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Deflection and trapping of a counter-rotating vortex pair by a flat plate
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The interaction of a counter-rotating vortex pair (dipole) with a flat plate in its path is
studied numerically. The vortices are initially separated by a distance D (dipole size) and
placed far upstream of a plate of length L. The plate is centered on the dipole path and
inclined relative to it at an incident angle βi . At first, the plate is held fixed in place. The
vortices approach the plate, travel around it, and then leave as a dipole with unchanged
velocity but generally a different travel direction, measured by a transmitted angle βt . For
certain plate angles the transmitted angle is highly sensitive to changes in the incident
angle. The sensitivity increases as the dipole size decreases relative to the plate length.
In fact, for sufficiently small values of D/L, singularities appear: near critical values of
βi , the dipole trajectory undergoes a topological discontinuity under changes of βi or
D/L. The discontinuity is characterized by a jump in the winding number of one vortex
around the plate, and in the time that the vortices take to leave the plate. The jumps occur
repeatedly in a self-similar, fractal fashion, within a region near the critical values of βi ,
showing the existence of incident angles that trap the vortices, which never leave the plate.
The number of these trapping regions increases as the parameter D/L decreases, and the
dependence of the motion on βi becomes increasingly complex. The simulations thus show
that even in this apparently simple scenario, the inviscid dynamics of a two-point-vortex
system interacting with a stationary wall is surprisingly rich. The results are then applied
to separate an incoming stream of dipoles by an oscillating plate.

DOI: 10.1103/PhysRevFluids.2.124702

I. INTRODUCTION

The motion of point vortices in otherwise irrotational, inviscid flow is an idealization that gives
insight into two-dimensional fluid dynamics. Much research has addressed the dynamics, relative
equilibria, and stability of point vortices in unbounded or periodic domains (see Ref. [1] for a review),
with new information emerging even for as little as three vortices [2–4]. For simple domains bounded
by walls much can be learned by using the classical method of images. Consider a single vortex. In
unbounded flow it is stationary and does not move. Near an infinite straight wall it moves parallel
to the wall, propelled by image vorticity of opposite sign inside the wall that cancels the normal
velocity at the boundary [Fig. 1(a)]. Similarly, a vortex outside of a circular cylinder moves around
the cylinder with constant speed [Fig. 1(b)]. If the cylinder is replaced by a flat, finite plate, the
vortex rotates around the plate [Fig. 1(c)], with almost constant speed near the two plate sides and
faster movement around the edges [Fig. 1(d)]. In all these cases, the closer the vortex is to the wall,
the faster it moves. Note that these idealized inviscid solutions neglect viscosity and the associated
boundary layer vorticity, which can significantly alter the flow.

Single point vortex motion in more complex domains with solid or moving walls has been studied
by using conformal mapping techniques; for example, in Refs. [5–10]. Most closely related to the
present work is the study of equilibria of a single vortex near a flat plate performed by Saffman
and Sheffield [11] with a view to understanding vortex lift, whereby the equilibria are achieved
by adding circulation to the plate. The present paper concerns the study of two vortices in the
presence of a wall. Namely, we study the motion of a counter-rotating vortex pair with a flat plate
in its path, in otherwise inviscid, irrotational fluid at rest at infinity, by using numerical simulations.
We find that even in this apparently simple scenario the revealed vortex dynamics is surprisingly
rich.
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FIG. 1. (a)–(c) Trajectories of single point vortices in simple domains. (d) Speed of vortex in panel (c)
vs time t , normalized by the time T required for one rotation. The vortex moves around the plate edges at
t/T = 0.25, 0.75.

In the absence of the plate, the vortex pair travels as a dipole with constant velocity in direction
normal to itself. Dipoles are elementary vortex structures that model, for example, the trailing rolled-
up shear layer behind an aircraft, the vortices behind an oar pulled through water, or counter-rotating
tidal vortices formed near straits [12]. They occur as robust features in turbulent flows. They play an
important part in mixing in the atmosphere and ocean, which led to study their motion on a sphere
[13]. Our goal here is to understand the effect of objects in their path. The work builds on that of
Archer [14], who studied a more complex system of an elliptically loaded finite vortex sheet [15]
interacting with a plate. Archer found that the motion of each vortex sheet half is well approximated
by that of point vortices at their centroids, and that the plate, positioned at an angle, can deflect
the traveling dipole. This paper presents a more comprehensive study of the reduced point vortex
system.

The scenario considered is illustrated in Fig. 2(a). The pair of counter-rotating vortices of strength
±�, separated by a distance D, is placed above a plate of length L. The vortex pair is placed so
far from the plate that it initially travels as a dipole in free space, in the direction normal to itself
with constant speed U = �/(2πD). The plate is centered on the dipole path but tilted at an incident
angle βi relative to it. The vortices approach the plate, move around it, and leave as a dipole that
quickly reaches the same speed U as it had initially. However, one vortex approaches the plate
sooner than the other, and therefore interacts more strongly with the plate, causing the pair to leave
at a transmitted angle βt which is generally different than the incident angle βi , as illustrated in the
example in Fig. 2(b). For certain plate positions the transmitted angle is highly sensitive to changes
in βi . Interestingly, the sensitivity increases as the ratio D/L decreases. In fact, for sufficiently
small values of D/L and near critical plate angles the dipole trajectory undergoes abrupt topological
changes under infinitesimal changes of βi or D/L. These singularities occur as discontinuities in
the winding number and in the time that the vortices take to move past the plate. The winding
number and time delays jump by a finite amount as the plate angle increases across a finite interval,
or gap. Within these gaps, further jumps occur repeatedly in a self-similar, fractal fashion. As a
result, each gap contains angles with infinite time delays, so that the vortices are trapped and never
leave the plate. The number of these trapping regions increases as the parameter D/L decreases,
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FIG. 2. (a) Sketch showing a dipole consisting of two counter-rotating point vortices with circulation ±�

separated by a distance D, and a plate of length L centered on the dipole path at an angle. (b) Definition of
incident and transmitted angles βi and βt , and shift coordinates (xs,ys).

and the dependence of the motion on βi becomes increasingly complex. The observed scattering of
the vortex dipoles is reminiscent of the dynamics observed in Ref. [16] for the interaction of pairs
of dipoles in unbounded flows.

As a sample application, the sensitive dependence on βi is used to separate an incoming sequence
of dipoles by an oscillating plate. Such a sequence can be thought of as generated by a sequence of
airplanes flying one behind another. Each airplane’s trailing vortex presents a hazard for following
aircraft. The ability to deflect and separate the sequence of vortices could potentially be useful in the
airplane vortex wake remediation problem. The present results indicate that, at least in the inviscid
idealized point vortex approximation, the incoming dipoles can be separated into an arbitrary number
of directions by properly adjusting the plate oscillation period relative to the period at which dipoles
enter the domain.

One of the major questions arising in studies of point vortex motion near walls regards the effect
of viscosity on the flow. In viscous flow, vorticity generated at the wall separates near edges and
interacts strongly with nearby interior fluid vorticity. This effect is not accounted for in the point
vortex approximation used here. The inclusion of viscosity in dipole flow past a plate, while out of
the scope of this paper, remains an interesting problem to be studied.

The paper is organized as follows: Section II presents the problem considered, the flow nondi-
mensionalization, and the variables used to measure the output. To validate the conclusions of this
paper, all results are computed with two different numerical methods. They are described in Sec. III.
Section IV presents the numerical results, whereby Sec. IV A presents results for a stationary
plate with D/L = π/4, IV b presents the singular behavior observed within trapping regions for
sufficiently small D/L, and Sec. IV C presents the separation of an incoming sequence of vortices
by an oscillating plate. Summarizing remarks are made in Sec. V.

II. PROBLEM FORMULATION

The initial configuration is shown in Fig. 2(a). The flow is normalized by the plate half-length
L/2 and the vortex circulation �. That is, if X,Y,T are dimensional coordinates of space and time,
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the nondimensional coordinates are

x = X

L/2
, y = Y

L/2
, t = T

L2/(4�)
. (1)

The nondimensional flow parameters for a stationary plate are the incident angle βi and the relative
dipole size D/L. The flow is described in Cartesian coordinates x and y with the origin at the plate
center. The point vortices are initially placed at a vertical distance y0 = 6, chosen to be sufficiently
large that the reported vortex trajectories remain unchanged to within 0.01% under further increases
of y0. Their initial horizontal coordinate is ±x0 = ±(D/2)/(L/2) = ±D/L. The flow is solely
induced by the vortex pair and the presence of the plate. Since any additional external flow is absent,
the total circulation around the plate is zero for all times.

The effect of the plate is measured by the transmitted angle βt of the outgoing dipole trajectory,
as defined in Fig. 2(b). The outgoing trajectory is often also shifted away from the plate center. The
shift is measured by the coordinates (xs,ys) of the point on the outgoing centerline that is closest to
the origin. Finally, the time it takes the dipole to move past the plate is measured by the difference τ

between t
p

12 and t0
12, where t

p

12 is the time from the beginning of the motion a distance of 6 units away
from the plate until the vortex pair has again reached a distance of 6 units away from the plate after
interacting with it, and t0

12 is the time that the pair would take to traverse the distance of 12 units in
the absence of a plate. In other words, τ is the time the dipole is delayed by the plate in traversing a
circle of radius 6 centered on the plate. In nondimensional variables,

τ = t
p

12 − t0
12, t0

12 = 12L
2 /U

L2/(4�)
= 48π (D/L). (2)

If τ < 0 the vortex pair has been accelerated by the plate, if τ > 0 it has been delayed. At a distance
bigger than the chosen radius of 6 units, the effect of the plate on the dipole motion is so small that
the resulting value of τ remains unchanged to within several digits.

III. NUMERICAL METHOD

The two counter-rotating point vortices are positioned at xv
1,2(t), with normalized circulation

�1,2 = ±1. They satisfy the initial value problem,

dxv
j

dt
= uj (t), j = 1,2, x1,2(0) = (±x0,y0), (3)

where x0 = D/L, y0 = 6, and uj (t) is the velocity of the j th vortex. This system of ordinary
differential equations is solved using the fourth-order Runge Kutta method (RK4). The vortex
velocity uj consists of the flow induced by the other vortex in addition to a potential flow that
vanishes at infinity and cancels the normal velocity on the plate. It is found by using two different
methods, described next.

A. Method 1: Vortex sheet discretization

Following Ref. [17], the plate is modelled by a vortex sheet in its place whose strength is such
that no fluid flows through the plate. The sheet position is given by

x(α,t) = s(α)(sin βi(t), cos βi(t)), (4)

where s(α) = cos(α), and α ∈ [0,π ]. Here, the time dependence of βi corresponds to plate motions
that rotate or oscillate about the center point, as considered in Sec. IV C below. The sheet is discretized
by N + 1 point vortices with position xj (t) = x(αj ,t), j = 0, . . . N , with αj = j�α, �α = π/N ,
chosen so that they accumulate at the edges of the plate. Their circulation ��j is determined at each
time step so that no fluid flows through the plate. The total fluid velocity at a point away from any
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point vortex is given by

u(x,t) =
N∑

k=0

K(x − xk)��k +
2∑

k=1

K
(
x − xv

k

)
�k, (5)

where K(x) = 1
2π

(−y,x)/(x2 + y2), x = (x,y) �= 0. The no-through-flow condition is imposed at
the midpoints between the vortices xm

j (t) = x((αj + αj+1)/2,t),

(u · n)
(
xm

j ,t
) = (Up · n)

(
xm

j ,t
)
, j = 0, . . . ,N − 1, (6a)

where Up is the prescribed plate velocity at xm at time t , and n is a unit vector normal to the plate at
time t . Note that Up is nonzero only in the oscillating-plate-case considered in Sec. IV C. These N

conditions (6a) are supplemented by zero total circulation,

N∑
k=0

��k = 0. (6b)

Equations (6a) and (6b) form a linear system that determines the N + 1 values of ��k at each time.
The coefficient matrix is time independent and can be factored initially, so that only two triangular
solvers are needed to find ��k at each stage of the time-stepping scheme. This procedure determines
the time-dependent vortex sheet strength on the plate; that is, the image vorticity necessary to satisfy
the no-penetration condition. The resulting velocity of the j th vortex is

uj (t) =
N∑

k=0

K
(
xv

j − xk

)
��k +

2∑
k=1
k �=j

K
(
xv

j − xk

)
�k. (7)

B. Method 2: Conformal mapping technique

Alternatively, one can apply the Routh rule to find the vortex velocity ([1], §3.3): the region
outside the plate is mapped conformally to the region outside a cylinder, the complex velocity
potential in the mapped plane is obtained by using images, and the point vortex velocity in the
original plane is deduced from it. This method has been applied to compute single point vortex
flow around a plate [11] or in more complex domains [5–9] as well as symmetric two-point-vortex
flow with steady or moving boundaries [10,18]. The related Hamiltonian theory is well covered
in Saffman’s monograph [18]. For any system of N point vortices, the Hamiltonian is a function
that is conserved along particle trajectories. In the single and symmetric two-point vortex flows
referred to above, the Hamiltonian reduces to a function of two variables whose level curves yield
the vortex trajectories without requiring integration in time. In the present work, in which there
is no imposed symmetry, the Hamiltonian is a function of four variables, and the trajectories are
obtained by numerical integration. Below, we evaluate the Hamiltonian of the computed trajectories
to determine the accuracy of the simulation.

The conformal map used here (see Fig. 3) is given by

ζ = f (z) = eiβz +
√

e2iβz2 + 1, (8)

where β = βi , using appropriate branch cuts for the square root. The point vortices are mapped to
ζ1,2 = f (z1,2). The point vortex velocity uj (t) is obtained by using the Routh rule, which we briefly
derive here for the case of a fixed plate in which β is constant, closely following the description in
Newton ([1], §3.3). First, the velocity potential in the ζ plane at a point ζ �= ζ1,ζ2 is obtained by
using image vorticity in the cylinder,

W (ζ ) = W
j

0 (ζ ) + �j

2πi
log(ζ − ζj ), (9a)
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FIG. 3. Conformal map ζ = f (z) from outside the plate to outside the cylinder. (a) Point vortices zk = xk +
iyk and plate in the z plane. (b) Rotation into the w plane, w = eiβz. (c) Map to the ζ plane, ζ = w + (w2 + 1)1/2.

where

W
j

0 (ζ ) =
2∑

k=1
k �=j

�k

2πi
log (ζ − ζk) −

2∑
k=1

�k

2πi
log

(
ζ − ζk

|ζk|2
)

(9b)

contains all contributions except that of the j th vortex. The velocity in the z plane at a point z �= zj

is given by the complex velocity W ′(f (z))f ′(z). The velocity at zj is then obtained by taking the
limit of the complex velocity as z → zj , after removing the self-induced velocity of zj ,

(uj − ivj )(t) = (
W

j

0

)′
(f (zj ))f ′(zj ) + �j

2πi
lim
z→zj

[
f ′(z)

f (z) − f (zj )
− 1

z − zj

]

= (
W

j

0

)′
(f (zj ))f ′(zj ) + �j

4πi

f ′′(zj )

f ′(zj )
. (10)

The corresponding Hamiltonian function is (see Ref. [1], §3.6)

H (z1,z2) = − 1

4π

2∑
j=1

�2
j log

|f ′(zj )|
|1 − fjfj |

− 1

4π

2∑
j=1

2∑
k=1
k �=j

�j�k log
|fj − fk|
|1 − fjfk|

, (11)

where fj = f (zj ) and the overline denotes complex conjugation.
Equations (7) and (10) give the velocity uj (t) by using methods 1 and 2, respectively. Method

1 is more general than method 2 since it does not require a conformal map and is not bound to
planar geometries. For example, it is easily applicable to complex geometries or axisymmetric
flows. Method 2 returns the exact velocity without dependence on a spatial discretization parameter
N and is significantly faster. To validate in particular the highly singular results shown below, all
results in Secs. IV A and IV B are computed with both methods. For the regular flows displayed
in Figs. 4–6, the two methods, using N = 80 and 0.005 � �t � 0.05, agree to within more than
seven digits and are indistinguishable at the scales shown. For the singular behavior displayed in
Figs. 6–10, most results, computed with N = 160 and 0.002 � �t � 0.005, agree to within more
than five digits. The results with method 1 are shown to converge to those of method 2 as N → ∞,
�t → 0. The regular flows with oscillating plate motion in Sec. IV C are computed with method 1.

IV. RESULTS

A. Deflection by a stationary plate, for D/L = π/4

This section presents the dipole trajectory in the presence of a stationary plate, with fixed
dipole size D/L = π/4. This particular value corresponds to a pair of vortices at the centroids of
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FIG. 4. Vortex trajectories for D/L = π/4 and (a) βi = 0◦, (b) 22◦, (c) 48◦, (d) 67◦, (e) 80◦, (f) 90◦.

an elliptically loaded vortex sheet of length L. Figures 4(a)–4(f) show the trajectories for various
incident angles βi , as indicated. After interacting with the plate, the dipole leaves with the transmitted
angle βt , also indicated in each figure. Note that, in all cases shown in this paper, the final dipole
velocity and vortex separation is within 0.01% of the initial one. This difference can be made
arbitrarily small by increasing the initial and final distance of the vortices from the plate. That is, in
the limit as t → ±∞, when the influence of the plate vanishes, the vortex velocity and dipole size
are identical.

In Fig. 4(a), the plate is parallel to the incoming dipole trajectory; that is, βi = 0◦. It is aligned with
a streamline of the flow induced solely by the dipole, which therefore satisfies the no-penetration
condition. No additional image vorticity is generated on the plate and the dipole travels undisturbed,
as if the plate were absent, with βt = βi = 0◦.

In Fig. 4(b), the plate is slightly inclined, with βi = 22◦. The dipole is deflected to the left and
leaves with negative transmitted angle βt ≈ −31◦. To better understand the deflection, note that, as
the dipole travels downwards, the right vortex approaches the plate more closely than the left vortex.
Because of its positive circulation, it moves clockwise propelled by the opposite-signed vorticity in
the wall, to the other side of the plate. At that time the effect of each vortex on the other is reduced,
so that each travels mainly in the image vorticity field of the plate, parallel to it. The right vortex is
closer and travels faster. As a result, after pairing up again at the other end of the plate, the relative
position of the vortices has changed and they leave at a different angle.

In Fig. 4(c), the plate is inclined further, with βi = 48◦. In this case, the dipole is also deflected to
the left, but leaves the plate almost parallel to it, with βt ≈ 0◦. In Fig. 4(d), with βi = 67◦, the dipole
direction is almost unchanged by the interaction; that is, βt ≈ βi . However, the path is clearly shifted
to the left. In Fig. 4(e), with βi = 80◦, the dipole is deflected to the right, with βt ≈ 92◦ > βi . In
Fig. 4(f), the dipole approaches the plate normal to it, each vortex surrounds the plate symmetrically,
and the dipole leaves on the other side normal to the plate, with βt = βi = 90◦.

Figure 5 summarizes the flow past the stationary plate for all βi ∈ [0,90], for the case D/L = π/4.
Figure 5(a) plots the transmitted angle βt as a function of βi . There are three points on the graph,
denoted by a, d, and f, at which the transmitted angle equals the incident angle, βt = βi . These
points, with βi = 0◦, 67◦, 90◦, correspond to the three trajectories shown in Figs. 4(a), 4(d), and
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FIG. 5. (a) Transmitted angle βt , (b) derivative dβt/dβi , (c) trajectory shift coordinates xs and ys , and (d)
time delay τ , vs βi , for D/L = π/4. The solid dots in panel (a) denote the pairs (βi,βt ) plotted in Fig. 4.

4(f). For 0 < βi < 67◦, the dipole is deflected to the left, with βt < βi . For 67◦ < βi < 90◦, the
dipole is deflected to the right, with βt > βi . Points b and e denote those at which the deflection to
the left and right is close to maximal, and correspond to the trajectories shown in Figs. 4(b) and 4(e).
Points a and c are the only points at which the dipole leaves the plate parallel to it, with βt = 0◦, and
correspond to the trajectories shown in Figs. 4(a) and 4(c). Figure 5(b) plots the derivative dβt/dβi

vs βi . The derivative measures the sensitivity of the transmitted angle to changes in the incident
angle; that is, the change in βt per change in βi . The figure shows that the transmitted angle is most
sensitive to changes in the incident angle for βi ≈ 60◦.

Figure 5(c) shows the shift of the outgoing trajectory, measured by the coordinates (xs,ys) defined
in Fig. 2(b). The most notable feature is the large minimum value of xs near βi = 67◦, reflecting the
leftward shift of the outgoing dipole trajectory by about half the plate length seen in Fig. 4(d). The
dipole trajectory is never shifted by more than half the plate length.

Figure 5(d) plots the time delay τ of the dipole caused by the interaction with the plate. As
explained, it measures the additional time it takes to approach and leave the plate by 6 units in the
presence of the plate as compared to without the plate. The distance of 6 units is chosen to be so
large that the time delay τ remains unchanged by further increasing it. The figure shows that for
0◦ < βi < 60◦, the dipole is accelerated by the plate, with τ < 0. For 60◦ < βi � 90◦, the presence
of the plate slows the dipole down, with τ > 0. To put these values into perspective, note that, absent
the plate, the dipole would traverse one plate length in time 8π (D/L). So, for D/L = π/4, the
maximal delay of τ ≈ 8 represents about 40% of that time.

B. Dipole trapping for D/L < 0.471π/4

Section IV A presented results for one value of D/L = π/4. This section addresses the effect
of decreasing D/L, corresponding to either smaller dipoles or larger plates. As before, the plate is
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FIG. 6. Vortex trajectories for βi = 30◦ and (a) D/L = π/4, (b) 0.5π/4, (c) 0.45π/4, (d) 0.25π/4.

stationary throughout. Figure 6 plots trajectories for incident angle βi = 30◦ and decreasing values
of D/L = π/4, 0.5π/4, 0.45π/4, 0.25π/4. As D/L decreases, the right vortex approaches the plate
more closely. Its motion is thus increasingly dominated by the plate, so that it behaves more closely
to a single vortex near a plate. As noted earlier, a single vortex would rotate indefinitely around
the plate, with larger speeds the closer it is to it. This behavior is described in more detail in the
appendix. Meanwhile, the left vortex, which is further away, moves slowly along the plate. In all
four cases, the two vortices eventually pair up again and leave the plate as a dipole, with constant
direction and velocity.

However, an interesting feature occurs as D/L decreases from 0.5π/4 in Fig. 6(b) to 0.45π/4
in Fig. 6(c). Note that in Fig. 6(b), after turning around the left plate corner, the right vortex pairs
up with the left vortex, backs up, and both leave the plate as a dipole. In Fig. 6(c) on the other
hand, as can be seen in the closeup in Fig. 7, the right vortex completely circles the plate and never
unwinds before pairing up with the left vortex and leaving the plate. Thus the winding number, the
number of turns the vortex makes about the plate before leaving, of the right vortex has increased
by one between Fig. 6(b) and Fig. 6(c), while the winding number of the left vortex has remained
unchanged at zero. There is therefore no continuous transformation from paths of the form of 6(b)
to paths of the form of 6(c), and thus the dipole paths, as a function of D/L, have to break and suffer
a topological discontinuity between these two values of D/L. That is, if the vortex trajectories were
replaced by rubber bands held together at the beginning and end, the right band would have to be cut
and reattached to transition from shape 6(b) to shape 6(c). The discontinuity, characterized here by
a jump in the winding number, is studied in more detail below. Another such discontinuity occurs
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between D/L = 0.45π/4 in Fig. 6(c) and D/L = 0.25π/4 in Fig. 6(d), since in Fig. 6(d) the right
vortex clearly backs up again to leave the plate with zero winding number.

The results in Figs. 6 and 7 were computed with both methods described in Sec. III by using
equal time steps �t = 0.005, with identical results to within more than seven digits. To confirm
the accuracy of the integration in time using RK4, Fig. 8 shows the extent to which the computed
Hamiltonian H (t) departs from its initial value, for the case in Fig. 7. Figure 8(a) plots the difference
|H (t) − H0|, where H0 = H (0), computed with the indicated values of �t . It shows that H (t) is
almost constant, with errors that decrease as �t decreases. Figure 8(b) plots the maximal error as a
function of �t , and shows that it decreases as �t3. The slightly less than optimal convergence for
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FIG. 8. Hamiltonian H (t) for βi = 30◦ and D/L = 0.45π/4. (a) |H (t) − H0| vs t , where H0 = H (0),
computed with the indicated values of �t . (b) max

t∈[0,60]
|H (t) − H0| vs �t . The dashed line has slope three.
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FIG. 9. Transmitted angle βt − βi vs βi , for (a) D/L = π/4, (b) 0.5π/4, (c) 0.45π/4, and (d) 0.25π/4.

RK4 is attributed to the fact that the computed problem is stiff: small changes in the initial condition
lead to large changes in the outgoing trajectories. Nonetheless, Fig. 8 shows that the trajectory shown
in Fig. 7, computed with �t = 0.005, is a highly accurate solution to the point vortex equations.

Figure 6 showed results for various values of D/L, but only one incident angle βi . We now
present the dependence on βi as well as D/L. Figure 9 shows the transmitted angle βt as a function
of βi , for βi ∈ [0,90] and the same four values of D/L as in Fig. 6. It plots the difference βt − βi .
For D/L = π/4 this difference was shown in Fig. 5(a) to have three roots. Figure 9 shows that, as
D/L decreases, the number of roots increases, as does the derivative dβt/dβi ; that is, the sensitivity
of the transmitted angle with respect to changes in the incident angle. More strikingly, though, is
that for the two smallest values of D/L in Figs. 9(c) and 9(d), the transmitted angle has highly
singular behavior in at least two regions in Fig. 9(c), and four regions in Fig. 9(d). In these regions
βt oscillates rapidly between −180◦ and 180◦. These rapid oscillations occur over an interval in
βi . Plots of the corresponding dipole trajectories show that as βi changes across these intervals, the
trajectories undergo a topological discontinuity as observed before under changes in D/L (Fig. 6).
That is, the discontinuities occur near critical angles for sufficiently small D/L if either D/L or βi

is changed.
To more accurately describe the singular events observed, we compute the winding number α

of the right vortex, defined as follows: as the vortex, positioned at the point X(t) = x2(t), moves,
the vector OX(t) subtends an angle α̃(t) with the positive y axis. Since the particle motion is
continuous, the angle α̃ increases or decreases continuously. Each time the particle surrounds the
plate, and thus the origin, in the clockwise direction, α̃ increases by 2π . We define the winding
number α = limt→∞ α̃(t)/(2π ). With this definition the winding number of the right vortex in
Fig. 6(b) is approximately 0.6, while in Fig. 6(c) it is approximately 1.45.
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FIG. 10. Singular behavior for D/L = 0.25π/4, computed with conformal mapping technique (method 2)
with �t = 0.0002. (a)–(c) Winding number α vs βi , at three different scales. (d)–(f) Time delay τ vs βi , at
three different scales.

Figure 10(a) plots the winding number α as a function of βi , for βi ∈ [0,90] and D/L = 0.25π/4,
on a logarithmic scale. The values of βi are sampled in steps as small as 10−9. Four intervals are
visible in which α is discontinuous. These intervals correspond to those in Fig. 9(d) in which βt is
singular. Remarkably, not only does α jump across these intervals, but within each of them there
are many angles for which the winding number is extremely large, as large as 1000. Figure 10(b)
shows a closeup of the region in Fig. 10(a) near βi = 29, of width as indicated by the red arrows
in Fig. 10(a). It shows, on a linear scale, that α decreases by one across the interval, jumping down
from one continuous branch of values to another. However, much structure is contained between
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FIG. 11. Winding number and time delay τ computed with vortex sheet discretization (method 1), using
N = 160, �t = 0.0002, for D/L and βi as in Figs. 10(c) and 10(f).

these two branches. Figure 10(c) shows a closeup of the region in Fig. 10(b) of width as indicated
by the red arrows in Fig. 10(b). It shows that the jump seen in Fig. 10(b) occurs over a finite gap of
width approximately 0.0001. This gap, in turn, contains many jumps across gaps to other continuous
branches. Indeed, each of these smaller gaps appears to contain more jumps to further continuous
branches across gaps. The results indicate the presence of gaps within gaps within gaps, across
each of which the winding number jumps by one between continuous branches, in a fractal fashion.
Although limited numerically by finite resolution and accuracy, more detail to the fractal nature is
given in Fig. 13 below.

Figures 10(d)–10(f) plot the time delay τ that the vortices require to traverse the plate, for the
same values of βi shown in Figs. 10(a)–10(c). It shows that the time delays are proportional to the
winding numbers. Each gap across which α jumps not only contains large winding numbers close
to 1000, but also large time delays. As seen by comparing Figs. 10(c) and 10(f), each jump in α

corresponds to a jump in τ from one continuous branch to another across a gap, and each of these
gaps contains more continuous branches with gaps across which τ jumps.

To validate this highly singular, unexpected behavior in a simple two-point vortex flow, we remind
the reader that all results in Secs. IV A and IV B were computed with the two different methods
described in Sec. III. For all results shown in Figs. 4–9, the two methods agree to within seven or
more digits, and are indistinguishable at the scales shown. Most winding numbers and time delays
shown in Fig. 10 agree to within five or more digits. Figure 11 more clearly visualizes the agreement
between the two methods. While Fig. 10 shows the values of α,τ computed with the accurate
conformal mapping technique (method 2), using �t = 0.0002, Fig. 11 shows the same quantities
but computed with the vortex sheet discretization (method 1), using N = 160 and �t = 0.0002.
There are only a handful of points in Fig. 11 within the highly singular gaps that visibly differ from
those in Fig. 10. Pointwise convergence of method 1 to method 2 as N → ∞, �t → 0, is shown
in Fig. 12, for a value of βi = 29.041 33 within the gap seen in Fig. 10(c) for which the winding
number is α = 15. The figure plots the norm of the difference between the two methods in the
vortex position at t = 60, after the right vortex has circled the plate 15 times and the pair has left
the plate, computed with a range of values of N and �t . It shows that the difference decreases fast,
approximately as (1/N )10, until it reaches either the time-stepping error, or roundoff error. Roundoff
error is relatively large due to the large number of time steps taken, and the stiffness of the problem.
The agreement between two quite distinct numerical methods, shown in Figs. 10–12, in addition to
the conservation of the Hamiltonian shown in Fig. 8, validates the highly singular fractal dependence
of the vortex trajectories on βi that is observed. Furthermore, the fact that one method has more error
than the other, yet gives almost identical results, shows that the results are not sensitive to details of
the numerical method, thus demonstrating numerical robustness of the observed behavior.
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The complexity of the dependence of the vortex trajectories on βi increases as D/L decreases.
Figure 13 plots the winding number α for a smaller value of D/L = 0.167π/4 than in Fig. 10. At
the coarsest level, in Fig. 13(a), six gaps are visible across which α jumps by one. As in Fig. 10, each
of these gaps contains continuous branches with gaps, at infinitum. However, in addition, Fig. 13
shows another feature. A closeup of the region near the leftmost gap whose width is indicated by the
red arrows in Fig. 13(a) is shown in Fig. 13(b). It shows the presence of another gap, not within the
original gap at β = 5.08, but near it, around β = 5.16. At the left of this new gap, α jumps up by
one, and at the right it jumps down by one. A closeup of the region near the left jump, indicated by
the red arrows in 13(b), is shown in 13(c). It shows a similar structure as 13(b), but at a smaller scale.
A closeup of the region indicated by the red arrows in 13(c) is shown in 13(d), and again shows a
similar structure as in 13(c). Thus, not only does this figure give more detail on the fractal pattern
of the gaps, with gap scales ranging from 8 × 10−5 visible in 13(a) to 4 × 10−6 visible in 13(b) to
2 × 10−7 visible in 13(c), to 5 × 10−8 visible in 13(d), but it also indicates that the gaps within gaps
within gaps appear in a self-similar pattern.

The fractal, self-similar nature in which both α and τ jump apparently ad infinitum across gaps
within gaps indicates the existence of angles β∗

i for which α,τ are arbitrarily large. The existence
of such angles is reflected numerically by the large values of α,τ observed in the gaps. In view of
the self-similar fractal complexity, these trapping angles are not attained in any limit. That is, it is
not true that as β approaches β∗

i the corresponding winding numbers α approach ∞. This makes it
harder to find the values of β∗

i numerically. However, their existence can be deduced from the fractal
structure revealed. The gaps thus represent trapping regions: regions containing angles for which
the vortices do not leave the plate for arbitrarily large times.

As indicated by the results shown so far, the number of trapping regions increases as D/L

decreases. The dependence on D/L is shown in Fig. 14, which plots the position of gaps across
which α jumps by one, each one representing a trapping region containing the complex behavior
described above. For each D/L, the position βc

i of the center of the gaps is shown. Note that only
gaps that are not within gaps already accounted for are shown. For example, for D/L = 0.25π/4,
only the four gaps visible in Fig. 10(a) are shown, and not the many gaps within them. Also, only
gaps sufficiently far from gaps already accounted for are plotted. For example, for D/L = 0.167π/4,
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FIG. 13. Winding number α for D/L = 0.167π/4, vs βi . Panels (b)–(d) show closeups of the region whose
width is indicated by arrows in panels (a)–(c).

only the six gaps visible in Fig. 13(a) and the two additional gaps visible in the closeup in Fig. 13(b)
are shown, not the additional gaps visible in Figs. 13(c) and 13(d).

Figure 14(a) shows that for D/L > 0.471π/4, there are no trapping events for any value of βi ,
as observed in Figs. 9(a) and 9(b). For 0.303π/4 < D/L � 0.471π/4, there are two trapping, as in
Fig. 9(c). For 0.218π/4 < D/L/(π/4) � 0.303π/4, there are four, as in Fig. 9(d). For 0.159π/4 <

D/L � 0.218π/4, there are six major branches as in Fig. 13(a), and for 0.15π/4 � D/L �
0.159π/4, there are eight major branches. The closeups in Figs. 14(b) and 14(c) show the emergence
of new branches near existing branches, corresponding to the branches observed in Fig. 13(b). Fig-
ure 14 thus shows the increasing appearance of trapping regions as D/L increases. It also shows that,
near the critical angles, the dependence of the trajectories is highly singular under changes both in
βi or D/L.

The observed scattering and trapping of the vortex dipoles is reminiscent of the dynamics observed
in Ref. [16] for the interaction of pairs of dipoles in unbounded flows, although the scattering is
not resolved there in as much detail as here. It is expected that the observed behavior is stable
to perturbations, with continuous perturbations of the upstream starting position yielding similar
bifurcation diagrams as that in Fig. 14.

C. Separation of incoming sequence of dipoles by an oscillating plate

We now apply the observed sensitivity of the transmitted angle to changes in the incident angle
to separate an incoming sequence of vortex dipoles by oscillating the plate. Consider a sequence of
dipoles added at periodic time intervals at one point in the x-y plane, as if, for example, a sequence
of planes were flying along the same path, normal to the x-y plane, each generating a trailing vortex
dipole. The wake hazard caused by vortices of a preceding aircraft on a following aircraft is one of
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FIG. 14. Diagram showing the position of trapping regions centered at βc
i , as a function of D/L. Panels (b)

and (c) are closeups of the boxed regions in panel (a).

the main reasons limiting the time between take-off and landing at airfields. The ability to deflect
and separate a sequence of vortices could potentially be useful in remediating the wake hazard. This
section addresses a highly idealized situation.

A sequence of counter-rotating vortex pairs is added to the flow at a fixed position (±D/L,3),
at periodic time intervals τv . A plate is placed at the origin in the path of the vortices, but instead
of being stationary, it oscillates about the vertical with period τp, amplitude βM , and phase shift φ,
with

βi(t) = βM cos

(
2π (t − φ)

τp

)
. (12)

The simulations shown in this section are obtained with sample values of βM = 20◦, τp = 40, and
φ = 12, with D/L = π/4. The value of φ determines at what plate position the vortices reach the
vicinity of the plate and is chosen so as to maximize the resulting deflection.

Consider the case with 2τv = 3τp. A dipole is inserted at times t = 0,τv,2τv,3τv, . . . =
0,1.5τp,3τp, . . .. Since the plate oscillates with period τp, after an interval of 3τp, the plate and
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FIG. 15. The plate oscillates with period τp = 40. Dipoles are inserted at y = 3 at time intervals τv with
2τv = 3τp . The position of all vortices is shown at the indicated times t/τp (solid dots), with all previous
trajectories shown as curves.

incoming dipole are in the same relative position as at the beginning of the interval. The dipole-plate
position thus repeats itself periodically with period 3τp. In that interval two dipoles have entered the
flow at different phases of the plate and thus take two different paths. Afterward the flow repeats
itself almost periodically. This is illustrated in Fig. 15. The figure shows the plate position and
the dipole positions at the indicated times t/τp. The dipole positions are shown as solid dots. The
attached curves show the traversed dipole trajectory. In frame 15(a), a dipole is inserted at the top
of the figure, y = 3, at t = 0. Its later trajectory is seen as the red curve in all later frames. In frame
15(c), it is deflected by the plate to the right. In frame 15(d), a second dipole is inserted at the top of
the figure, at t = τv = 1.5τp. Its later trajectory is seen as the blue curve in all later frames. In frame
15(e), it approaches the plate at a different phase than the first vortex in frame 15(b), and as a result
it moves on a different trajectory. In frame 15(f), it is deflected to the left instead of the right. A third
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FIG. 16. Trajectories of the first 12 dipoles inserted at y = 3 at time intervals τv , where (a) 2τv = 3τp , (b)
3τv = 5τv , (c) 4τv = 7τv . In all cases, the plate oscillation period is τp = 40.

dipole is inserted at t = 2τv = 3τp in frame 15(g). Frames 15(i) and 15(j) show that its trajectory is
almost superposed to the one of the first dipole.

Further dipoles are introduced at the same interval τv/τp = 3/2. Figure 16(a) shows the resulting
paths of the first 12 dipoles. The trajectories are clearly separated into two paths. The motion is not
completely periodic since each dipole does not have the same number of dipoles behind it. This is
most noticeable for the first dipole, whose track is slightly different than that of the following ones.

This result yields a procedure to separate a sequence of dipoles into an arbitrary number of paths.
If nτv = mτp and n,m are relatively prime, with n smaller than m, then after t = mτp the process
will first repeat itself and the incoming dipoles will be separated into n paths. Figures 16(b) and
16(c) show the resulting paths of the first 12 dipoles with 3τv = 5τp and 4τv = 7τp, respectively.

V. SUMMARY AND REMARKS

Numerical simulations were presented of an apparently simple problem of a counter-rotating
vortex pair interacting with a plate in its path. In all computed cases, the vortex pair leaves the
plate eventually, after some time delay, as a dipole with unchanged velocity but generally large
changes in direction. The plate deflects the dipole to the left or to the right, at transmitted angles
that depend sensitively on the incident angle. The sensitivity, measured by the derivative dβt/dβi ,
increases rapidly as the plate length L increases relative to the vortex size D. For sufficiently small
D/L < 0.471π/4, singular events occur near critical incident angles. In these regions, infinitesimal
changes in βi or D/L lead to abrupt and discontinuous changes in the topology of the dipole
trajectory. The singularities are evident as jumps in the winding number α of one vortex about the
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plate and in the time delay τ as βi changes across an interval. Within these intervals, jumps occur
in a self-similar fractal fashion, indicating the existence of incident angles that delay the dipole
motion indefinitely, thus trapping the vortices near the plate. The number of such intervals, referred
to as trapping regions, and the complexity of the dependence on βi and D/L increases as D/L

decreases. The simulations thus show that, even for an apparently simple setup, the dynamics of a
two-point-vortex system interacting with a wall is surprisingly rich. The sensitivity was applied to
separate an incoming stream of dipoles by oscillating the plate.

Point vortex dynamics are of interest in their own sake, but also to yield insight into physical
vortex dynamics, in which generally viscosity does not permit slip past walls. One question the
present work raises is to what extent the behavior observed here is reflected in viscous flow. Careful
laboratory experiments or viscous simulations, beyond the scope of this work, are necessary to obtain
further insight into using plates to control vortical flows.
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APPENDIX: MOTION OF A SINGLE VORTEX PAST A PLATE

Figures 1(c) and 1(d) briefly addressed the motion of a single vortex past a plate with zero
circulation. This appendix describes the single vortex trajectory in more detail, to better understand
its regularity and its dependence on the distance of the vortex from the plate. We consider a single
point vortex positioned near a flat plate, in otherwise irrotational inviscid flow that vanishes at infinity.
The plate lies horizontally on the line {(x,0)| − 1 � x � 1} and the vortex is initially positioned at
a distance ε above the plate, at (0,ε). The flow is normalized by the plate half-length and the vortex
circulation, as in the rest of this paper. Figure 17(a) plots the trajectory of the vortex, for four values
of ε = 0.2, 0.1, 0.05, 0.025. The initial position in each case is indicated by the solid dot. In each
case, the vortex, with positive circulation � = 1, rotates clockwise around the plate. The smaller
ε is, the more parallel is the trajectory along the plate. The closeup in Fig. 17(b) shows that, even
near the edge, the vortex trajectory remains regular and smooth for any value of ε. For smaller ε,
it turns more tightly around the edges, in shape close to a half-circle with radius proportional to ε.
The shapes are similar to much of the trajectory of the right vortex shown in Fig. 7.

The time that a single vortex takes for a full rotation about the plate, denoted by T , is shown in
Fig. 18. The figure plots T/ε for a range of values of ε, and shows that T scales like ε as ε → 0, with

T = Cεε where lim
ε→0

Cε ≈ 50.2655. (A1)

That is, the closer the vortex is to the plate, the faster it moves around it, as expected.
Figure 19(a) plots the speed of the vortex over one period vs time scaled by the total period T .

The speed is scaled by 1/ε. It shows that |u|, as expected, remains proportional to 1/ε throughout.
Moreover, the speed around the edges, which the vortex approaches at t/T = 0.25,0.75, is never
significantly larger than the vortex speed along the sides of the plate. In fact, the maximal speed
around the edges is approximately twice the vortex speed along the sides, for all ε > 0. The speed
increases from approximately 0.08/ε to about 0.16/ε in a time interval of size proportional to ε. This
is shown in Fig. 19(b), which plots the scaled velocity about the right edge, where t/T = 0.25, vs time
from the edge scaled by 1/ε. With this scaling, the curves for all four values of ε collapse onto one.

Finally, we note that although the vortex motion and speed remain regular for all ε > 0, the flow
near the edges of the plate is not regular, since the Kutta condition is not satisfied. The vortex induces
a flow near the plate of magnitude �/ε, which in turn induces singular flow at the plate tip of order
1/

√
x where x is the distance from tip. However, although the fluid about each of the plate edges is

singular, the vortex motion remains regular.
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FIG. 17. Trajectories of single vortices moving near a plate in otherwise inviscid, irrotational flow with
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vortices rotate clockwise around the plate. Panel (b) shows a closeup of panel (a) near the right plate edge.
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FIG. 18. Time T taken by a single vortex for one rotation around the plate, scaled by ε, vs ε, where ε is the
initial vortex distance from the plate.
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FIG. 19. Vortex speed, scaled by 1/ε, vs (a) normalized time t and (b) a scaled normalized time near the
right edge, at which t/T = 0.25. Results are shown for ε = 0.2, 0.1, 0.05, 0.025.

In the simulations presented in this paper, the right vortex behaves as a single vortex near the
plate for much of the time, especially in the singular regime where winding numbers are high.
However, in all runs, the maximum vortex speed is always less than eight. Since according to
Fig. 19, 0.08 < ε|u| < 0.17, it follows that the vortices in all calculations presented in Secs. IV A
and IV B stay at a distance >0.08/8 = 0.01 units from the plate.
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