the dependence on the Reynolds number. For instance, based on empirical evidence,
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DeGraaff and Eaton [3] proposed uτU∞ as a proper scale for the streamwise Reynolds normal stress
〈uu〉 in both the inner and outer regions.

In their study of turbulent pipe flows, Zagarola and Smits [4] proposed a new velocity scale for
the mean streamwise velocity deficit in the outer layer as

UZS ≡ Uc − Ub, (1)

where Uc is the mean centerline velocity and Ub is the bulk mean velocity. Zagarola and Smits [5]
further extended this scaling to ZPG TBLs as

UZS ≡ δ1

δ
U∞, (2)

where U∞ is the freestream velocity, δ1 ≡ ∫ ∞
0 (1 − U/U∞) dy is the displacement thickness, and δ

is the boundary layer thickness.
Using ZPG TBLs data over a wide range of Reynolds numbers, Zagarola and Smits [5] have

demonstrated that UZS collapses the mean streamwise velocity deficit, (U∞ − U ), in the outer region
better than U∞ or Uτ . Panton [6] showed that scaling with UZS is equivalent to using a higher order
theory for the dependency on the Reynolds number, therefore reducing the influence of the Reynolds
number on the scaled velocity deficit. The astounding success of UZS in scaling the mean streamwise
velocity deficit of various turbulent wall-bounded flows has been confirmed by other researchers
using a wide variety of data sets from different experiments, e.g., Refs. [6–17]. The flow cases
include TBLs with pressure gradient (small to large velocity defect cases) and TBLs with rough
walls and turbulent pipe flows.

Despite the fact that it can scale the mean streamwise velocity deficit of the outer layer of general
TBLs as opposed to uτ , UZS is regarded by some researchers as empirical. There have been a few
theoretical studies to derive or justify the ZS scaling from self-similarity analysis, e.g., Refs. [9,14,18]
or with composite expansions [6]. In this work, we will derive the Zagarola-Smits scaling directly
from the governing equations, through a combination of integral, similarity, and order-of-magnitude
analysis of the continuity equation. The analysis also reveals that V∞, the mean wall-normal velocity
at the edge of the boundary layer, is the companion velocity scale for the mean wall-normal velocity
V . The analysis is extended to the mean momentum balance equation and reveals that a valid scale
for the Reynolds shear stress is R12,s = U∞V∞ = Hu2

τ , where H is the shape factor of TBLs.
It is important to stress that there may exist multiple possible sets of outer scales for the ZPG

TBLs. We do not advocate that the set found here is the only possible one or that it is superior to
other ones. Furthermore, the goal of this work is not to find scales that can “collapse profiles” at
moderate Reynolds number. The present analysis is strictly valid only at infinite Reynolds number,
like almost all the other theoretical analyses of the ZPG TBL.

The mean flow in ZPG TBLs is two dimensional, i.e., the mean flow varies only in the streamwise
direction and the wall-normal direction and is statistically homogeneous in the third direction. The
mean continuity equation and the mean momentum equation in the streamwise direction, assuming
steady incompressible flow, are

∂U

∂x
+ ∂V

∂y
= 0, (3)

0 = −U
∂U

∂x
− V

∂U

∂y
+ ν

∂2U

∂y2
+ ∂R12

∂y
, (4)

where U,V are the mean velocity component in the streamwise direction x and wall-normal direction
y, respectively. R12 = −〈uv〉 is the kinematic Reynolds shear stress, where lowercase letters u,v

are velocity fluctuation in the streamwise direction and wall-normal direction, respectively, and
angle brackets denote averaging. Note higher order terms in the mean momentum equation such as
∂(〈uu〉 − 〈vv〉)/∂x have been neglected. The mean momentum equation is written in a form of 0 =
sum of forces, for the convenience of illustrating data in the figures below.
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II. INTEGRAL ANALYSIS RESULTS

A recent integral analysis of the mean continuity equation and the mean momentum balance
equation reveals relations among the velocity scales U∞,V∞,uτ , length scales δ,δ1,δ2 and the
boundary layer growth rate dδ/dx [19]. The integral results from the continuity and momentum
equations can be presented, respectively, as

− dδ

dx

δ1

δ
+ V∞

U∞
= 0, (5)

− dδ

dx

(
δ1

δ
+ δ2

δ

)
+ V∞

U∞
+ u2

τ

U 2∞
= 0, (6)

where δ2 ≡ ∫ ∞
0 U/U∞(1 − U/U∞) dy is the momentum thickness. Equation (5) can be rearranged

to form a relation for the growth rate of boundary layer thickness as

dδ

dx
= δ

δ1

V∞
U∞

. (7)

Combination of Eqs. (5) and (6) yields a relation:

U∞V∞
u2

τ

= δ1

δ2
= H. (8)

These integral results will be used next in the derivation of the Zagarola-Smits scaling.

III. SIMILARITY AND ORDER-OF-MAGNITUDE ANALYSES

The objective of the combined similarity and order-of-magnitude analyses is to identify the terms
with leading and small order of magnitude in an equation, as well as proper scalings for the leading
terms. A key in the analysis is that the prefactor of the leading terms in a properly scaled equation
must have the same order of magnitude [20].

The similarity scalings in the outer layer of ZPG TBLs are defined as

η ≡ y

δ(x)
; U ∗(η) ≡ U∞ − U (x,y)

Us(x)
; V ∗(η) ≡ V (x,y)

Vs(x)
; R∗

12(η) ≡ R12(x,y)

R12,s(x)
, (9)

where Us , Vs , and R12,s , respectively, are the characteristic scales for U , V , and R12 and will
be determined in the following analysis. Note that Us(x),Vs(x),R12,s(x) are allowed to vary with
downstream location. Using U ∗,V ∗,R∗

12, and η, the derivatives in the governing equations become
the following:

∂U

∂x
= Us

δ

dδ

dx
η
∂U ∗

∂η
− dUs

dx
U ∗;

∂U

∂y
= −Us

δ

∂U ∗

∂η
;

∂2U

∂y2
= −Us

δ2

∂2U ∗

∂η2
;

∂V

∂y
= Vs

δ

∂V ∗

∂η
;

∂R12

∂y
= R12,s

δ

∂R∗
12

∂η
. (10)

A. Similarity and order-of-magnitude analysis of the continuity equation

Substituting the ∂U/∂x term and the ∂V/∂y term in Eq. (10) into Eq. (3), the continuity equation
becomes

Us

δ

dδ

dx
η
∂U ∗

∂η
− dUs

dx
U ∗ + Vs

δ

∂V ∗

∂η
= 0. (11)
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Equation (11) is then multiplied by δ/Vs to turn it into a nondimensional form:[
Us

Vs

dδ

dx

]
η
∂U ∗

∂η
−

[
δ

Vs

dUs

dx

]
U ∗ + ∂V ∗

∂η
= 0. (12)

The balance in Eq. (12) can be established in two ways: (1) all the three terms have the same order
of magnitude and each contributes to the balance of the equation; (2) the balance is dominated by
two leading terms, and the third one is much smaller. We demonstrate below that in the outer layer
of ZPG TBLs (between η = 0.2 and 1), the balance of Eq. (12) is essentially between the first and
the last terms.

If the first term in Eq. (12) is a leading term, then its prefactor has to be nominally O(1) because
the prefactor in the third term is one. Thus[

Us

Vs

dδ

dx

]
= O(1). (13)

Replacing dδ/dx from the integral analysis result of Eq. (7), the prefactor of the first term in Eq. (12)
becomes

Us

Vs

V∞
U∞

δ

δ1
= O(1). (14)

A simple option for this relation to be valid is by setting

Us = U∞
δ1

δ
and Vs = V∞. (15)

Thus, the Zagarola-Smits scaling is a direct consequence of balancing the leading terms in the mean
continuity equation. The analysis also reveals that the companion scale for the mean wall-normal
velocity is Vs = V∞, consistent with the finding of Wei and Klewicki [19]. Next we present the
evidence that the second term in Eq. (12) is indeed much smaller than the other two terms in the
outer layer of ZPG TBLs.

1. Evidence that −[ δ
Vs

dUs
dx ]U∗ is small in Eq. (12)

Setting Us = UZS = U∞δ1/δ and Vs = V∞, the prefactor of the second term in Eq. (12) becomes

δ

Vs

dUs

dx
= δ

U∞
V∞

d(δ1/δ)

dx
= δ2

δ1

d(δ1/δ)
dx

dδ
dx

=
1
δ1

dδ1
dx

1
δ

dδ
dx

− 1 = α − 1. (16)

For convenience α is used to denote the ratio of ( 1
δ1

dδ1
dx

)/( 1
δ

dδ
dx

). Note that V∞/U∞ is replaced by the
integral analysis result of Eq. (7). If experimental or numerical data of δ(x) and δ1(x) are available,
then the order of magnitude of this prefactor can be discerned.

A comprehensive experimental study of ZPG TBLs has been conducted by Osterlund [21].
Covering a wide range of Reynolds numbers, between Reθ = 2500 and 27 000, Osterlund measured

the evolution of δ(x) and δ1(x) as shown in Fig. 1(a). The prefactor α − 1 =
1
δ1

dδ1
dx

1
δ

dδ
dx

− 1 is computed

using Osterlund’s experimental data and plotted in Fig. 1(b), which shows that this prefactor has
a small value of about (−0.1) over the Reynolds number range of the experiments. Furthermore,
the magnitude of this prefactor becomes even smaller as Reynolds number increases. In the outer
layer, U ∗ is bounded and is of O(1) (see Fig. 2); thus, the second term in the continuity equation,
−[ δ

Vs

dUs

dx
]U ∗, is indeed small in the outer layer of the flow.

The scatter in Fig. 1(b), especially at the first and last x stations, is likely caused by the numerical
differentiation of δ(x) data to obtain dδ/dx. Note that this prefactor should be negative (as shown in
Fig. 2). The positive values in Fig. 1(b) are not physical and are caused by the numerical differentiation
error.
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(a) (b)

FIG. 1. (a) Boundary layer thickness, δ, and displacement thickness, δ1, as a function of distance in the

streamwise direction, x. (b) α − 1 =
1
δ1

dδ1
dx

1
δ

dδ
dx

− 1 as a function of x. ZPG TBLs data are from experiments of

Osterlund [21].

2. Experimental and numerical data of the continuity equation

Setting Us = UZS = (δ1/δ)U∞ and Vs = V∞, the continuity equation (12) can be written as

η
∂U ∗

∂η
− [α − 1]U ∗ + ∂V ∗

∂η
= 0. (17)

Using the direct numerical simulation (DNS) data of Ref. [22], the three terms in Eq. (17) are
computed and presented in Fig. 2. Because the prefactor of the second term is small as discussed in
the previous section, to better show the trend, U ∗ itself is plotted without the prefactor.

Also plotted in Fig. 2 is the sum of the first term and the last term η∂U ∗/∂η + ∂V ∗/∂η, which is
essentially zero in the outer layer, suggesting that the balance of the continuity equation is dominated

(a) (b)

FIG. 2. Balance of the mean continuity equation, η ∂U∗
∂η

− [α − 1]U ∗ + ∂V ∗
∂η

= 0. Note the prefactor for the
second term is not multiplied (if multiplied, the term would be too small to see). (a) DNS data of Ref. [22].
(b) Experimental data at higher Reynolds numbers. Only the first two terms are available (V is not measured).
Solid circles data points are from experiments by Osterlund [21] (Reθ = 2500 to 27 000). Open asterisk data
points are from experiments by Vallikivi et al. [23] (Reθ = 8400 to Reθ = 235 000). Curves: DNS data at
Re = 4060 [22].
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by the first and the last term. Figure 2 also shows that the prefactor in the second term should be a
negative number, in order to contribute to the balance of the equation in the near-wall region.

To determine the dependence on the Reynolds numbers, the first term and second term from
two high Reynolds number experiments, Osterlund [21] and Vallikivi et al. [23], are plotted in
Fig. 2(b) along with data from a moderate Reynolds number numerical simulation at Reθ = 4060
[22]. Figure 2(b) shows that the dependence on Reynolds number is weak.

In short, experimental and numerical data shown in Fig. 2 support the assumption made in the
previous section: [Us

Vs

dδ
dx

]η ∂U∗
∂η

≈ η ∂U∗
∂η

is a leading order of magnitude term in the continuity equation

that balances the other leading order of magnitude term ∂V ∗
∂η

in the outer region. This balance leads
to the ZS scaling for the mean streamwise velocity deficit and the companion scale Vs = V∞ for the
mean wall-normal velocity.

B. Similarity and order-of-magnitude analysis of the mean momentum equation

Replacing ∂U/∂x with ∂V/∂y and substituting the derivatives in Eq. (10) into Eq. (4), the mean
momentum equation becomes

0 = (U∞ − UsU
∗)

Vs

δ

∂V ∗

∂η
− (VsV

∗)

(
−Us

δ

)
∂U ∗

∂η
+ ν

(−Us

δ2

)
∂2U ∗

∂η2
+

(
R12,s

δ

)
∂R∗

12

∂η
. (18)

Equation (18) is then multiplied by δ/(UsVs) to turn it into a nondimensional form:

0 =
[
U∞
Us

]
∂V ∗

∂η
− U ∗ ∂V ∗

∂η
+ V ∗ ∂U ∗

∂η
−

[
ν

δVs

]
∂2U ∗

∂η2
+

[
R12,s

UsVs

]
∂R∗

12

∂η
. (19)

It is well known that the viscous force term, the fourth term on the right, is negligible in the outer
layer. Here we show that the leading order of magnitude terms are the first and the last terms. Since
these two terms are proposed as leading order, their prefactors need to have the same nominal order
of magnitude:

O

(
U∞
Us

)
= O

(
R12,s

UsVs

)
, (20)

and using the scaling relations from Eq. (15), we find

O(R12,s) = O(U∞Vs) = O(U∞V∞). (21)

1. Balance of the mean momentum equation

Setting Us = UZS , Vs = V∞ and dividing by δ/δ1, the mean momentum balance equation (19)
becomes

0 = ∂V ∗

∂η
+

[
δ1

δ

](
−U ∗ ∂V ∗

∂η
+ V ∗ ∂U ∗

∂η

)
−

[
δ2

δ

U+
∞

δ+

]
∂2U ∗

∂η2
+

[
R12,s

U∞V∞

]
∂R∗

12

∂η
, (22)

where U+
∞ ≡ U∞/uτ and δ+ ≡ δuτ /ν.

The ratio between the displacement thickness and the boundary layer thickness, δ1/δ, appears
as the prefactor for the second and third terms. Therefore, the magnitude of δ1/δ determines the
contribution of these two terms to the force balance. Using the DNS data [22] and experimental
data [3,21,23], this ratio δ1/δ is presented in Fig. 3, which shows that δ1/δ decreases with Reynolds
numbers, but very slowly (close to a logarithmic-like fashion).

The magnitude of each term in Eq. (22) can be estimated as the following:
(1) ∂V ∗

∂η
: V ∗ = V/V∞ is a regular function that varies between 0 and 1 over the range of η = 0

to 1, so ∂V ∗
∂η

will be O(1).

(2) [ δ1
δ

](−U ∗ ∂V ∗
∂η

+ V ∗ ∂U∗
∂η

): The terms inside the parentheses are both O(1) in the outer layer, but
the magnitude of the prefactor is small (∼0.1–0.2) and decreases with Reynolds number. In the case
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FIG. 3. Ratio of the displacement thickness (δ1) to the boundary layer thickness (δ), δ1/δ. Data points are
from three experiments by DeGraaff and Eaton (DE) [3], Osterlund [21], Vallikivi et al. (VHS) [23], and the
DNS of Schlatter [22].

of equilibrium TBLs, it can be shown that δ1/δ tends to zero as the Reynolds number approaches
infinity. The same behavior can be expected for nonequilibrium TBLs and for quasi-equilibrium
TBLs such as the ZPG TBLs. However, Fig. 3 shows that δ1/δ has a non-negligible value of about
0.11 at Reθ = 250,000. Therefore, at finite Reynolds numbers, these advection terms are small but
non-negligible, as can be seen directly in Fig. 4.

(3) −[ δ2
δ

U+
∞

δ+ ] ∂2U∗
∂η2 : The derivative itself is bounded in the outer layer, but the prefactor is much

less than one (δ2 < δ, and U+
∞ << δ+). Thus, this viscous term is much smaller in the outer layer.

(4) [ R12,s

U∞V∞
] ∂R∗

12
∂η

: This term has to be a leading order of magnitude term to balance the ∂V ∗/∂η

term in Eq. (22). A proper scaling for R12 is then R12,s = U∞V∞ for the prefactor of this term to be

FIG. 4. Force terms in the streamwise mean momentum equation (22). The data are from DNS of Schlatter
et al. [22].
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O(1). Furthermore, R∗
12 is a regular function that varies between O(1) and 0 over the range of η = 0

to 1. Therefore the whole term is O(1) balancing the ∂V ∗/∂η term in Eq. (22).
From the integral analysis result of Eq. (8), it is known that U∞V∞ = Hu2

τ . Thus, a proper scaling
for the Reynolds shear stress is

R12,s = U∞V∞ = Hu2
τ . (23)

The traditional scaling for R12 in ZPG TBLs is u2
τ . It is known that the shape factor H in ZPG TBLs

decreases from about 1.4 at low Reynolds number to 1 at infinite Reynolds number. Therefore, the
traditional scaling of uτ for R12 is consistent with the present analysis.

2. Experimental and numerical data of the mean momentum equation

Force terms in Eq. (22) are computed from the DNS data of Schlatter et al. [22] and presented in
Fig. 4. In the outer region, Fig. 4 shows that the force balance is dominated by two terms: a driving
force given by ∂V ∗/∂η and a drag force given by ∂R∗

12/∂η. Figure 4 shows that, over the Reynolds
number range of the DNS study, ∂V ∗/∂η peaks around η = 0.7, at a magnitude around 1.3, which
is of O(1). Figure 4 shows that the peak value of ∂R∗

12/∂η is about −1.
All the data in Fig. 4 are low to moderate Reynolds number DNS data. In the outer layer, it

was found that η∂U ∗/∂η is balanced with ∂V ∗/∂η [see Fig. 2(b)]. Additionally, the high Reynolds
number data of Osterlund [21] and VHS [23] showed the profiles for η∂U ∗/∂η were collapsed and
thus self-similar. Therefore, we can argue that the data for ∂V ∗/∂η should be collapsed, even though
higher Reynolds number data has not been obtained for this measurement.

IV. SUMMARY

In this Rapid Communication, the Zagarola-Smits scaling for the mean streamwise velocity deficit
in the outer layer is derived directly from a combination of integral, similarity, and order-of-magnitude
analysis of the continuity equation for ZPG TBLs. The analysis is supported by the numerical and
experimental data for the continuity equation. The analysis also reveals that a proper scaling for
the mean wall normal velocity V is V∞. Extending the analysis to the mean momentum balance
equation for ZPG TBLs reveals that the Reynolds shear stress scales as R12,s = U∞V∞ = Hu2

τ .
Strictly speaking, the present analysis of the ZPG TBLs is only valid when the Reynolds number
tends to infinity since it assumes self-similarity of the velocity moments. However, data indicate that
the whole analysis works at moderate Reynolds numbers as well.
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