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The Koopman mode decomposition (KMD) is a data-analysis technique which is often
used to extract the spatiotemporal patterns of complex flows. In this paper, we use
KMD to study the dynamics of the lid-driven flow in a two-dimensional square cavity
based on theorems related to the spectral theory of the Koopman operator. We adapt two
algorithms, from the classical Fourier and power spectral analysis, to compute the discrete
and continuous spectrum of the Koopman operator for the post-transient flows. Properties
of the Koopman operator spectrum are linked to the sequence of flow regimes occurring
between Re = 10 000 and Re = 30 000, and changing the flow nature from steady to
aperiodic. The Koopman eigenfunctions for different flow regimes, including flows with
mixed spectra, are constructed using the assumption of ergodicity in the state space. The
associated Koopman modes show remarkable robustness even as the temporal nature of the
flow is changing substantially. We observe that KMD outperforms the proper orthogonal
decomposition in reconstruction of the flows with strong quasiperiodic components.
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I. INTRODUCTION

In 1931, Koopman offered a formulation of Hamiltonian mechanics based on the theory of Hilbert
spaces [1]. In his formulation, the central object was a linear transformation, called the Koopman
operator, which described the time evolution of observations on a Hamiltonian system. The potential
applications of Koopman’s work to general theory of dynamical systems went mostly unrecognized
for a long time, until it was brought to attention and further developed in the context of spectral
analysis and dissipative systems in the mid 2000s [2,3]. In particular, Ref. [3] presented a linear
expansion to describe the temporal evolution of observables on a nonlinear dynamical system in
terms of the eigenfunctions and eigenvalues of the Koopman operator. This expansion, known as
the Koopman mode decomposition (KMD), introduced the concept of Koopman modes, which are
projection of observable evolution onto eigenfunctions of the Koopman operator, and give spatial
“shapes” that evolve exponentially in time—with exponents which could be complex numbers. Since
then, KMD has been established as a tool of data-driven analysis with applications ranging from
power network stability analysis to pattern detection in neural networks [4–9].

In high-dimensional systems like fluid flows, direct analysis of the state space is computationally
prohibitive and one often relies on the data-driven methods to extract the underlying spatiotemporal
features from data obtained by numerical simulation or experiment. For this purpose, the KMD
was introduced to fluid mechanics by Rowley et al. [10], with an application to the problem of
jet in cross flow. Rowley et al. showed how KMD can extract various oscillation frequencies and
their associated spatial structures from the data. They also discovered the connection between the
KMD and the numerical algorithm called dynamic mode decomposition (DMD), which had been
proposed by Schmid [11]. Since then, KMD and its numerical counterpart DMD have become
popular tools for extraction of physically relevant time scales and their associated spatial structures
in complex flows [12–17]. Furthermore, the dynamical-systems origin of KMD has motivated a
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number of its applications in the study of dynamical phenomena such as stability, bifurcation, and
transition in flows. Some examples are study of bifurcation and transition in flow past a cylinder
[18,19], detection of significant structures in boundary layer transition [20,21], bifurcation analysis
using parametric DMD [22], and identification of flow regimes in thermo-fluid systems using sparse
sensing [23].

In this work, we discuss KMD as a versatile tool to identify and analyze the state space dynamics
of post-transient flows (i.e., state space trajectory evolving on the attractor). The traditional approach
to determine the dynamic regime of fluid systems is to look at the Fourier or power spectrum of time
series. The existence of sharp peaks in those spectra is deemed to indicate periodic motion while
broadband spectrum is often interpreted as a sign of chaos (e.g., Refs. [24–29]). We point out the
relationship between this classical viewpoint and the Koopman spectral analysis, and describe how
the Koopman spectrum of data can be used to determine the geometry of the attractor, using the
results in Ref. [30]. The Koopman viewpoint generalizes the classical spectral analysis through the
notion of Koopman eigenfunctions and modes. In particular, the Koopman eigenfunctions provide
linearly evolving coordinates in the state space and enable the use of state space analysis and control
techniques which are not reachable by classical spectral analysis. For example, the knowledge of
Koopman eigenfunctions can be used to construct nonparametric predictors [31,32], state estimators
[33,34], and nonlinear controllers [32,35] using linear system strategies. The utility of Koopman
eigenfunctions in flow prediction and control is further discussed in Ref. [36]. In this paper, we
present a new way to construct (and visualize) the Koopman eigenfunctions in post-transient flows
which are ergodic in the state space.

We apply the Koopman analysis to the two-dimensional lid-driven cavity flow with regularized
lid velocity. This flow provides a good benchmark for our analysis, since it shows a wide range of
dynamic behavior over various Reynolds numbers. The dynamics of each flow regime is discussed
in terms of the Koopman spectral properties: The Koopman spectrum determines the type of the
attractor, the Koopman eigenfunctions indicate the oscillatory directions of motion in the state space,
and the Koopman modes describe the evolution of velocity field in the flow domain. In particular,
we use the Koopman modes to study the traveling waves that appear as a result of bifurcation from
steady solution to periodic and quasiperiodic flow.

The lid-driven cavity flow becomes fully chaotic at ultimately high Reynolds numbers. In such
flows, the Koopman spectrum is continuous and does not contain any (nontrivial) eigenvalues. Using
the properties of the Koopman operator and plausible assumptions on the post-transient dynamics,
one can show how the measurements of observable on the chaotic flow can be interpreted as a
realization of a wide-sense stationary stochastic process. This observation allows us to use the
techniques from random signal processing to compute the continuous spectrum of the Koopman
operator. We also study the flow regimes with mixed spectra, i.e., flows that have both discrete and
continuous spectrum. In those flows, the evolution of flow observables is a mixture of quasiperiodic
and chaotic motion, and the Koopman eigenfunctions help us distinguish and extract the quasiperiodic
components of motion in the state space.

As of now, DMD-type algorithms are the most popular methods for computation of Koopman
modes and eigenvalues. A notable extension of the original algorithms in Ref. [10,12] is the so-
called extended DMD [37], which approximates the Koopman operator as a matrix using different
trajectories and a dictionary of observables. Other early works have discussed the connection of
DMD with other data-analysis tools such as discrete Fourier transform (DFT) [18] and linear system
identification methods [38]. More recently, other variants of DMD have been proposed to study
problems that exhibit a large range of time scales [39] and systems with external input [40]. Given
the increasingly large and complex data sets that are generated by simulations and experiments, DMD
has also been extended to handle larger data sets [41,42], different sampling techniques [38,42,43],
and noise [44,45].

In this paper, we use a different approach for computation of Koopman spectral properties. For
post-transient flows, the spectrum of the Koopman operator (including both continuous and discrete
components) lies on the imaginary axis, and the problem of estimating the Koopman spectrum
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reduces to the classical spectral estimation of signals. This problem is challenging for flows with
mixed spectra where there is no a priori model for the continuous spectrum. Our methodology for
Koopman spectral estimation consists of three steps: First, we apply a high-resolution algorithm
adapted from the work of Laskar [46,47] to detect the candidate discrete Koopman frequencies and
modes. The Laskar algorithm provides a controllable balance between accuracy and computational
efficiency which makes it suitable for large data sets like high-resolution flow snapshots. Moreover,
it makes direct use of the harmonic averaging [2,3] which has proven convergence properties for
computation of Koopman modes. In the second step, we use the ergodic properties of the attractor
to discard the spurious frequencies that are artifacts of the continuous spectra. After extracting
the periodic components of the flow, we estimate the continuous Koopman spectrum by applying
the Welch method [48] to the chaotic residual. Our computational approach is advantageous over
DMD-type algorithms since it can handle the continuous spectrum, and it is related to the well-studied
techniques and notions in spectral analysis of signals.

A key objective of modal decomposition techniques is to obtain low-dimensional representation
of the data from experiments or numerical simulations. Therefore, an important question regarding
any decomposition is how efficiently it can capture the flow evolution. Several authors have already
proposed variations of DMD algorithm to obtain low-dimensional description of the the flow features
in an optimal manner [18,49,50]. DMD is also used in a data-assimilation approach to obtain a
low-dimensional dynamic model of the cylinder wake flow [51]. Here, we study the efficiency
of the Koopman modes by considering the error in the low-dimensional truncations of KMD in
representing the cavity flow dynamics. We also compare the performance of Koopman modes with
the modes obtained by proper orthogonal decomposition (POD).

The outline of this paper is as follows. In Sec. II, we review the basics of the Koopman operator
theory and describe how the Koopman spectrum is related to the geometry of the attractor. We
also point out the connection between the Koopman mode decomposition of different observables
such as stream function, velocity field, and vorticity. In Sec. III, the flow settings for the lid-driven
cavity and its numerical solution are described. Section IV discusses the problem of estimating
the Koopman spectrum and modes. In Sec. V, we present the results of Koopman spectral analysis
for the cavity flow. The Koopman modes and eigenfunctions are discussed in Secs. V B and V C,
and the comparison with POD is presented in Sec. V D. We summarize the results and conclude
in Sec. VI.

II. KOOPMAN OPERATOR THEORY

The Koopman operator theory is a mathematical formalism that relates the observations on a
system to its underlying state-space dynamics. For a viscous incompressible flow, the state space is
infinite dimensional; i.e., it consists of all divergence-free smooth vector fields defined on the flow
domain. Studying the trajectories in the state space of such system via classical tools, like Poincaré
maps, is nonviable, since they involve computation or visualization in an appropriate truncation of an
infinite-dimensional space. The Koopman operator viewpoint circumvents this problem by focusing
on the time evolution of observables rather than state variables. For example, the pressure magnitude
at a certain point in the flow domain or the total kinetic energy of the fluid are are two observables
on a flow that can be analyzed through the Koopman operator framework. Observables could be
multiple valued as well, like a vector containing the values of velocity at multiple grid points, or
even a field of observables such as the vorticity field. One prominent outcome of the Koopman
operator theory is the Koopman mode decomposition [3], which describes the evolution of such
observables as a linear combination of Koopman modes, Koopman eigenfunctions, and Koopman
frequencies, which are all explained below. We briefly review the basic formalism of the theory but
the interested reader is referred to the review article [52] and the references therein for a more detailed
exposition.

Consider the state space of a flow including all the smooth divergence-free velocity fields defined
on the flow domain. The state of the flow, realized by the velocity field u, evolves in time according
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to the Navier-Stokes equation written as

∂tu(x,t) = F(u(x,t)). (1)

We let g be a complex-valued function on the state space of the flow; i.e., for every state u, the
observable returns the complex value g(u). We call g an observable on the flow. The Koopman
operator describes how this observable changes with time. More precisely, if we assume that the
solution to the above equation exists and it is unique, then the Koopman operator at time τ ∈ [0,∞),
denoted by Uτ , maps the function g to a new function gτ such that

gτ (u(x,t)) := Uτg(u(x,t)) = g(u(x,t + τ )), (2)

The Koopman operator is a linear operator by definition (U (α1g + α2h) = α1U
τg + α2U

τh for
scalars α1,2) and therefore analyzing its spectrum and eigenfunctions gives a comprehensive
understanding of its action on observables. An eigenfunction of the Koopman operator is a function
on the state space of the flow, similar to g, which evolves linearly with time. Let us denote by φj the
Koopman eigenfunction associated with the Koopman eigenvalue λj . Then

φτ (u) := Uτφj (u) = eλj τ φj (u). (3)

In this work, we consider the post-transient flow dynamics, for which the Koopman eigenvalues are
known to lie on the imaginary axis [3]. Therefore, we will be interested in Koopman frequencies,
ωj , related to Koopman eigenvalues through the following:

λj = iωj , ωj ∈ R. (4)

Let us temporarily assume that all the observables lie in the linear span of the Koopman
eigenfunctions. Then any observable like g can be expanded in the Koopman eigenfunctions,

g(u) =
∞∑

j=1

gjφj (u), (5)

where the scalar coefficient gj is given by the projection of observable g onto the Koopman
eigenfunction φj . Since the Koopman operator is linear, we can use Eq. (3) and find a new expression
for evolution of observable g in terms of the Koopman eigenfunctions,

gτ (u) = Uτg(u) =
∞∑

j=1

gjφj (u)eiωj τ . (6)

If we replace the single-valued observable g with a vector-valued observable such as g, and follow
the above procedure, the coefficient gj turns into the vector of coefficients gj , and we obtain a similar
expansion in the vector form,

gτ (u) := Uτ g(u) =
∞∑

j=1

gjφj (u)eiωj τ , (7)

This expansion of observables in terms of Koopman eigenfunctions is the so-called Koopman mode
decomposition (KMD). The vector gj , called the Koopman mode associated with the Koopman
frequency ωj , describes the components of the observable g obtained by projection of the observable
onto the Koopman eigenfunction φj . As a result, the evolution of g in time could be described as
a linear combination of Koopman modes with oscillating coefficients. We will further explain the
nature of this expansion in Sec. II A and Koopman modes in Sec. V.

The above expansion can be applied to fields of observables as well, in which case the Koopman
modes become fields of coefficients. For example, projecting the velocity field observable onto a
Koopman eigenfunction returns a field of coefficients which can be thought of as a steady velocity
field. Note that the velocity field undergoes nonlinear time evolution described by Navier-Stokes
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equations, but at the same time, the Koopman mode decomposition of the velocity field as an
observable offers a linear expansion in Koopman modes. This seeming paradox between the
nonlinear evolution and linear expansion of KMD is resolved once we recall that the expansion in
Eq. (7) is essentially infinite dimensional and therefore it can describe the nonlinear time evolution.
In the following sections, we explain how the expansion above is related to the asymptotic dynamics
of the trajectories in the state space and also remark on the choice of observable for study of the cavity
flow.

A. Flow bifurcations and Koopman mode decomposition

It is interesting to see how the expansion in Eq. (7) changes as the flow undergoes bifurcation.
We will be interested in detecting the post-transient flow dynamics, which is directly related to
the type of attractor on which the flow trajectory is evolving. The bifurcations affect the Koopman
eigenvalues, eigenfunctions, and modes in the KMD, but here we only discuss how the change in
the distribution of Koopman eigenvalues can be traced back to qualitative changes in the attractor of
the flow.

First, we recall some standard notions from dynamical systems theory. We call a compact invariant
subset of the state space, denoted by A, an attractor of the dynamical system, if for many initial
conditions the systems evolves toward A. Moreover, A is a minimal set in the sense that it cannot
be split into smaller attractors (see, e.g., Ref. [53]). Simple examples of attractors in the state
space of flows include stable fixed points and periodic orbits which correspond to steady and
time-periodic flows, respectively. The attractor could be more complicated and exhibit chaos such
as the butterfly-shaped attractor of the chaotic Lorenz system. We assume that the dynamics on the
attractor preserves a physical measure (i.e., a distribution), which we denote by μ. Roughly speaking,
this implies that the time averages (and therefore statistical properties) of continuous observables
on the flow are well defined. Now, we let H := L2(A,μ) be the Hilbert space of square-integrable
observables defined on the attractor (A) with respect to measure μ. In this work, we are interested
in observables that belong to H (which includes continuous observables as well). It turns out that
Koopman operator defined in Eq. (2) is a unitary operator in H (i.e., its adjoint and inverse are the
same), which implies that its spectrum lies on the unit circle. In the following, we use the symbol

μ=
to describe the functional equalities, i.e., the functions on different sides of

μ= are equal everywhere
on A except on a set with zero μ measure. We also use 〈f,g〉H to denote the inner products in H,
i.e.,

〈f,g〉H =
∫

A

fg∗dμ. (8)

Let us revisit the key assumption that led to derivation of (7), that the Koopman eigenfunctions
span the space of observables, in this case, H. For simple attractors like limit cycles and torus, this
assumption holds and the expansion in Eq. (7) can be used to explain the behavior of all observables.
We first describe this case in more detail and then turn to the more general form of Koopman
expansion for more complex dynamics.

When the trajectory in the state space of the flow evolves on a limit cycle or a torus, the
post-transient flow shows (quasi)periodic time dependence. Let � = [ω1,ω2, . . . ,ωm]T denote the
vector of basic frequencies for the for the motion of state variable on an m-dimensional torus (for
limit cycles m = 1). The Koopman spectral expansion for the flow is given by [30]

Uτ g
μ=

∑
k∈Zm

gkφke
ik·�τ . (9)

We have dropped the dependence of g and φk on the state u to simplify the notation. The above
equation is a functional equality which holds almost everywhere on the attractor. We can evaluate it
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for a single trajectory starting from the initial state u0 to obtain the vector expansion

Uτ g(u0) =
∑

k∈Zm

gkφk(u0)eik·�τ . (10)

The term Uτ g(u0) is the signal generated by observing g over the trajectory starting at u0. If the
attractor is a limit cycle, this signal is time periodic and (10) is simply the Fourier series expansion in
time. If the attractor is a torus, this expansion is a generalized Fourier expansion for the quasiperiodic
signal that is generated by measuring g. We observe that the Koopman frequencies in the above
expansion form a lattice on the frequency axis. For limit cycling systems, this lattice consists of
multiples of the basic frequency ω1, while for the torus attractors, it is given linear combinations
of the basic frequencies in � with integer coefficients. Hence, a bifurcation from a limit cycle to a
torus can be easily detected by counting the number of basic frequencies in the lattice of Koopman
frequencies obtained from the data.

The point-evaluated expansion in Eq. (10) is more suitable for the study of fluid flows than
the function expansion in Eq. (9). This is due to the fact that each flow simulation or experiment
provides us with only a single trajectory in the state space and direct evaluation of the Koopman
eigenfunctions on arbitrary regions of state space is not practical. In case of post-transient flows,
however, the ergodicity condition—which is discussed later—allows us to construct and visualize
the Koopman eigenfunctions on the attractor using the signals coming from as few as one trajectory.
We will use this fact to construct and visualize the eigenfunctions in Sec.V.

The converse of the above statements is also true, that is, if the Koopman spectrum of observables
has only a countable number of frequencies, then the flow trajectory must be evolving on a torus-
shaped attractor in the state space. In fact, the representation theorem from the ergodic theory states
that if the post-transient flow dynamics is ergodic and smooth, the Koopman operator, having only
a discrete spectrum, implies that the motion in the state space is topologically equivalent to rotation
on a torus [54]. This classic result combined with numerical KMD algorithm gives a practical
framework for detecting motion on tori in high-dimensional systems.

For post-transient flows with chaotic behavior, the Koopman eigenfunctions do not span H and
evolution of observables cannot be described based on them. In fact, the Koopman operator spectra,
in addition to eigenvalues, includes continuous spectrum which is related to the chaotic component
of the flow. The spectral expansion for the Koopman operator takes a more general form (see, e.g.,
Ref. [55]); however, as first stated in Ref. [3], we can still represent it in a way that distinguishes
the quasiperiodic and chaotic components of the evolution. For the scalar observable g, it can be
written as

Uτg
μ=

∑
k∈Zm

gkφke
ik·�τ +

∫ ∞

−∞
eiατ dEα(g). (11)

The first term on the right-hand side is the contribution of discrete spectrum and describes the
quasiperiodic part of the flow [similar to (9)]. The second term is the contribution of the continuous
spectrum. Informally speaking, iα with α ∈ (−∞,∞) denotes a continuum of eigenvalues
distributed along the imaginary axis. The term dEα(·) is the spectral measure of the Koopman
operator, that is, for each interval of frequencies such as I = [α1,α2],

∫
α∈I

dEα(g) is the projection
of the observable g onto the eigensubspace of H associated with I . The above expansion in the
functional form is not suitable for flow applications, and it can be converted to a scalar equality by
taking its inner product with the same observable g. That is,

〈g,Uτg〉H =
∞∑

k=1

|gk|2eiωkτ +
∫ ∞

−∞
eiατ ρg(α)dα, (12)

where we have assumed that eigenfunctions are normalized, i.e., ‖φk‖H = 1. In passing from (11)
to (12), we have made a technical assumption that the spectral measure of the Koopman operator for
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the chaotic part is absolutely continuous. The Koopman spectral density ρg denotes the contribution
of the continuous spectrum, such that the contribution of the frequency interval I to the evolution
of g is given by

μg(I ) =
∫

I

ρg(α)dα. (13)

In order to compute the spectrum of the Koopman operator from the flow data, we need to
assume that the post-transient dynamics is ergodic. This implies that the statistics of the flow
is independent of the initial condition, and the trajectories starting almost everywhere provide a
perfect sampling of observables (in the sense defined in Eq. (14) below). The ergodicity assumption
holds for post-transient evolution of typical dynamical systems, including systems with periodic
and quasiperiodic attractors and many chaotic systems like Lorenz [56]. Under this condition, we
can use the pointwise ergodic theorem [57] to approximate the inner product in Eq. (12) from
the data,

〈g,Uτg〉H = rg(τ ) := lim
T →∞

1

T

∫ T

0
g(t)g∗(t + τ )dt, (14)

where rg(τ ) is the autocovariance function of g at time τ . Therefore, we can approximate the spectral
density of the Koopman operator by first extracting the chaotic component of g, then approximating
rg using finite-time observations [i.e., finite Eq. T in Eq. (14)], and finally applying inverse Fourier
transform to rg . We will discuss the practical aspects of this computation in Sec. IV.

B. Stochastic processes and Koopman representation of deterministic chaos

In analyzing the chaotic data from experiments and simulations, it is customary to use the
tools from applied probability theory even in the case that underlying dynamical systems is fully
deterministic. The reasoning behind this approach is the duality between the post-transient evolution
of dynamical systems which is measure preserving and the stationary stochastic processes. A classic
formalism of this duality can be found, e.g., in Ref. [58]. In this section, we reiterate this connection
in the framework of the Koopman operator theory with an emphasis on the spectral expansion of
observables.

Recall that a continuous-time stochastic process is a collection of real random variables that are
indexed by time and denoted by

{Xt }t∈R, (15)

where Xt is the random variable at time t with a specified distribution over real line. A stochastic
process is wide-sense stationary if it satisfies two conditions. First, its expected value should not
change with time, i.e.,

E(Xt ) = E(Xt+τ ) = m, for all τ ∈ R, (16)

and second, its autocovariance function only depends on the lag time, i.e.,

cov(Xt,Xt+τ ) = E((Xt − m)(Xt+τ − m)) = cov(τ ). (17)

Now we consider the deterministic flow evolving on the attractor A which preserves the normalized
measure μ [μ(A) = 1]. We see that the collection of observables

{Utg}t∈R (18)

is a stochastic process defined on the probability space (A,μ). Each observable Utg is a random
variable and it assigns a probability distribution on the real line which is given by

P(B) = μ((Utg)−1(B)), B ⊂ R, (19)
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where P(B) is the probability of the interval B. Because of the measure-preserving property of the
dynamics, this probability is independent of t , and the stochastic process in Eq. (18) is identically
distributed (but not independent). Moreover, it is a wide-sense stationary process; in view of (8), we
can write

E(Utg) = 〈Utg,1〉H = 〈g,U−t1〉H = 〈g,1〉H = E(g) (20)

and

cov(Utg,Ut+τ g) = 〈Utg,Ut+τ g〉H,

= 〈U−tU tg,Uτg〉H,

= 〈g,Uτg〉H = cov(τ ),

where we have used the unitary property of the Koopman operator, i.e., (Ut )∗ = U−t . Using the
measure-preserving property, one can show (18) is strictly stationary as well [58], but that is not
required for the spectral expansion.

According to the Wiener-Khintchine theorem (e.g., Ref. [59]), the covariance of any wide-sense
stationary process, such as (18), has a spectral expansion in the following form:

cov(g,Uτg) =
∫ ∞

−∞
eiατ dF (α),

where F is the power spectral distribution of the process. Note that this expansion holds for the
general post-transient dynamics including both chaotic and quasiperiodic behavior. In case that there
are no quasiperiodic components in the flow, and F is absolutely continuous similar to (12), we can
rewrite the above expansion as

cov(g,Uτg) =
∫ ∞

−∞
eiατ ρ(α)dα,

where ρ is called the power spectral density (PSD) of the stochastic process. Despite the deterministic
nature of our system, we observe that we can treat the chaotic component of the data as a a realization
of a stationary process, and consequently, the notion of the Koopman spectral density coincides with
that of PSD for random signals. This observation enables us to use the spectral estimation techniques
of stochastic signals for computation of Koopman continuous spectrum.

C. Choice of observables and the relationship between their Koopman modes

In this section, we consider the choice of observables for KMD and the relation between their
modal decomposition. This question is important since applying KMD to an observable reveals
only the Koopman eigenvalues that are present in the expansion of that observable. Furthermore,
one can use the relationship between the Koopman modes of different observables to reduce the
computational cost of the analysis. The propositions in Appendix A assert that if two observables
are related through a linear operator, then their modes are also related via the same linear
operator. For example, consider the field of stream function ψ and the velocity field u in an
incompressible two-dimensional (2D) flow. These two observables are related thorough the linear
operator ∇⊥ := [∂/∂y,−∂/∂x]T , that is, u = ∇⊥ψ . Let ψj and uj denote the Koopman modes of
these two observable fields associated with Koopman eigenvalue λj , and then

uj = ∇⊥ψj , j = 1,2,3, . . . . (21)

A similar relationship could be established between the Koopman modes of the vorticity field,
denoted by ζ j , and those of the velocity field,

ζ j = ∇ × uj , j = 1,2,3, . . . . (22)
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This further implies that applying KMD to either of the these observable fields yields the same
Koopman eigenvalues as long as none of the modes lie in the null space of the linear operator.

The knowledge of any of the above observable fields, i.e., stream function, velocity field, or
vorticity, uniquely determines the state of the system and therefore it can be used to elicit the
Koopman spectrum of all other observables of interest. Thus, we conclude that applying KMD to
any of these fields would give us the information which is sufficient to detect the flow bifurcations.
In the dynamical analysis of the cavity flow, we choose the stream function as the primary observable
for the application of KMD since its Koopman modes and eigenvalues are least expensive to compute.
The Koopman modes of velocity and vorticity can be computed using (21) and (22).

III. THE LID-DRIVEN CAVITY FLOW

The 2D lid-driven cavity flow is a simple model of an incompressible viscous fluid confined
to a rectangular box with a moving lid. This flow is usually used as a benchmark for numerical
simulations, and represents a simplified model of geophysical flows driven by shear [60,61], and
the flow inside a common type of mixer in polymer engineering [62]. The 2D cavity flow is also
realized in experiments using soap films [63] (for experiments on 3D flow, see Ref. [64]). This
flow is particularly interesting for the Koopman analysis because it shows a wide range of dynamic
behavior depending on the top lid velocity [28,65–69].

Our computational model of the flow consists of the square domain [−1,1]2, with solid stationary
boundaries, except the top lid (at y = 1), which moves with a regularized velocity profile,

ulid = (1 − x2)2, x ∈ [−1,1]. (23)

This boundary condition has a low-order polynomial form which satisfies the continuity and
incompressibility in the top corners (as opposed to the uniform velocity profile), and it is frequently
used in numerical studies on cavity flow (see. e.g., Refs. [65,69,70]).

The incompressibility of the flow allows us to use the stream function formulation of the Navier-
Stokes equation,

∂

∂t
∇2ψ + ∂ψ

∂y

∂

∂x
∇2ψ − ∂ψ

∂x

∂

∂y
∇2ψ = 1

Re
∇4ψ, (24)

subject to two types of boundary condition on the stream function,

ψ |∂
 = 0 and
∂ψ

∂n

∣∣∣∣
∂


= uw, (25)

where the wall velocity uw is zero everywhere except at the top wall, where uw(y = 1) = ulid. The
solution of the cavity flow as described above is known to exist and be unique, and moreover the
flow trajectory asymptotically converges onto a universal attractor in the state space [71].

For numerical solution, we have used the Chebyshev-spectral collocation method described in
Ref. [72]. The stream function is approximated by a polynomial of order N in spatial directions.
This polynomial is determined by its values at the Chebyshev points,

(xi,yj ) =
[

cos

(
iπ

N

)
, cos

(
jπ

M

)]
,

i = 0,1, . . . ,N, j = 0,1, . . . ,M. (26)

Given the polynomial approximation and the prescribed boundary condition in Eq. (25), we use the
transformed variable q(x,y) defined by

ψ(x,y) = (1 − x2)(1 − y2)q(x,y), (27)
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which satisfies the Dirichlet boundary condition identically and turns the Neumann boundary
condition into Dirichlet boundary condition, i.e.,

q(±1,y) = q(x,−1) = 0, (28)

q(x,+1) = − 1
2utop(x). (29)

For the temporal discretization of the ordinary differential equations on q(xi,yi), we have used the
second-order Crank-Nicholson scheme for the diffusion terms and second-order Adams-Bashforth
discretization for the convection terms. The flow solutions studied in this work are computed using
zero initial velocity. The numerical solutions of the steady flow obtained by our method agree with
the results reported in Ref. [65]. There is also agreement on the time periods of the periodic flows
between the two studies. To the best of our knowledge, however, there are no reported benchmark
solutions for quasiperiodic or aperiodic flow.

IV. NUMERICAL COMPUTATION OF KOOPMAN SPECTRUM AND MODES

As discussed in Sec. II, the Koopman spectrum of post-transient flows lies on the imaginary axis,
and its estimation reduces to the classical spectral analysis of flow signals. In this work, we are
especially interested in flows that possess a continuous spectrum in addition to discrete frequencies.
Reliable estimation of each of these two components from data has a rich history in the context
of signal processing and is still a subject of ongoing research. The DFT algorithm, by itself, gives
a good approximation for the location of the discrete frequencies and there are a large number of
the so-called high- or super-resolution algorithms, based on DFT or otherwise, that improve the
accuracy of such estimation. For continuous spectra, however, DFT is a poor estimator. Application
of DFT to the autocovariance function in Eq. (14) produces an estimate of spectral density with high
fluctuations that do not diminish with the increase of data samples [73]. Therefore, the algorithms
developed to resolve continuous spectrum use some type of local averaging over frequency domain
to reduce this variance. Conversely, this averaging process reduces the frequency resolution and
makes these algorithms ill suited for detection of discrete spectra [74]. As a result, a judicious
combination of these methods should be used for computation of mixed spectrum (i.e., including
both continuous and discrete parts).

Our strategy for computing the Koopman spectrum is to first detect and extract the discrete
frequencies using a high-resolution algorithm, and then apply a continuous spectra estimator to the
remainder. Note that most of the developed methods for accurate estimation of mixed spectrum are
parametric, in the sense that they are based on specific models for the continuous spectrum such as
colored or autoregressive noise [74–76], which are not valid for typical chaotic dynamical systems.
Our methodology here is nonparametric, and besides absolute continuity (discussed in Sec. II A),
we do not make any assumptions on the shape of the continuous spectrum. Instead, we connect our
analysis to the theory of dynamical systems through the ergodicity assumption. Namely, given that
the dynamics on the attractor is ergodic, we use the fact that the Koopman modes are unique (i.e.,
depend only on the observable and the flow parameters), which allows us to identify and discard the
spurious discrete frequencies that are not robust with respect to the choice of initial condition or the
time interval of integration.

The succession of ideas in this section are as follows: First, we describe the idea of harmonic
averaging from classical ergodic theory which has proven convergence properties for computation
of Koopman modes given the knowledge of Koopman frequencies. Then, we discuss the Laskar
algorithm for computation of the discrete spectrum and benchmark its numerical performance against
other high-resolution algorithms. In the last subsection, we discuss our procedure for approximation
of Koopman continuous spectrum from the chaotic component of the data and test its performance
for two well-known chaotic dynamical systems.
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A. Harmonic averaging and DFT

For post-transient flows, the Koopman eigenfunctions are orthogonal [3] and the Koopman modes
can be computed via direct projection of the observables onto the Koopman eigenfunctions. Let φj be
the normalized Koopman eigenfunctions (‖φj‖ = 1) associated with the frequency ωj . We observe
that the Koopman eigenfunction evolves as φτ (u0) = eiωτ over a single trajectory of the system.
Using the pointwsie ergodic theorem, we can compute the Koopman modes using the harmonic
average,

gj := 〈g,φj 〉H = lim
T →∞

1

T

∫ T

0
g(τ )e−iωj τ dτ. (30)

The above limit is known to exist for almost every initial condition under the assumption that
the dynamics on the attractor is preserving a measure [77] which is less restrictive than ergdocity.
The time series obtained by experiments and simulations consists of time-discrete samples over
finite intervals. Assuming uniform sampling at time instants {τ0 = 0,τ1, . . . ,τN−1 = T }, we can
approximate the harmonic average as

gN
j = 1

N

N−1∑
k=0

g(k)e−iωj τk , (31)

where g(k) is the value of observable at the sampling time τk . For any ωj that is a Koopman frequency,
we have gN

j → gj as N → ∞, and otherwise gN
j → 0. For periodic and quasiperiodic attractors,

the rate of convergence is proportional to N [78], but for typical chaotic systems it scales with
√

N

[79].
Given a uniform sampling in time, we can use DFT frequencies as a rough approximation of the

Koopman frequencies. Let the number of samples N be even, and denote the sampling interval by
�τ := T/(N − 1). The DFT grid of frequencies is


j = 2πj

N�τ
, j = −N

2
,−N

2
+ 1, . . . ,0, . . . ,

N

2
− 1, (32)

Accordingly, computing the harmonic average in Eq. (31) reduces to computing the DFT amplitude
of the observations,

ĝj = 1

N

N−1∑
k=0

g(k)e−i
j k�τ . (33)

DFT is already shown to be equivalent to DMD when applied to a linearly independent sequence
of snapshots with zero mean [18]. The advantage of using DFT to find the Koopman modes lies
in its relative simplicity and the availability of fast Fourier transform (FFT) algorithms for its
implementation. On the other hand, it suffers from two basic shortcomings. The first one is the
picket fencing; i.e., the Koopman frequencies depend on the dynamics and may occupy arbitrary
locations on the real interval, whereas DFT frequencies are determined by the sampling rate and
observation interval. The second phenomenon, known as spectral leakage, refers to the spillage of
energy from a frequency to its neighborhood, and it is due to the finite length of observation interval
which leads to errors in approximation of the modes [73,80]. In the following, we discuss some of
the methods developed to overcome these problems.

B. Estimation of Koopman frequencies

The problem of detecting discrete frequencies from noisy signals is often called line spectral
estimation. The general goal of line spectral estimation methods is to compute estimates of
frequencies with errors smaller than the DFT frequency resolution. Many of such methods use
DFT as a preliminary step because of its computational efficiency and often utilize a combination of
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windowing and interpolation to reduce the leakage and fencing problem (see, e.g., Refs. [81–83]).
Some other techniques, including Prony analysis [84] and nonlinear least-squares (NLS) method
[73], treat the line spectral estimation as a data fitting problem to find the frequencies and associated
amplitudes that represent the time series with least error. These methods do not face the the DFT
shortcomings, but they are more costly for computation and suffer vulnerability to noise (e.g., Prony
analysis) or the choice of initial guess for the optimal values of fitting (e.g., NLS) [73]. We note that
using Prony analysis to compute the Koopman modes is explored in Ref. [85].

There are also the so-called subspace techniques which exploit the linear algebraic properties of
matrices that embed the signal information. The two most popular algorithm in this class are the
MUSIC [86] and ESPRIT [87], which use eigen-decomposition of the data covariance matrix. These
methods circumvent the obstacles of the DFT-based methods by posing the frequency estimation
as an eigenvalue problem, which leads to accurate estimates at a higher computational complexity
due to the embedding of time series in large matrices. Moreover, these methods are parametric and
their good performance is only guaranteed when the noise follows a predetermined model (which is
usually white noise) [73]. A more recent class of super-resolution algorithms recast the line spectral
estimation as a convex optimization of measures on the frequency domain [88,89]. Under the two
conditions of spectral sparsity and minimum separation between the frequencies, this framework
recovers the exact values of frequencies from a finite number of time samples. Unfortunately,
this framework has a high computational complexity and it is only suitable for discrete spectrum
identification in presence of little noise.

In this work, we adapt the algorithm suggested by Laskar [46,47] to compute the discrete Koopman
frequencies and the associated modes. This algorithm is attractive for two reasons: First, it makes
explicit use of harmonic averaging which allows us to assess its convergence based on the theory. In
fact, this algorithm was invented to detect chaotic motion from data in Hamiltonian systems with a
moderate number of degrees of freedom, like the solar system (see Ref. [46]). Second, this algorithm
is related to a popular sparse approximation technique known as orthogonal matching pursuit (OMP)
[90]. OMP efficiently approximates a sparse vector (i.e., vector with few nonzero elements) given
a relatively small number of linear measurements on the sparse vector through an iterative greedy
algorithm. Different variants of this algorithm are frequently used in decomposition of signals and
images into sinusoids, wavelets, etc. (see, e.g., Refs. [91–94]).

The main idea in Laskar algorithm is to discretize the frequency domain and use OMP
(implemented as FFT and harmonic averaging) to find the frequencies and associated amplitudes
that best explain the time-sampled values of the observables (which are the linear measurements in
the sense of OMP). The algorithm also uses windowing and adaptive refinement of the initial grid
to diminish the effect of spectral leakage and picket fencing. The computational steps are outlined
in algorithm 1, and below we describe the structure of data matrix used as the input.

Let {g(0),g(1), . . . ,g(N − 1)} be the set of observations on the vector-valued observable g, made
on uniformly spaced time instants {τ0 = 0,τ1, . . . ,τN−1 = T }. The snapshot data matrix G is defined
as

G = [g(0)|g(1)| . . . |g(N − 1)]. (34)

Also let ‖·‖ denote an appropriate vector norm on g(·), and σ denote the expected ‖ · ‖ norm of
measurement or computation noise in the data. We denote by S(ω) the sinusoid associated with
frequency ω, that is,

S(ω) = [1,eiωτ1 ,eiωτ2 , . . . ,eiωτN−1 ]T . (35)

We also make use of windowing functions in the general form of a weight vector:

W = [w0,w1,w2, . . . ,wN−1]T . (36)
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Algorithm 1 (Adapted) Laskar algorithm for estimation of Koopman frequencies.

Input: Snapshot matrix GM×N .
Output: Set of Koopman frequencies 
 = {ω1, . . . ,ωm} and matrix of Koopman

modes V = [g1, . . . ,gm].
1: Let R = G and initialize the dictionaries D = [] and 
 = {}.
2: Apply row-wise FFT to R. Pick the DFT frequency ω̂ := ωj which yields the

complex amplitude gj with highest ‖ · ‖ norm and satisfying ‖gj‖ > σ .
If there is no such frequency proceed to step 8.

3: Compute the windowed harmonic average

Vω = S∗(ω) diag(W )RT (37)

over a refined grid of frequencies centered around ω̂. Pick the frequency ωk

that yields Vωk
with the highest ‖ · ‖ norm.

4: Add ωk and its sinusoid to the dictionary:

 ← 
 ∪ {ωk}, (38)

D ← [DS(ωk)]. (39)

5: Solve the least-square problem

W = arg minŴ‖GT − DŴ‖f ro. (40)

6: Compute the new remainder R by subtracting the contribution of the
frequencies in the dictionary

R = GT − DW. (41)

7: Go to step 2.
8: Return 
 and V = WT .

1. Choice of data matrix G and appropriate norm

We have applied the above algorithm to the vector of the stream function (ψ) values at the
computational grid points given in Eq. (27). The Koopman modes of velocity and vorticity are
subsequently computed using (21) and (22). The results reported in this paper are computed using
the sampling rate ωs = 10 stu−1, where stu is the unit of the simulation time given by

1 stu := LR

UR

(42)

and LR and UR are the half of the cavity side length and maximum velocity on the top lid, respectively.
Our numerical experiments show that the computed frequencies are independent of the sampling
frequency ωs ∈ [10,200]. We have chosen the vector norm in the above algorithm such that it reflects
the kinetic-energy norm of the Koopman modes, that is,

‖uj‖ := ‖uj‖KE =
(∫



|∇⊥ψj |2ds

U 2
R

)1/2

, (43)

with UR denoting the maximum velocity on the top lid. We choose σ 2 = 10−6‖u0‖2. This is a
heuristic choice and reflects how strong of a periodic component we want to resolve. Other factors
that might be considered are the accuracy of the numerical simulation and the computational
cost.

2. Dictionary of frequencies for real-valued data and choice of the window function

Given that the spectrum is symmetric for real-valued data, we can effectively reduce the
computational cost by doing the search and refinement (steps 1 and 2) for a nonzero frequency
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ωk and then add the pair (−ωk,ωk) to the dictionary in step 3. To evaluate the filtered harmonic
average in step 2, we use the Hann window given by

w(k) = 1
2 + 1

2 cos(πk/N ). (44)

Using the window function is not necessary but improves the detection of frequencies that are close
to each other—in the case of quasiperiodic flow—as it reduces the local spectral leakage. Alternative
window functions can be chosen based on the proximity and relative strength of the frequencies
(see, e.g., Ref. [73]).

3. Least-square projection and harmonic average

The least-square problem in step 4 is equivalent to orthogonal projection of observables onto the
Koopman eigenfunctions. In fact, in the limit of N → ∞, the computation of Koopman modes in
step 4 reduces to the harmonic average in Eq. (30). To see this, note that the solution to (40) is given
by W = D†GT ; however, as N → ∞, the columns of D become orthogonal and D† → (1/N )D∗. It
is easy to check that (1/N )D∗GT yields the harmonic average of columns of GT , i.e., the Koopman
modes.

4. Benchmark

We compare the performance of Laskar algorithm to two other high-resolution algorithms. The
first one is the Newtonized orthogonal matching pursuit (NOMP) [94]. The benchmark study in
Ref. [94] suggests that NOMP is a near-optimal algorithm in the sense that its accuracy is close
to the theoretical limit. This algorithm is similar to Laskar, but one of its distinctive features is the
refinement of all frequency estimates after the detection of each new frequency. The computational
run time of NOMP is approximately O(K2) longer than Laskar, where K is the number of detected
frequencies. We also implement the MUSIC algorithm using the rootmusic() function in MATLAB.
This algorithm estimates the frequencies based on the eigen-decomposition of the data covariance
matrix and has a high computational complexity which does not allow its implementation on a large
number of observables. In the case of large data sets where these two algorithms cannot be applied
to all the data, we implement them in the compact form; i.e., we choose the sampling of the stream
function at 10 random points, and apply MUSIC and NOMP to compute the Koopman frequencies
and then extract the Koopman modes using an orthogonal projection onto the dictionary of sinusoids.

Spectral estimation by MUSIC and NOMP do not suffer from the fencing problem since they
do not use the discretization of the frequency domain and therefore provide accurate estimates
of Koopman frequencies for (purely) periodic and quasiperiodic flows. The accuracy of Laskar
algorithm, on the other hand, depends on the choice of adaptive frequency grid, and higher resolutions
require evaluating (37) over finer grids. However, the comparison (in Fig. 1) shows that Laskar
algorithm is better suited for computing the Koopman frequencies and modes in case of large flow
data with mixed spectrum. The reason for this is twofold: Many super-resolution algorithms are
designed based on a special model for the noise spectrum (e.g., the MUSIC algorithm relies on the
white noise model), which does not hold for the continuous spectrum of dynamical systems. (In the
context of detecting discrete frequencies, we treat the continuous spectrum as noise.) The second
reason is related to the computational cost of the algorithm. The super-resolution algorithms that are
not based on FFT are computationally expensive, and they can only be applied in the compact form
(i.e., applying to one or few observables simultaneously). In such cases, they may fail to capture many
of low-energy frequencies in the presence of noise, as in the case of mixed spectra shown in Fig. 1.
[We have verified those frequencies by the criteria introduced in the next section and the fact that
they lie on the lattice of frequencies described in Eq. (9)]. In contrast, the computational parsimony
of the Laskar algorithm allows estimation of the frequencies using a larger set of (and possibly all)
the observables. This, in turn, increases the effective signal-to-noise ratio for the low-energy periodic
components which leads to detection of their associated frequencies.
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FIG. 1. Comparison of Laskar algorithm with MUSIC [86] and NOMP [94]. In the right panel, the
continuous spectrum and frequencies with ‖uj‖ < 10−3 are omitted to avoid clutter.

C. Detection of the spurious frequencies in flows with mixed spectra

In the case of mixed spectra, application of high-resolution methods to the data might produce
peaks that are not genuine Koopman frequencies, but artifacts of the continuous spectrum. In such
flows, we need a criteria to distinguish such peaks from the actual frequencies. On the other hand,
the assumption of the ergodicity implies that the Koopman modes are unique (i.e., do not depend
on the initial condition), and therefore Koopman modes computed over different (and sufficiently
long) intervals should be the same. To use this notion, we run the Laskar algorithm on different
(overlapping or nonoverlapping) chunks of the snapshot matrix. We discard the frequencies whose
associated modes show too much variability depending on the time interval of computation. In the
results to be presented, we have discarded the modes that show more than 5% variability in the
kinetic energy norm, while the modes are computed over intervals of 1000 stu and longer.

D. Estimation of Koopman continuous spectrum

Recall from Sec. II B that the spectral density of the Koopman operator appearing in Eq. (12)
coincides with the PSD of the chaotic component of signals generated by measuring observables.
If g is a real-valued observable with purely continuous spectrum, then we can approximate the
autocovariance function in Eq. (14) using the time series data

r(±τ ) = 1

N

N−1∑
k=0

g(k)g(k + τ ), 0 � τ � N − 1, (45)

and compute the correlogram approximation of PSD as

ρg(α) =
N−1∑

τ=−(N−1)

r(τ )e−iατ , α ∈ [0,2π ). (46)

Such a direct evaluation produces a highly fluctuating estimate of ρg , and the computation must be
modified to get a more reliable estimate [95].

We use the Welch method [48] to approximate the continuous part of the Koopman spectrum.
The idea behind this algorithm is simple: It approximates the spectral density of the signal over
small (and possibly overlapping) subsamples of the data using FFT and averages the computed
densities over all those subsamples. The averaging process reduces the variance of PSD estimation
by a factor that is equal to the number of subsamples [48]. This reduction in the variance comes at
the price of low spectral resolution (which increases with the length of subsamples), and using too
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many subsamples may result in overaveraging and getting a flat spectrum. Therefore, the number
and length of windows should be chosen carefully to maintain an accurate estimate while resolving
the distribution of energy over frequencies.

The Welch method reduces to the Bartlett method [96] in case of nonoverlapping subsamples.
Bartlett was among the first to realize that different subsamples of the data can be averaged to find
a better estimate of the spectral density given that the autocovariance decays rapidly enough and
the subsamples are sufficiently large. This methodology can be interpreted as special case in the
well-known class of Balckman-Tukey estimators [97] and the general class of filter bank approaches.
We refer the reader to Ref. [73] for a discussion of connections between these methods.

We apply the Welch method, outlined in Algorithm 2, to the chaotic component of the velocity
field. This component is computed by extracting the contribution of Koopman modes from the
original data matrix. To measure the contribution of the continuous spectrum to the whole flow field,
we compute the kinetic energy density of the continuous spectrum given by

p(ω) := 1

U 2
R

∫



ρu(ω)ds. (47)

This definition would allows us to compute the kinetic energy content of each frequency interval via
integrating p(ω) over that interval, i.e.,

P (I ) := 1

2π

∫
I

p(ω)dω. (48)

and we will recover the average kinetic energy of chaotic fluctuations by calculating P ([0,2π )).

Algorithm 2 Welch method for estimation of Koopman continuous spectrum.

Input: Snapshot matrix GM×N , length of subsamples L, and overlapping
length K .

Output: Matrix of spectral densities RM×L.
1: Let S = FLOOR[(M − L)/K] − 1 be the number of subsamples.
2: for the ith row of G denoted by r do
3: Divide r into S subsamples given by

rj (m) = r((j − 1)K + m), m = 1,2, . . . ,L, j = 1,2, . . . ,S.

4: for each subsample rj do
5: Use FFT to compute the PSD of rj (46) and denote it by φj (ωk)

where ωk with k = ,1, . . . ,L are the L-point FFT frequencies.
6: end for
7: Let

Rik = 1

S

S∑
j=1

φj (ωk)

8: end for
9: Return R and 
 = {ω0,ω1, . . . ,ωL}.

We test the Welch algorithm using two well-known chaotic dynamical systems. The first one is a
discrete-time map on a periodic 2D domain, known as Arnold’s cat map, and is given by

x(t + 1) = 2x(t) + y(t) mod 1, y(t + 1) = x(t) + y(t) mod 1.

For the choice of observables

g1(x,y) = e2πi(2x+y) + 1
2e2πi(5x+3y), g2(x,y) = g1(x,y) + 1

4e2πi(13x+8y),
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FIG. 2. Validation of Welch method for computing Koopman spectral density in Arnold’s cat map (the
left two panels) and chaotic Lorenz system. The densities for cat map are known in analytic form [98], and
the numerical results for Lorenz system are computed using Fourier moments and Christoffel-Darboux kernel
([99]).

the Koopman spectral density is known in analytical form [98],

ρ(g1; θ ) = 1

2π

(
5

4
+ cos θ

)
, ρ(g2; θ ) = 1

2π

(
21

16
+ 5

4
cos θ + 1

2
cos 2θ

)
,

where θ ∈ [0,2π ) is the discrete-time frequency.
The second system that we consider is the chaotic Lorenz system:

ẋ = 10(y − x), ẏ = x(28 − z) − y, ż = xy − 8
3z.

This system is known to have only continuous spectrum (except the zero frequency) [56], but
no analytical expression exists for the spectral density of nontrivial observables. We compare the
Welch estimation of the Lorenz spectrum with the recent results in Ref. [99], which is based on the
approximation of Fourier moments of the spectral measure and the Christoffel-Darboux kernel. In
particular, we consider the observable

g3(x,y,z) = x

and compute its spectral density ρ(g3; ω) where ω ∈ [0,ωs/2) is the continuous time frequency and
sampling frequency ωs is 10π . The comparison in Fig. 2 shows great agreement between the results
of Welch method, analytic densities of the cat map, and the numerical results of Ref. [99] on the
Lorenz system.

V. CAVITY FLOW DYNAMICS AND KMD

A. Koopman spectrum

Figure 3 shows the distribution of kinetic energy in the discrete and continuous spectrum of the
Koopman operator. The energy contained in Koopman modes (black bars in the figure) is simply
the kinetic energy contained in each mode, but the representation of energy over the continuous
spectrum is slightly different: The amount of energy contained at each frequency interval is the
integral of the kinetic energy density of continuous spectrum (defined in Eq. (47) and shown as the
blue curve) over that interval.

The evolution of the Koopman spectrum in Fig. 3 indicates the sequence of the bifurcations as
follows: For Re � 10 000, the cavity flow induced by regularized lid velocity converges to a steady
laminar solution which corresponds to a fixed point in the state space of the flow. The Koopman
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FIG. 3. Distribution of energy in the discrete (black bar) and continuous (blue curve) spectrum of the
Koopman operator for cavity flow. The evolution of spectrum indicates the transition from periodic to chaotic
flow. The ratio of average chaotic fluctuation energy to total kinetic energy of unsteady motion is 1.5 ×
10−3,0.11, and 1.00 for Re = 16 000, 19 000, and 30 000, respectively.

mode expansion for steady flow is trivial (hence not shown) and consists of zero frequency with
an associated mode which is the steady flow. At a Reynolds number slightly above 10 000, the
steady solution becomes unstable and the numerical solution converges to a time-periodic flow
which maintains stability up to Re = 15 000. The kinetic energy in this range is fully distributed in
the Koopman modes. The basic frequency of periodic flow decreases with the Reynolds number,
until at Re � 15 000, another bifurcation occurs and the solution converges to a quasiperiodic flow.
The basic frequencies of the quasiperiodic flow also decrease with the Re, but around Re = 18 000
another bifurcation occurs and the level of kinetic energy lying in continuous spectrum quickly rises
to a few percent. This kinetic energy of continuous spectra keeps rising such that at Re � 22 000 we
cannot detect any robust Koopman modes which indicates there are no quasiperiodic components in
the state space dynamics.

The discrete Koopman frequencies obtained for periodic, quasiperiodic, and interestingly, the
mixed-spectra flow match the lattice structure of the frequencies in the KMD of quasiperiodic flow
(9). That is, every frequency is accurately described by the integer combination of one or two basic
frequencies (see Table I in Appendix B). From the representation theorem mentioned in Sec. II, we
recall that this means the attractor is shaped like a limit cycle or a torus in the state space. For the
flow with the mixed spectra, however, no such theorem exists but we can speculate that it consists
of both a quasiperiodic factor and a chaotic factor. This type of attractor is called skew periodic in
the literature of dynamical systems theory [100].

The evolution of the Koopman spectrum in Fig. 3 offers a picture of transition to chaos that is
consistent with the theory of Ruelle and Takens [101]. According to this theory, the chaotic state
of the flow can be reached after one or two Hopf bifurcations from an initially stable steady flow.
Physical evidence for this theory appeared in the experiments on rotating Couette flow and natural
convection by Swinney and Gollub [24]. In particular, they detected the flow bifurcations using
the power spectrum of velocity measurements at a single point in the flow domain. The transition
to chaos was marked by the sudden growth of “background noise” in the power spectrum of the
quasiperiodic flow. The above results show that the Koopman spectrum can be used as a generalized
spectral tool for study of bifurcations; it offers a clear quantification of the energy in terms of
true periodicity and contribution of continuous spectra for deterministic flows, and furthermore it
connects the discrete spectrum to the state space geometry and flow domain.

124402-18



STUDY OF DYNAMICS IN POST-TRANSIENT FLOWS . . .

B. Koopman eigenfunctions

In this section, we discuss the relationship between the Koopman spectrum and the state space
dynamics. This relationship is realized through the notion of Koopman eigenfunctions, which are
associated with the Koopman eigenvalues. For post-transient flows, the eigenfunctions provide an
intrinsic coordinate on the state space along which the time evolution is linear oscillation. First, we
construct the Koopman eigenfunctions for the quasiperiodic cavity flow using the theory presented
in Refs. [2,30], and then we discuss its application to the flow with mixed spectra. Note that for
flows with ultimately high Reynolds number (e.g., Re = 30 000), the only Koopman frequency is
zero and there are no oscillatory Koopman eigenfunctions and modes.

Consider the quasiperiodic flow at Re = 16 000. This flow possesses a torus-shaped attractor
and the state space trajectory evolves on this torus with two basic frequencies ω1 and ω2 (whose
nondimensional values are given in Appendix B). We can parametrize the torus using two time-linear
coordinates, that is (θ,γ ) ∈ [0,2π )2 with the linear evolution equation

θ̇ = ω1, γ̇ = ω2.

The evolution of the trajectories on the actual torus in the state space is nonlinear, but the tuple (θ,γ )
are angular coordinates along a torus with uniform flow which is dynamically equivalent to the
actual torus in the state space [30]. On these time-linear coordinates, the Koopman eigenfunctions
are the same as the Fourier functions, i.e., the Koopman eigenfunction φk,l associated with frequency
ωk,l = kω1 + lω2 is

φk,l(θ,γ ) = eikθ+ilγ . (49)

Although there is no analytical formula for transformation from the actual attractor to the time-linear
coordinates defined above, we can construct the eigenfunctions in the state space using information
on a trajectory, given that the trajectory is ergodic and sufficiently long. We can normalize an the
eigenfunctions such that φt=0(u) = 1, and hence the value of the eigenfunction along the trajectory
is given by setting θ = ω1t and γ = ω2t in Eq. (49).

Figure 4 shows the construction of the eigenfunctions in the state space of the flow. The state
space is realized by delay embedding of some typical observables [102]—in this case the stream
function at random points in the flow domain. The attractor of the periodic flow is a limit cycle
(top row in the figure) and the Koopman eigenfunctions (shown as color field) correspond to the
one-dimensional linear time coordinate (θ ∈ [0,2π )). For the quasiperiodic flow, the attractor is a
2-torus and the Koopman eigenfunctions show the directions on the torus where the evolution is
linear and periodic; e.g., the eigenfunction φ0,1, shown in the rightmost panel of the second row,
shows the coordinate γ along which the trajectories oscillate with frequency ω2.

For skew-periodic attractors (i.e., flow with mixed spectra) the eigenfunctions are even more
interesting because they provide coordinates on an attractor which is not exactly a torus but possesses
directions with periodic motion. The embedded attractor of the flow at Re = 19 000, for example,
is similar to a torus which is related to the fact that this flow possesses a strong discrete spectrum
(in the energy sense) with two basic frequencies and a relatively weak continuous spectrum. In
fact, using the Koopman eigenfunctions, we can compute the factors (i.e., geometric slice) of such
an attractor, on which the motion is purely quasiperiodic. The existence of such factorization for
systems with discrete Koopman eigenvalues was shown in Ref. [2]. Here, we use this idea to
reconstruct the quasiperiodic component of the attractor at Re = 19 000. Let E be the observable
whose embedding is used to construct the attractor. According to the (11), this observable can be
split to two components:

E = Eqp + Ec, (50)

where Eqp denotes the component of E that lies in the span of Koopman eigenfunctions (including
the eigenfunction at zero frequency), and Ec is the chaotic component that belongs to subspace
associated with the continuous spectrum. By doing KMD on E, we can extract its Koopman modes
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FIG. 4. The (real part of) Koopman eigenfunctions shown as color field on the periodic, quasiperiodic, and
skew-periodic attractors (rows 1–3). The last row is the quasiperiodic component of the skew-periodic attractor
extracted using Koopman eigenfunctions. The attractors are reconstructed using delay embedding of stream
function values at random points in the flow domain (E) with the time delay of 1.0 sec for the periodic flow,
and 2.4 sec for the rest.

and reconstruct the evolution quasiperiodic component Eqp over the trajectory which is given by
the first two terms in Eq. (11). The embedding of Eqp constructs the torus which corresponds to the
quasiperiodic part of the motion. As such, the general motion on the skew-periodic attractor (third
row of the figure) can be decomposed into rotational motion along its quasiperiodic component
(bottom row) superposed with chaotic motion in an unknown direction. We stress that the above
constructions are valid for any type of state space realization as long as the data on an ergodic
trajectory is available.

C. Koopman modes

The Koopman modes of the vorticity field associated with the basic frequencies of each flow are
shown in Fig. 5. Each mode can be interpreted as the component of the vorticity field along the
eigenfunction coordinates in the state space (the color field in Fig. 4). For the eigenfunction at zero
frequency, this component is the mean flow (Koopman mode associated with zero frequency) and
does not change in time. The oscillatory modes, however, are components of the vorticity field that
linearly oscillate along the eigenfunction directions.
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FIG. 5. The Koopman modes of the cavity flow associated with basic Koopman frequencies: The color
field shows the real part of vorticity, with clockwise rotation shown in red and counterclockwise in blue. The
general structure of Koopman modes associated with same frequency trace remains unchanged as the Reynolds
number is varied.

The major share of kinetic energy in all the unsteady regimes is contained within the mean flow.
This mode is essentially composed of the central vortex in the flow and the corner eddies in the left
corners. For fully chaotic flows, the mean flow is the only Koopman mode, and its structure is similar
to the mean flow of periodic and quasiperiodic flow except for the intensification of the downstream
eddy in the bottom right corner.

The oscillatory Koopman modes, on the other hand, describe the flow oscillations around the
edge of the central vortex in the mean flow. To be more precise, the evolution of the mode uk can be
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written as

u(t) = uke
iωkt + uke

iωkt ,

= 2Re(uk) cos ωkt − 2Im(uk) sin ωkt. (51)

A careful examination of the figure shows that Re(uk) and Im(uk) are similar for each k but appear
to be shifted in the direction along the shear layer of the mean flow. This observation is related to
the fact that the unsteady motion in periodic and quasiperiodic regimes corresponds to wave(s) that
travel along the downstream edge of the central vortex. This traveling wave structure is observed in
the previous studies of cavity flow (see, e.g., the sequence of flow snapshots in Refs. [66,68]) but
never characterized.

The Koopman modes provide a straightforward framework to characterize the traveling waves
from the data. Let us consider a simple example first: Let [0,1] be a periodic domain, over which
the general form of a traveling wave is

f (ωt − 2πkx), x ∈ [0,1] (52)

with f being 2π periodic. Using the Fourier series expansion, we have

f (ωt − 2πkx) =
∞∑

j=−∞
eij (ωt−2πkx),

=
∞∑

j=−∞
eijωt e−2πjkx . (53)

Clearly, the last expression is the KMD of f with the Koopman modes given as fj (x) = exp −2πjkx.
Having this example in mind, we can compute the wave numbers (and phase velocity) of traveling
waves in the cavity flow through the following steps: First, we compute the phase of each Koopman
mode given by

θk := ∠uk = tan−1

(
Re(uk)

Im(uk)

)
. (54)

Then, we sample the values of θk along the direction of travel, denoted by x̂, and compute the average
local slope of θk(x̂) to get the wave number of the mode. This process is summarized in Fig. 6(a)
for the Koopman mode u1 of the periodic flow at Re = 13 000. The results of this computation
for different Koopman modes [shown in Fig. 6(b)] indicates that the Koopman modes associated
with higher frequencies have proportionally higher wave numbers. This is expected from the KMD
expansion of traveling wave (53). Moreover, it suggests that the wave numbers rarely change with the
Reynolds number; however, the phase velocity [slope of the lines in Fig. 6(b)] slightly decreases due
to the decrease in the Koopman frequencies. We note that the above methodology based on Koopman
modes is already used, in a concealed form, to extract the wave numbers from experimental data on
nonlinear waves in thermally driven flows [103,104] and internal waves in stratified flows [105].

An interesting observation is that the oscillatory Koopman modes show a remarkable structural
robustness in the range Re = 11 000–19 000, despite the flow undergoing bifurcations from periodic
to quasiperiodic and then skew periodic. Examples of this robustness are the modes in panels 2,
7, and 12 in Fig. 5 (counting from top left to right) which correspond to the frequency trace of
St1,0 in periodic, quasiperiodic, and mixed-spectra regimes, and panels 8 and 13 in Fig. 5 associated
with the frequency St0,2 in quasiperiodic and mixed-spectra regimes. This observation suggests that
Koopman modes may provide a suitable basis for reduced modeling of flows (e.g., Ref. [106]) over
a wide range of Reynolds number.
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FIG. 6. (a) The process of extracting the (spatial) wave number from each Koopman mode and (b)
relationship between the Koopman frequency and wave number of Koopman modes.

D. Spectral projections and proper orthogonal decomposition (POD)

We study the the efficiency of Koopman modes in representing the flow, by computing the error of
the spectral-projection models. An n-dimensional spectral projection model, is an n-term truncation
of the KMD where the modes are sorted based on their kinetic energy. The error defined as

ẽ(n) = 1

T

∫ T

0

∥∥∥∥∥u(x,t) −
n∑

k=1

uk(x)eiωkt

∥∥∥∥∥dt (55)

gives the kinetic-energy norm of the difference between the spectral projection model (the sum
in the above expression) and the actual flow field. Given the finite-dimensional nature of these
models, they are essentially quasiperiodic approximations of the flow. The time-averaged kinetic
energy of the error for the spectral projections of order 1–10 is shown in Fig. 7. In the periodic and
quasiperiodic flows, the bulk of the motion is readily captured by a few Koopman modes and the
low-order projections approximate the flow with great accuracy. As the flow becomes less periodic
with the increase of Reynolds number, the approximation error increases as well. For fully chaotic
flows, the only Koopman mode is the mean flow and therefore there are no low-dimensional spectral
projections except the steady one-dimensional model which is the mean flow itself. For purpose
of comparison, however, we have plotted the error of spectral projections using Fourier modes
(computed via FFT) at Re = 30 000. The kinetic energy of unsteady motion in this flow is spread
in the continuous spectrum and any low-dimensional approximation using oscillatory components
would involve large errors.

Figure 7 also shows an instructive comparison between Koopman mode decomposition and the
proper orthogonal decomposition (POD). POD is a decomposition of the flow field into spatially
orthogonal modes such that the POD-truncated models have the minimum energy error among all
choices of orthogonal decompositions [107]. Because of its optimality and advantageous numerical
properties, POD has been the keystone of many studies on coherent structures and low-order
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FIG. 7. The normalized kinetic energy of the error for approximation in Koopman mode decomposition
(KMD) and proper orthogonal decomposition (POD) as function of number of modes used in the approximation
(n). For Re = 30 000 FFT modes are used in lieu of Koopman modes.

modeling of complex flows, including the lid-driven cavity flow [67,69]. In cases of periodic and
quasiperiodic flow, the low-dimensional spectral projection model gives a better approximation
than POD-truncated models (first two panels in Fig. 7). This observation is not contradictory to
the optimality of POD-truncated models, but due to the fact that Koopman modes are complex
valued for oscillating systems which allows for better representation of dynamics evolving on limit
cycles or torus as previously suggested in Ref. [3] (see example 4 therein). We speculate that this
observations would be valid for other flows that may exhibit strong quasiperiodic behavior over
some parameter range, for example, periodically driven flows (e.g., Ref. [108]), rotating Couette
flow [109], Rayleigh-Bernard convection [24], and flow in converging-diverging channels [110] and
behind bluff objects [26].

For flows with mixed spectra, the error of approximation with spectral projection and POD is
generally comparable but as the Reynolds number increases and the flow becomes more chaotic,
POD-truncated models perform better. These observations support the alternative decomposition for
model reduction proposed in Ref. [3], in which the KMD is used to extract the periodic components
of the flow, and then POD is used for representation of the remaining chaotic component.

VI. CONCLUSION

In this work, we used the spectral properties of the Koopman operator for analysis of a post-
transient flow. Understanding of the asymptotic dynamics in the state space of the flow is achieved
by inspecting the Koopman spectrum and eigenfunctions obtained by KMD of numerical data.
In cases of periodic or quasiperiodic attractors, the dominant Koopman frequencies possess a
lattice-type structure whereas chaotic flows are associated with the continuous part of the Koopman
spectrum. In between these two regimes, we observed flows that exhibit a combination of chaotic
and quasiperiodic behavior (i.e., skew-periodic attractor), which is associated with mixed Koopman
spectrum. The Koopman eigenfunctions, on the other hand, determine the directions of linear
evolution on quasiperiodic and skew-periodic attractors.

We employed a new approach for computation of Koopman modes and frequencies which
comprises of a high-resolution algorithm to detect the eigenvalues and an averaging estimation
of the continuous spectrum. This approach, in contrast to DMD-type algorithms, is capable of
computing the continuous spectrum of the Koopman operator and detecting genuine Koopman
frequencies for flows with mixed spectra.
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Study of unsteady lid-driven cavity flow suggests that in case of periodic and quasiperiodic flow,
a handful of Koopman modes are sufficient to represent the spatiotemporal features of the flow
in a low-dimensional model. In fact, the Koopman modes offer a more efficient representation of
such flows than POD modes. This is due to the fact that complex-valued Koopman modes are more
suitable for describing the evolution on limit cycles and tori.
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APPENDIX A: RELATIONSHIP BETWEEN KOOPMAN MODES
OF DIFFERENT OBSERVABLES

We present two propositions regarding the Koopman mode decomposition of observables which
are related through a linear operator or spatial differentiation.

Proposition 1. Let g,h : 
 × M → R be two fields of observables defined on the flow domain 


and the state space of the flow M . Assume g(.,z),h(.,z) ∈ F(
) for every state z ∈ M where F(
)
denotes the space of fields on 
. Moreover, the observables are related through a linear operator
D : F(
) → F(
), such that Dg = h and D is bounded in F . Let gi and hi denote the Koopman
modes of observable g and h, respectively, associated with the Koopman eigenvalue λj . Then
those modes are related to each other via Dgi = hi . In words, the Koopman mode decomposition
commutes with the linear bounded operator D.

Proof. Let us assume for now that the dynamical system is measure preserving, which implies
λj = iωj ,ωj ∈ R. The Koopman modes are computed via the harmonic averaging, and it follows
that

hj = lim
T →∞

1

T

∫ T

0
h(t)e−iωj t dt = lim

T →∞
1

T

∫ T

0
Dg(t)e−iωj t dt = lim

T →∞
1

T
D

∫ T

0
g(t)e−iωj t dt

= D lim
T →∞

1

T

∫ T

0
g(t)e−iωj t dt = Dgj . (A1)

We have used the linearity and continuity (i.e., boundedness) of D in the third and fourth equalities,
respectively. If the system is dissipative, the Koopman modes are given by generalized Laplace
analysis formula [52]. The above argument could be used, along with induction, to prove the
statement for that case. �

For the purposes of this paper, we are mostly interested in linear operators that involve spatial
derivatives, such as gradient or curl. The derivative operator, however, is not bounded and therefore
needs a special treatment which is given by the following proposition.

Proposition 2. Let g,h : 
 × M → R be two fields of observables defined on the flow domain

 and the state space of the flow denoted by M . Assume the observables are bounded over their
domain and related to each other through

Dg = h, (A2)

where D denotes the partial derivative with respect to a spatial coordinate in the flow domain 
.
Let gk and hk denote the Koopman modes of observables associated with the Koopman frequencies
ωk,k = 1,2, . . .. Then

Dgk = hk (A3)
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for every x ∈ 
. In words, the Koopman mode decomposition commutes with the spatial
differentiation in the flow domain.

Proof. Define the finite-time harmonic average of g at the frequency ωk by

gT
k (x) = 1

T

∫ T

0
g(x,t)e−iωkt dt. (A4)

The Koopman mode of g associated with ωk is then given by [3]

gk = lim
T →∞

gT
k . (A5)

The Leibniz rule implies that the spatial derivative commutes with the finite-time averaging in
Eq. (A4), i.e.,

hT
k = DgT

k (A6)

for any finite T . Fix x. If both h(x) and g(x) are integrable functions, then the existence of gk(x)
implies the existence of hk(x) [77], and since the scalar functions hT

k (x) and DgT
k (x) are equal up to

any finite T , their limits as T → ∞ must be equal, i.e., hk(x) = Dgk(x). �

APPENDIX B: DISCRETE SPECTRA OF KOOPMAN OPERATOR

Table I shows the Koopman frequencies of cavity flow, computed by Algorithm 1 and ranked
in order of decreasing kinetic energy. The basic frequency vector is St = 0.159826 for the flow
at Re = 13 000, St = [0.155375,0.096911] for Re = 16 000, and St = [0.150046,0.093778] for
Re = 19 000. The rest of the frequencies can be described (to the sixth digit of accuracy) as a linear
combination of the basic frequencies. The coefficients of the combination are given by k in the table.

TABLE I. Koopman frequencies with highest kinetic energy in the lid-driven cavity flow.

Re = 13 000 Re = 16 000 Re = 19 000

(periodic) (quasiperiodic) (mixed spectra)
St k St k St k

0.000000 0 0.000000 (0,0) 0.000000 (0,0)
0.159826 1 0.155375 (1,0) 0.243822 (1,1)
0.319653 2 0.252287 (1,1) 0.150046 (1,0)
0.479479 3 0.096911 (0,1) 0.206310 (2,−1)
0.639303 4 0.193823 (0,2) 0.093778 (0,1)
0.799130 5 0.310751 (2,0) 0.300089 (2,0)
0.958954 6 0.213839 (2,−1) 0.187556 (0,2)

0.349197 (1,2) 0.056266 (1,−1)
0.407661 (2,1) 0.450133 (8,−8)
0.058463 (1,−1) 0.393868 (7,−7)
0.116927 (2,−2) 0.337602 (6,−6)
0.135359 (−1,3) 0.225068 (4,−4)
0.446109 (1,3) 0.487643 (2,2)
0.290733 (0,3) 0.018756 (2,−3)
0.038447 (−1,2) 0.431379 (6,−5)
0.504573 (2,2) 0.543910 (8,−7)
0.020017 (2,−3) 0.375111 (0,4)
0.232270 (−1,4) 0.468886 (0,5)
0.466125 (3,0) 0.693955 (9,−7)
0.272303 (3,−2) 0.581423 (2,3)
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