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We examine the spatial field of orientations of slender fibers that are advected by a
two-dimensional fluid flow. The orientation field of these passive directors are important in
a wide range of industrial and geophysical flows. We introduce emergent scar lines as the
dominant coherent structures in the orientation field of passive directors in chaotic flows.
Previous work has identified the existence of scar lines where the orientation rotates by
π over short distances, but the lines that were identified disappeared as time progressed.
As a result, earlier work focused on topological singularities in the orientation field, which
we find to play a negligible role at long times. We use the standard map as a simple
time-periodic two-dimensional flow that produces Lagrangian chaos. This class of flows
produces persistent patterns in passive scalar advection and we find that a different kind
of persistent pattern develops in the passive director orientation field. We identify the
mechanism by which emergent scar lines grow to dominate these patterns at long times in
complex flows. Emergent scar lines form where the recent stretching of the fluid element is
perpendicular to earlier stretching. Thus these scar lines can be labeled by their age, defined
as the time since their stretching reached a maximum.
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I. INTRODUCTION

When slender fibers are advected in a fluid flow, they become aligned by the flow [1–7], which
produces dramatic effects including changes in material properties such as fluid rheology and
scattering of electromagnetic waves. These effects of fiber alignment appear in many applications
including design of fiber suspension flows for the paper industry [8,9], prediction of the albedo of icy
clouds [10–13], and controlling turbulent drag by adding fibers [14,15]. Other applications include
liquid crystals [16] and active nematics [17,18].

The motion and alignment of small slender fibers in fluid flow has many similarities to the
advection of passive scalars such as the concentration of a dye. This passive scalar problem has
proven to be a rich area for scientific study [19–21]. For passive scalars, the case of time-periodic
two-dimensional flows has been a source of many insights since it is the simplest case that produces
Lagrangian chaos [22]. A wide variety of mathematical tools have been developed for analyzing
passive scalar advection [21]. Particularly relevant to fiber flows is analysis using finite-time
Lyapunov exponents (which quantify the stretching experienced by each infinitesimal fluid element)
that has allowed insights from simple two-dimensional (2D) time-periodic flows to be extended to
identification of Lagrangian coherent structures in complex flows [23].

The advection of small slender rigid fibers in fluid flow can be called the passive director
problem. Symmetric fibers are described by directors rather than vectors because the two antiparallel
orientations of the particle are equivalent. The orientational degree of freedom of the director
introduces physics that is not present in the passive scalar problem. For passive directors, a flow
produces nontrivial patterns in the orientation field even for homogenous initial conditions leading to
an entirely different class of problems [1]. However, the basic phenomenology of the orientation field
for passive director advection in 2D chaotic flow matches the passive scalar problem quite closely.
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Despite extensive study of the dynamics of fibers in fluid flows [6,7], we still do not have a clear
phenomenology of the fiber orientation field in chaotic and turbulent flows. Szeri et al. [1,24–27]
analyzed the orientation dynamics of microstructured fluids in a framework applicable to rigid fibers
as well as deformable microstructure such as polymers. Their mathematical formalism describes
cases where the fluid flow experienced by a particle is steady or periodic in time. In these simple
cases, they already found a rich range of phenomenology including chaotic dynamics of particle
orientations. Because these flows have integrable translational motion of particles, many interesting
features of passive scalar advection do not yet occur. Two studies that explored the orientation
field of passive directors in flows with chaotic fluid trajectories were performed by Wilkinson and
co-workers [2,28]. They used a random flow in which they highlighted the existence of scar lines
and topological singularities. Another study by the same team [29] extended the work of Szeri et al.
on flows with integrable translational trajectories. Parsa et al. [3] performed an experimental study
in which they measured the orientation of fibers in 2D chaotic and turbulent flows and identified
how tools from continuum mechanics can be used to quantify fluid stretching and understand fiber
orientations. They only considered single fibers and not the spatial field of fiber orientation.

Another line of research has explored the alignment and curvature of fluid elements in chaotic
and turbulent flows. Fluid element orientation is closely related to passive director orientation and
so the curvature of fluid elements is related to the spatial gradient of the passive director orientation.
Pope et al. used direct numerical simulations to analyze the curvature of material elements in
turbulent flows [30,31]. They found that the probability distribution of curvature approaches an
asymptotic form while the mean-square curvature diverges exponentially. In 2D chaotic flows, the
field of stretching and curvature of fluid elements has been analyzed to understand mixing [32–34].
Among other things, these studies explore a correlation between curvature and low stretching,
which was first observed in a study of model turbulent flow [35]. One particularly relevant result
is the existence of asymptotic directionality in 2D time-periodic flows, which causes fluid element
orientations to approach a persistent pattern [33] similar to the persistent patterns observed in
passive scalar advection [36,37].

There are several other problems where the spatial field of director orientations is studied.
Work on nematic liquid crystals has developed many of the tools to study these fields [16]. Active
nematics such as films of microtubules and molecular motors add additional dynamics to the
nematic liquid crystal problem [17,18]. Studies of pattern formation in Rayleigh-Bénard convection
also involve director fields formed by the orientation of convection rolls [38,39]. Studies of the
polarization orientation in optics also involve a similar director field [40,41]. Recent work has
shown the importance of director fields in the dynamics of cells [42–44]. These director fields all
necessarily produce similar topological singularities, primarily those with a ±1/2 Poincaré index,
which are like the core and delta ridge patterns first identified in the study of fingerprints. We will
see that the fluid passive director problem is an interesting case to contrast with the others. It is a
limiting case where the lack of interactions between directors leads to patterns with many features
in common with patterns in the passive scalar problem.

In this paper we identify the key coherent structures in fiber orientations in chaotic 2D flows and
the mechanism by which they form. We find that the topological singularities that have received
extensive attention are not central to understanding fiber orientation fields. Instead, it is scar lines [2]
that dominate the fiber orientation fields and we identify the mechanism that produces the emergent
scar lines that dominate the field at long times.

II. PHENOMENOLOGY OF PASSIVE DIRECTOR ORIENTATION IN THE STANDARD MAP

We study passive directors advected in the standard map, which is a convenient model for a
two-dimensional fluid flow that exhibits Lagrangian chaos. The standard map is area preserving and
invertible; it is defined as [45]

yt+1 = yt + K sin xt , (1)

xt+1 = xt + yt+1, (2)
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FIG. 1. (a) Poincaré section of the standard map showing the regular regions and chaotic regions for K = 2.
(b) Stretching experienced by the fluid over four periods at the same value of K , where �1 is the eigenvalue of
the Cauchy-Green strain tensor defined in the Appendix.

where spatial coordinates x and y are periodic over 2π and t is an integer that specifies the time
measured in periods that the flow has been iterated. This is often called the kicked rotor system and
q and p are used instead of x and y for the phase-space variables of the Hamiltonian dynamical
system. The standard map can be produced by a continuous flow field with the velocity in the first
half of each period given by ẋ = 0 and ẏ = 2K

T
sin x and in the second half of each period the

velocity is given by ẋ = 2
T
y and ẏ = 0. This flow alternates between a vertical Kolmogorov flow

and a horizontal linear shear. A visualization of passive scalars in this flow is shown as an animation
in the Supplemental Material [46].

Figure 1(a) shows the Poincaré section for the standard map for K = 2 with the regular and
chaotic regions clearly visible [47]. Figure 1(b) shows the field of fluid stretching often called
the finite-time Lyapunov exponent field, which is used to visualize Lagrangian coherent structures
[23,48].

The orientation of a fiber advected in the flow defined by the standard map is

θt+1 = arctan

(
K cos xt + tan θt

1 + K cos xt + tan θt

)
. (3)

The orientation field of advected fibers can be defined in two different ways [28]. Fibers with initial
orientation field p̂0(r) evolve over time t to a final orientation field p̂(r,t). We will call this final
orientation field the advected director field. In two dimensions, this field is most easily represented
by an orientation angle field θp(r,t). Alternatively, each point can have a distribution of initial
orientations P0(p̂,r), which evolves under the flow to a distribution of final orientations P (p̂,r,t).
The orientation field is then defined by the final preferred orientation of fibers at any point in space.
In the simplest case with uniformly distributed initial orientations, the preferred orientation can be
obtained as the eigenvector of the left Cauchy-Green strain tensor (CGST) that corresponds to the
maximum eigenvalue, which we denote by êL1. We will call this the eigenvector field and represent
it by the orientation angle field θe(r,t). The left Cauchy-Green strain tensor is C(L) = FFT , where
Fij = ∂xi

∂Xj
is the fluid deformation gradient [3,5,49], also referred to as the monodromy matrix [28].

An equivalent definition is to use an eigenvector of the tensor order parameter [16]. The Appendix
discusses the definitions and relationships between these quantities in more detail. An important
distinction between the advected director orientation field θp(r,t) and the eigenvector orientation
field θe(r,t) is that θp depends on a choice of initial orientation while θe does not.

The two orientation fields θp and θe are shown in Fig. 2 at time t = 4. Both the fiber fields
[Figs. 2(c) and 2(d)] and higher-resolution color maps of the orientation angles [Figs. 2(a) and 2(b)]
are shown. The two different definitions of the fiber orientation field are quite similar, but there
are some clear differences. For example, at (x,y) = (2.37,4.48) in Fig. 2(b) we see that there is a
pinwheel where the eigenvector orientation is not defined, a topological singularity, while at this
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FIG. 2. (a) Angle of the advected directors θp of initially horizontal fibers. (b) Angle of the eigenvectors of
the left Cauchy-Green strain tensor θe. (c) and (d) Director representations of (a) and (b), respectively. All angles
are measured with respect to horizontal. Animations of all four of these figures are included as Supplemental
Material [46]. (Here K = 2 and t = 4.)

point, the advected director field in Fig. 2(a) is smooth. We show in Sec. III that these fields have
very different topological structure and yet as observed by Wilkinson et al. [2], they converge toward
the same field at long times in chaotic regions of the flow.

An effective way to observe the dominant coherent structures in the orientation fields is to
calculate the gradient of the fiber orientation, as shown in Fig. 3. In both the advected director field
[Fig. 3(a)] and the eigenvector field [Fig. 3(b)], the dominant features are thin lines over which the
orientation changes by π over a very short distance. These have been called scar lines by Wilkinson
et al. [2].

The basic mechanism for formation of a scar line is simple. When fluid is stretched by the flow,
fibers rotate toward alignment with the stretching direction. However, some fibers that are initially
perpendicular to the stretching direction will not align. The set of points with initial orientations
that are exactly perpendicular to the stretching direction falls on lines. In chaotic regions of the flow
where stretching increases exponentially in time, the width of the perpendicular region is shrinking
exponentially in time, causing the orientation field to rotate by π across very short distances.

It is not immediately obvious how the mechanism in the preceding paragraph creates scar lines
in the eigenvector field. Wilkinson et al. briefly identify type 2 scar lines as lines that form where
rotational regions with complex eigenvalues of the deformation gradient (or monodromy) matrix
have repeatedly been stretched and folded so that they become very narrow. Complex eigenvalues
appear where the trace of the monodromy matrix is between −2 and 2. We find that the scar lines
in the eigenvector field appear in regions of low stretching that are often associated with these
stretched rotational regions. However, the mechanism we observe for the formation of scar lines
in the eigenvector field does not clearly match the definition of type 2 scar lines by Wilkinson
et al. In Sec. IV B we show how the scar lines in the eigenvector field emerge as the result of
an initial stretching that creates a preferred orientation. When the later stretching experienced by
that fluid element is perpendicular to the initial stretching, a scar line is created. We call these
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FIG. 3. Gradient of the angle of the fiber orientation field after advection in the standard map for four
periods. (a) Gradient of the advected director field starting with initially horizontal fibers. (b) Gradient of the
eigenvector field. The large gradients lie on thin lines called scar lines [2]. (Here K = 2 and t = 4.)

emergent scar lines and find that they dominate the orientation field of both advected directors and
stretching eigenvectors at large times. The reversal of stretching results in scar lines being associated
with regions of low stretching, connecting with earlier observations that curvature of fluid elements
preferentially occurs in regions of low stretching [32,34,35]. The mechanism for creation of emergent
scar lines is similar to the mechanism for creation of type 1 scar lines except that the stretching over
an initial time interval replaces the initial fiber orientation. At large times, type 1 scar lines become
unobservably thin, so emergent scar lines that have been formed in the recent past dominate the
observed orientation fields. In Sec. IV C we show how these emergent scar lines can be labeled by
the time since their creation.

III. TOPOLOGICAL SINGULARITIES IN PASSIVE DIRECTOR ORIENTATION FIELDS

A major focus in previous work on the evolution of director fields has been the development of
topological singularities or topological defects [16–18,28,29,38,39]. To conserve the total topological
charge of the field, singularities must always form in pairs of opposite Poincaré indices. The two
types of singularities that form in director fields are shown in Fig. 4. Figures 4(a) and 4(c) show a
singularity that has a Poincaré index of + 1

2 and Figs. 4(b) and 4(d) show a singularity that has a
Poincaré index of − 1

2 . The Poincaré index is defined as the number of multiples of 2π in which the
director orientation changes as we move around a closed loop. These singularities are given different
names by different communities. The terminology from fingerprint analysis is core for + 1

2 and delta
for − 1

2 . They are also called wedge and trisector [50], and in the study of optical polarization fields
there are similar singularities called star and lemon [41]. Recent work on patterns in cell populations
has used cometlike for + 1

2 singularities [42–44].
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FIG. 4. The two different types of singularities. (a) and (b) Angle of êL1 with respect to the horizontal. (c)
and (d) Director representation of the eigenvector field. (a) and (c) show a singularity with a Poincaré index of
+ 1

2 and (b) and (d) show a singularity with a Poincaré index of − 1
2 . To determine the Poincaré index, circle

the singularity of (c) in the clockwise direction. Around the circle, the orientation of θe rotates by π in the
clockwise direction, giving a Poincaré index of + 1

2 . (Here K = 2 and t = 2.)

Figure 5 shows how the orientation fields and the stretching field develop from �t = 2 to 8. As
time progresses, the structure of the advected director field θp and the eigenvector field θe become
more alike. However, certain regions are still different. The differences occur in regions of low
stretching that are either in the elliptic islands of the flow (see Fig. 1) or within the thin lines where
the stretching is small.

In Figs. 5(a)–5(h) the topological singularities are marked with circles and triangles. The
eigenvector field continuously develops new topological singularities while the advected director
field always remains free of them. This difference occurs because the directors start as a smooth
field and are advected by a smooth flow, so it is not possible for topological singularities to form
[2]. In contrast, the stretching eigenvector field nucleates pairs of singularities at points where the
stretching is zero. An animation showing the generation of singularities in the field of θe is provided
as Supplemental Material [46].

Figure 6 shows a plot of the number of singularities in the stretching eigenvector field at each
period N . After an initial transient, the number of singularities grows exponentially. A least-squares
fit to t > 5 gives N = 7.5e0.36t . The exponential can be understood as the result of a process similar
to a baker’s map where the thin lines of low stretching are folded on themselves multiple times.
New singularities are nucleated in these low-stretching regions, so the number of new zeros in the
stretching at each period is proportional to the current number of zeros.

The number of singularities were calculated computationally by performing a nonlinear search
for minima where the stretching field is near unity. At these points that have not been stretched, the
eigenvector field has no preferred orientation, allowing a singularity in the field of θe. Serra and Haller
[51] have shown that care is required because integrating trajectories in noisy or intermittent velocity
fields can create artificial singularities in the stretching eigenvector field. We have not observed any
artificial singularities, likely because of the simple analytic expressions for the standard map. The
number of singularities is increasing rapidly with time, while the spatial extent over which the
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2 singularities. (i)–(l) Stretching experienced by the fluid for the same time intervals.

Animations of these three fields are provided as Supplemental Material [46]. (Here K = 2.)

stretching is near unity becomes very small. As a result, it becomes increasingly difficult to find all
the singularities as time progresses. We will see that the shrinking of the size of the region affected
by each singularity allows the exponentially increasing number of singularities to become less and
less important to the orientation field as time progresses.

By comparing the number of singularities found in separate computations with a very large
number of initial guesses, we confirmed that we were able to find all singularities up to t = 10, but
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FIG. 6. Number of singularities N as a function of time t . At later times the number of singularities increases
exponentially. (Here K = 2.)
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by t = 12 it is clear that we were missing a significant number and so we only report data up to
t = 10. To characterize the topological charge (Poincaré index) of the singularities we move around
each singularity in a small loop (500 points around a circle of radius 10−5) and calculate the change
in orientation of fibers around that loop.

Since the flow is defined by a simple analytic map, we can calculate the positions at which
singularities form over the first few periods. At a singularity, the stretching is zero and so the
deformation gradient F represents a pure rotation. Here we analytically calculate the positions of
singularities that appear over the time range t = 1.5–2. The position of a fluid element initially at
(x0,y0) advected over time t = 3

2 + ε
2 , where 0 � ε � 1, is(

x1+ε

y2

)
=

(
x0 + (1 + ε)(y0 + K sin x0) + εK sin(x0 + y0 + K sin x0)

y0 + K sin x0 + K sin(x0 + y0 + K sin x0)

)
. (4)

Singularities can exist at points where the deformation gradient F calculated from Eq. (4) is a pure
rotation so it satisfies F11 = F22 and F12 = −F21.

The points that satisfy this condition are

x0 = 2πm + cos−1

(−1 ± ε

K

)
,

y0 = 2πl ± cos−1

(
(1 + ε) cos x0

1 − ε − 2ε cos x0

)
− x0 − 2 sin x0 (5)

and

x0 = 2πm − cos−1

(−1 ± ε

K

)
,

y0 = 2πl ± cos−1

(
(1 + ε) cos x0

1 − ε − 2ε cos x0

)
− x0 + 2 sin x0, (6)

where l and m are integers. Note that these are initial coordinates (x0,y0). The position of singularities
are the final coordinates (x1+ε,y2), which are obtained by inserting the values we find for (x0,y0)
into Eq. (4). For ε = 0 and 1, the positions of the singularities are periodic over 2π . For 0 < ε < 1,
we choose m and l so that the final singularity positions lie within [0,2π ].

These analytical calculations for the position of singularities agree exactly with the positions
found computationally in Fig. 5(e). Figure 5(e) shows only four singularities, because out of the
eight singularities in Eqs. (5) and (6), four come together in pairs and annihilate at the large elliptical
island leaving four singularities after two periods while conserving the total topological charge
throughout the process. The dynamics of the generation and annihilation of singularities in the
stretching eigenvector field are shown in an animation that has been provided as Supplemental
Material [46].

IV. SCAR LINES IN PASSIVE DIRECTOR ORIENTATION FIELDS

The orientation fields of advected directors and stretching eigenvectors become very similar to one
another and approach a stationary state in the long-time limit, as is evident in Fig. 5. In Fig. 7 these
fields are shown at t = 10. In the chaotic regions of the flow, the two fields appear to become almost
identical in the long-time limit, reflecting the persistent pattern [36,37] or asymptotic directionality
[33] that has been observed in other work on time-periodic 2D flows. However, the fields are also
diverging in topology since there is an exponentially increasing number of singularities in the field
of stretching eigenvectors θe. Since the two fields converge throughout almost the entire chaotic
region and yet have completely different topologies, the key coherent structures in these fields
are apparently not the topological singularities. Figure 3 suggests that, instead, the key coherent
structures are thin lines across which the fiber orientation rotates by π . Wilkinson et al. [2] have
called these structures scar lines. In the long-time limit the topological singularities only affect an
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FIG. 7. Orientation fields at longer times that show the persistent pattern that appears in the chaotic region of
both fields. (a) Orientation field of the advected directors θp . (b) Orientation field of the stretching eigenvectors
θe. (Here K = 2 and t = 10.)

infinitesimally small region of the stretching eigenvector orientation field and are screened by the
scar lines that come to be the dominant features of the field.

A. Type 1 scar lines

Type 1 scar lines form in the advected director field at points where the initial fiber orientation is
perpendicular to the direction that the fluid will be stretched. The right Cauchy-Green strain tensor
CR = FTF (see the Appendix) has eigenvectors that indicate the directions of stretching in initial
particle coordinates [3,49]. In Fig. 8(a) we show the dot product of initial fiber orientation with êR1,
the extensional eigenvector of the right Cauchy-Green strain tensor. Type 1 scar lines form where
this dot product is zero. Figure 8(b) shows the locations where this dot product is less than 0.03
superimposed on the advected director field. The match with the locations of most of the scar lines
is very good. Some of the locations with a zero dot product do not initially appear to be scar lines,
but at higher resolution it becomes clear that the scar line had simply become too thin to see at
the 2000 × 2000 resolution of the plotted orientation field. This healing of type 1 scar lines was
identified by Wilkinson et al. [2] and here we see that in this flow it only takes four periods for
many of the type 1 scar lines to become too thin to be observed. There are other points at which scar
lines appear, but the zero dot product condition from Fig. 8(a) is not met. These will be the topic of
Sec. IV B.

Due to their production mechanism, the type 1 scar lines are sensitive to initial orientations of
the advected directors. In Fig. 9 the orientation field for the advected directors θp is shown for two
different uniform initial orientation angles. It can be seen from this figure that although the two have
differences caused by their initial orientations, the structure and topology of the field remain mostly
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FIG. 8. Locations of type 1 scar lines where the initial fiber orientation is perpendicular to the direction
the fluid will be stretched. (a) Dot product of the initial orientation with the maximum eigenvector of the right
CGST p̂0 · êR1. (b) Locations where p̂0 · êR1 < 0.03 superimposed on the stretching eigenvector orientation
field. (Here K = 2 and t = 4.)

the same and are mainly dominated by another type of scar line that is similar in both fields and
independent of initial orientations. We identify these scar lines as emergent scar lines.

B. Emergent scar lines

In this section we study the mechanism that creates scar lines that are independent of initial
conditions and the distant past history of the flow. We find that the dominant structures in the fields
of both θe and θp are emergent scar lines that develop when the recent stretching of a fluid element
is orthogonal to the stretching it experienced earlier. We have established that after sufficient time,
there is a persistent pattern in the fiber orientation field. This orientation pattern can be thought of as
the initial orientation field for the flow over the next time interval. The structures with a large gradient
in the fiber orientation field occur where the stretching over the next time interval is orthogonal to the
orientation produced by the stretching of the previous time interval. Quantitatively, a scar line will
emerge where the stretching over some initial interval, which is defined by êL1, is perpendicular to
the stretching the fluid element will experience in a future interval êR1. Since we are using a periodic
flow, we can calculate these stretching directions at any time and identify the locations where the
initial stretching is orthogonal to the later stretching.

Figure 10 verifies this mechanism for the formation of emergent scar lines. Figure 10(a) shows the
dot product of the stretching that the fluid has experienced over three periods êL1(�t = 3) with the
stretching that the fluid will experience for the one remaining period êR1(�t = 1). The dot product
of these vectors should be zero at the locations of the emergent scar lines for �t = 4, and Fig. 10(b)
shows this condition and marks precisely the locations of the scar lines in the stretching eigenvector
field in the chaotic region of the flow at t = 4. In the large regular islands, the stretching is small
and some spurious points meet the condition of the dot product without developing scar lines.
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FIG. 9. Sensitivity of the advected directors and type 1 scar lines to initial orientation. (a) Orientation field
θp of an initially uniform grid of directors with an angle of +45◦. (b) Orientation field θp of an initially uniform
grid of directors with an angle of +135◦. (Here K = 2 and t = 4.)

Figure 11 demonstrates the mechanism by which emergent scar lines and singularities are
generated in the eigenvector field. This simple schematic flow consists of two steps. First, the
initially circular fluid elements experience a nonuniform flow field that stretches and rotates them
to the arrangement shown in Fig. 11(b). Second, the fluid elements experience a uniform pure strain
flow with a horizontal extension direction that results in the shapes in Fig. 11(c). In this process
there are points where the initial stretching experienced by some fluid elements is exactly canceled
by later stretching. These points lie on the emergent scar lines where the direction of the previous
stretching is perpendicular to the later stretching. These points that experience no net stretching are
the singularities of the stretching eigenvector field. Figure 11(d) shows a director representation of
the final configuration of the stretching direction with the singularities marked.

C. Age of emergent scar lines

An emergent scar line forms when earlier stretching is reversed by later stretching. The time
that divides earlier from later is different for different scar lines. Here we show how each emergent
scar line can be labeled with its age defined as the time since its maximum stretching occurred
and reversal of stretching began. Since stretching increases exponentially and scar line thickness
decreases exponentially, there is often an age beyond which the emergent scar lines become so
thin that they are below the resolution of interest. In experiments, there will be resolution limits
and translational diffusion that will remove old scar lines that have become sufficiently thin. The
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FIG. 10. Locations of emergent scar lines. (a) Dot product of the maximum eigenvector of the left CGST

for three periods and the maximum eigenvector of the right CGST for one period êL1(�t = 3) · êR1(�t = 1).
(b) Locations where êL1(�t = 3) · êR1(�t = 1) < 0.03 superimposed on the stretching eigenvector orientation
field. (Here K = 2 and t = 4.)

scar lines that are young enough to remain visible at the resolution of interest dominate the passive
director orientation field.

In Fig. 12 we show a field indicating the time when the maximum stretching occurred for each
fluid element. Most of the field is white, indicating that the maximum stretching is at the current
time. The thick blue region indicates the points where the maximum stretching occurred one period
ago. Purple indicates points whose maximum stretching was two periods ago, marking an emergent
scar line with an age of two periods. In this field created with an integration over six periods, we
observe scar lines with ages up to four periods. (There is a part of the elliptic island that had its
maximum stretching five periods ago, but without exponential stretching this does not form a scar
line.) Figure 12(b) plots the history of the stretching at the five points marked in Fig. 12(a). The
purple curve marked with a triangle is a topological singularity where the stretching goes to zero at
time t = 6. It lies on an emergent scar line with age 2, labeled purple, since its maximum stretching
was two periods before the present. The other four points are chosen to lie on scar lines with ages of
one to four periods.

Once an emergent scar line becomes well defined so that its width is much less than the correlation
length of the velocity gradients in the flow, it will be advected by the flow without being removed.
Later stretching will rotate the line and decrease its width by compressing the rotation by π to a
narrower region. The scar line remains where orientation was perpendicular to the later stretching,
and since the scar line has orientations across the full range 0 to π ; this is guaranteed to occur in
some region within the scar line.

A fluid element can have multiple maxima in its stretching history so that multiple ages can be
assigned to it. The age 4 point shown in red in Fig. 12(b) has later stretching that has almost surpassed
the maximum from four periods ago. Some of these points are simply at the edge of the scar line and
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FIG. 11. Simple schematic flow that generates singularities and emergent scar lines. (a) Uniform circular
fluid elements. (b) Fluid elements after deformation by a spatially nonuniform flow field. (c) Fluid elements
after a uniform pure strain flow with horizontal extension direction. Emergent scar lines form in the second row
of fluid elements where the uniform stretching is orthogonal to the initial nonuniform stretching. (d) Director
representation of the stretching eigenvector after the two stretching steps. The circle represents a + 1

2 singularity
and the triangle a − 1

2 singularity.

at longer times will cease to be part of the scar line. However, some other points have had the recent
stretching become larger than the earlier stretching. This creates topological singularities by the
process shown in the simple model in Fig. 11 and the dynamics of scar lines near these topological
singularities is a topic that needs additional study. At long times, the fraction of the chaotic region
where the stretching is small enough that recent stretching can overcome earlier stretching becomes
very small. So an exponentially increasing number of topological singularities are occurring in a
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FIG. 12. Quantifying the age of emergent scar lines. (a) Field showing the time at which each fluid element
experienced maximum stretching, which we use to define the age of emergent scar lines. Most of the field
is white, indicating that maximum stretching occurs at the current time, but several generations of scar lines
appear with maximum stretching before the present time. (b) Stretching as a function of time for points that
lie on emergent scar lines of different ages: ∗, age 1 emergent scar line; +, age 2; �, age 3; �, age 4; �, − 1

2
singularity on emergent scar line of age 2. (Here K = 2 and t = 6.)

shrinking fraction of the chaotic domain in a way that allows the overall structure of the orientation
field to be independent of what happens in these regions near the singularities.

V. CONCLUSION

When fibers are advected in two-dimensional flows with exponential stretching of material
elements, the primary coherent structures in the fiber orientation field are scar lines over which the
fiber orientation rotates by π over short distances. We have discovered that recently formed scar lines
dominate the observed orientation fields. A scar line emerges in regions where the recent stretching
is perpendicular to the earlier stretching of that fluid element. These emergent scar lines can be
labeled by their age, defined as the time at which their stretching reached a maximum.

It is important to distinguish two different ways to quantify the director orientation field. The
orientation can be defined by directors advected from a smooth initial orientation field or it can be
defined by the average orientation of an ensemble of initial orientations that can be quantified by the
stretching eigenvectors. The advected director field does not develop new topological singularities,
so it will always remain smooth if it starts with a smooth initial condition. However, the stretching
eigenvector field does develop new topological singularities; in this chaotic flow, the number of
singularities increases exponentially. Despite the very different topology, the two orientation fields
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converge at long times indicating that the topological singularities are not the key coherent structures
in these orientation fields. Instead, emergent scar lines dominate both orientation fields at long times.

The mathematical foundations for the passive director problem are still much less developed
than for the passive scalar problem [21] or for the detection of Lagrangian coherent structures in
velocity fields [23]. The close connection between the phenomenological description of passive
director fields developed here and work on strange eigenmodes and Lagrangian coherent structures
suggests that significant progress on mathematical foundations of the passive director problem may
be possible. In particular, recent work that uses the eigenvectors of the Cauchy-Green strain tensors
for coherent vortex detection [50,51] considers the same topological singularities that we study and
should be able to be extended to the passive director problem.

We also hope that future work can extend these insights to the case of turbulent flows that are
pervasive in industrial and environmental fiber flows. The mechanism that creates emergent scar
lines should be important in any flow with chaotic exponential stretching of material line elements.
We expect that advected director fields in two-dimensional turbulence will be dominated by scar
lines that are similar to the 2D chaotic flow case studied here. The Lagrangian coherent structures
determined by fluid deformation in 2D chaotic flows are similar to those found in turbulent flows
[52,53]. It should be possible to determine the age of emergent scar lines in 2D turbulence and
select the age most relevant to observations at a given resolution. In 3D turbulence, the situation is
less clear. Methods for detection of Lagrangian coherent structures in 3D turbulence using measures
of fluid stretching have shown promise [54]. Analysis of fluid stretching has been shown to be an
effective way to understand the alignment of fibers and other nonspherical particles in 3D turbulent
flows [5,55]. Additional work is needed to determine whether the scar lines that dominate director
orientation fields in 2D chaotic flow will appear in 3D flows.
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APPENDIX

To quantify fluid deformation, consider a point in the flow that is initially at X and is advected
after time �t to x. The fluid deformation gradient is defined as Fij = ∂xi

∂Xj
. The deformation gradient

includes both rotation and strain, F = VR = RU, where R is the rotational tensor and V and U
are the left and right stretch tensors, respectively [5]. It is convenient to extract only the strain
contribution using the Cauchy-Green strain tensors. The left Cauchy-Green strain tensor C(L) =
FFT = VRRT VT = VV has eigenvectors along the principle axes of the ellipse formed after the fluid
element is deformed over �t . The right Cauchy-Green strain tensor CR = FT F = UT RT RU = UU
has eigenvectors along the initial direction that will become the principal axes after deformation.
Thus the field formed by the eigenvector of the left Cauchy-Green strain tensor gives the preferred
direction toward which a fiber at that location will have rotated due to the fluid deformation. Both
the right and left Cauchy-Green strain tensors have the same eigenvalues �1 and �2, with �1

traditionally chosen to be the maximum (extensional) eigenvector. The square root of the maximum
eigenvalue gives the stretching the fluid element experiences, defined as the ratio of the final major
axis of the elliptical fluid element divided by the initial diameter. The finite-time Lyapunov exponents
are defined by λi = 1

t
ln

√
�i .

An alternative way to express the final preferred orientation is to calculate the eigenvectors of a
tensor order parameter. The tensor order parameter that is widely used in the study of liquid crystals
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is

Iij = 1

2π

∫ 2π

0
dθ P (p̂(θ ),r,t)

(
p̂i p̂j − 1

3
δij

)
. (A1)

Wilkinson et al. [29] used an order parameter without the isotropic term. For initially uniform
P (p̂(θ ),r,t = 0), both of these tensor order parameters have the same eigenvectors as the left
Cauchy-Green strain tensor.
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