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Brownian dynamics of elongated particles in a quasi-two-dimensional
isotropic liquid
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We demonstrate experimentally that the long-range hydrodynamic interactions in an
incompressible quasi-two-dimensional isotropic fluid result in an anisotropic viscous drag
acting on elongated particles. The anisotropy of the drag is increasing with increasing ratio
of the particle length to the hydrodynamic scale given by the Saffman-Delbrück length.
The microrheology data for translational and rotational drags collected over three orders of
magnitude of the effective particle length demonstrate the validity of the current theoretical
approaches to the hydrodynamics in restricted geometry. The results also demonstrate
crossovers between the hydrodynamical regimes determined by the characteristic length
scales.
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I. INTRODUCTION

Motion of particles and their hydrodynamic interactions are of paramount interest not only for
fundamental physics, but also for its applications in chemistry and biology. Liquid membranes are
essential constituents of living matter. The mobility of particles (inclusions) embedded in biological
membranes is known to determine many cellular processes such as signal transduction, stimuli
response, and sensing [1,2]. Self-assembly of membrane proteins can influence biochemical reactions
and even allows cells to sense their shape [3]. Therefore, understanding of dynamics in membranes is
of paramount interest. Membrane proteins and lipid rafts have often sizes significantly larger than the
membrane thickness, and they can be viewed as macroscopic objects immersed in a continuous 2D
fluid [1,2,4,5]. Earlier studies of the dynamics of such structures revealed discrepancies in the deter-
mination of the membrane viscosities if the motion was described by 3D hydrodynamics [6–8]. For
instance, an overestimation of the viscosity up to two orders of magnitude was found in experiments
using fluorescent probes and NMR techniques [7]. Quantitative experimental data are rather scarce.
Active microrheology studies of isotropic poly(dimethysiloxane) (PDMS) films on a fluid substrate
revealed an appreciable discrepancy between experiment and theory [9,10]. This discrepancy was
partially attributed to the compressibility of the PDMS layer. Here, we use smectic freely suspended
films, which are unique models of nearly incompressible quasi-two-dimensional (quasi-2D) fluids
allowing variation of hydrodynamic parameters in a very broad range. Both in-plane isotropic
(smectic A) and in-plane anisotropic (smectic C) fluid structures can be explored in this system.

An inclusion moving with the velocity v experiences the viscous force F. The viscous drag
coefficients ζαβ are given by the inverse mobility tensor, defined by the expression

ζαβvβ = Fα, with α,β = x,y,z. (1)

The viscous drag on a spherical inclusion in a viscous three-dimensional (3D) fluid at low
Reynolds number is proportional to the radius of the particle (3D Stokesian regime). However,
the situation in a 2D fluid is more complex. In the case of an infinitely extended membrane in
vacuum, the mobility is expected to diverge (Stokes-Paradox). But as demonstrated by Saffman and
Delbrück, the coupling between the flow in the membrane with the flow of the fluid or the fluids
surrounding the membrane will result in a finite mobility, no matter how small the viscosities η′,η′′ of
the outer fluids are [11]. The relation between the size of the inclusion and the drag force becomes a
logarithmic function of the inclusion size. The coupling is described by a hydrodynamic length scale,
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the Saffman-Delbrück length, Ls = ηm/(η′ + η′′) defined as the ratio between the 2D membrane
viscosity ηm and the 3D viscosities of the outer fluids η′,η′′ below and above the membrane, where
ηm = ηh for a membrane with material viscosity η and thickness h [7,11–13]. For an inclusion
with characteristic size L, Ls determines the Boussinesq number Bo = Ls/L, which quantifies
the relative contributions of the interfacial and bulk drag [10]. When the lateral dimensions of the
membrane reach Ls or become smaller than Ls , coupling to the membrane boundary dominates
and determines the dynamics of inclusions. Altogether, three different dynamic regimes can be
distinguished: the 3D Stokesian regime, the 2D regime driven by the coupling to the outer fluid
and the 2D regime governed by the lateral spatial constraints of the membrane. All those regimes
were demonstrated experimentally for in-plane isometric inclusions (circular cross-section) [14,15].
In lipid membranes, depending on the membrane viscosities, both 3D and 2D dynamics have been
reported [16]. Yet, in some cases, it was demonstrated that the continuous approach breaks down
for small proteins, where the inhomogeneities of the membrane structure on a molecular scale may
affect the protein diffusion [8].

However, often the shape of the inclusions cannot be assumed isometric and the problem of
mobility of extended bodies in a 2D fluid must be considered in more detail [6,8,17,18]. Saffman
[11] mentioned that the mobility of ellipses or ellipsoids can be easily calculated in a similar way
as for discs. An example of this calculation is given in Ref. [18]. A rigid cylinder, perhaps one of
the simplest anisometric shapes, exhibits distinctive hydrodynamical properties even in 3D fluids.
Already in the limit of low Reynolds number, the purely local character of the hydrodynamic drag
is broken. Viscous drag on a rod is anisotropic and exhibits a logarithmic length-dependence:

ζ 3D
‖ = 2πηL

[
ln

(
AL

a

)]−1

, (2)

ζ 3D
⊥ = 2ζ 3D

‖ , (3)

where ζ 3D
‖ and ζ 3D

‖ are the drag coefficients for a motion parallel and perpendicular to the axis of
the rod, respectively, L is the rod length, a is its radius, η is the dynamic viscosity of the fluid, and
A is a numerical factor of the order of unity [19]. The topic of the present paper is an experimental
study of the viscous drag and its dependence on the rod size in a 2D fluid. A theoretical model for
the mobility of rod-shaped inclusions was put forward by Levine et al. [20]. They demonstrated that
in contrast to the 3D case, the transverse drag coefficient ζ⊥ for larger rods becomes linear in length
L, indicating that the viscous drag becomes purely local. In contrast, the parallel component ζ‖ of
the drag for L � Ls depends logarithmically on the length of the rod. At the same time, the relation
in Eq. (3) breaks down in 2D. Rotational drag for rotation around the transversal axis in 3D is given
by

ζ 3D
R⊥ = πηL3

3[ln(L/2a) − C]
, (4)

where C is a numerical factor which depends on the aspect ratio of the rod and is approximately
0.662 for infinitely thin rods [19,21].

In this paper, we study the mobility of anisometric rod-shaped particles in a freely suspended
liquid crystal film by analyzing their Brownian motion. Variation of the length of the rods and
the thickness of the film enables us to explore a wide range of hydrodynamic regimes determined
by the ratios of the typical rod dimensions to the Saffman-Delbrück length Ls . We choose the
commercial liquid crystal 4-n-octyl-4′-cyanobiphenyl (8CB), which exhibits the smectic-A phase
at room temperature. Freely suspended films with thicknesses from few nanometers up to 5 μm
were used in our experiments. The preferential orthogonal alignment of the 3.17-nm-long molecules
without in-plane order at the film surfaces provides a unique opportunity to mimic a quasi-2D
isotropic fluid. A sufficiently large extension of the film, in the range of a few centimeters, abates
undesired boundary effects.
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FIG. 1. Experimental setup for the study of Brownian motion in a freely suspended liquid crystal film.
The film is drawn on an airtight sealed cylindrical container. Before deposition of the particles, we bend the
smectic films lightly downward by an depression in the container, to avoid immediate drift of the particle into
the meniscus. The pressure is then slowly equilibrated so that the experiment is performed with a flat film.

II. EXPERIMENTAL

The commercial liquid crystal 4-n-octyl-4′-cyanobiphenyl (8CB), which exhibits the smectic-A
phase at room temperature and forms freely suspended films was used. The liquid crystal has
a dynamic viscosity of η = 0.052 Pa s at a room temperature of T = 22 ◦C and is surrounded
by ambient air with a viscosity of η′ = 1.8 × 10−5 Pa s. The observations were made using an
AxioScope Pol polarizing microscope (Zeiss GmbH). Glass rods of various lengths ranging from
60 to 1500 μm and widths of 10–20 μm were deposited on the film using a thin glass fibre attached
to a micromanipulator [Figs. 1 and 2(a)]. The motion of the rods was video-recorded at the frame
rate of 60 fps in color between crossed polarizers and the wave plate. In such experiments, a film of
uniform thickness has uniform magenta color too, which can be easily subtracted to leave the rod
surrounded by a meniscus of a thickness larger than that of the surrounding film. The rods with the
surrounded immobile meniscus were tracked using standard Matlab particle tracking routines. The
centroid and the axes of the particle in the film were determined for each frame. The particle image
was fit with a rectangular shape with the axes collinear with the axes of the rod without meniscus. In
this case, the boundary of the meniscus area determined the size of the particles. The sizes of single
rods were determined from the microscopy images of a single rod. The particles were tracked on
the time scale of 5 min. The mean-square displacement (MDS) was extracted using the procedure
described in Refs. [14,15]. Translational and rotational drag coefficients were obtained from the
MDS averaged over multiple trajectories. The relative measurement uncertainties of translation and
rotational drag were estimated to be below 10%.

III. RESULTS

After deposition on the film, the glass rod is rapidly wetted by the LC material. A meniscus
forms within about 3–5 s [Figs. 2(a) and 2(b)]. Polarizing microscopy reveals focal-conic textures
in the meniscus [Fig. 2(a)], which indicates the presence of complex internal structures composed
by layer dislocations and topological defects [22,23]. For this reason, the flow in the thick meniscus
area cannot be considered as purely two-dimensional. The thickness in the meniscus increases fast
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FIG. 2. (a) Polarizing microscopy images of a rod embedded in the freely suspended film, observed with
a full wave plate. The images are taken at time instances of 3, 120, and 300 s after the deposition. The bright
birefringent area of the meniscus indicates a complex inner structure where the smectic layers are deformed. Its
boundary schematically marked by a dash line. The arrows on the right show the orientations of the polarizer P,
analyzer A, and the wave plate λ. (b) Time dependence of the meniscus width for the rod in (a). (c) A fragment
of a typical trajectory of a rod and (d) an example of the mean squared displacement MSD (drift-free) with a
linear fit (solid line), in the inset, there is a distribution of displacements measured between positions on the
trajectory separated by the time interval of 1/60 s.

with a distance from the film edge. So does the effective 2D viscosity, which is proportional to the
thickness. In addition, layer dislocations in these patterns inhibit flow. Thus, the flow in the meniscus
is substantially impeded by the internal structure of the meniscus, evidenced by the stationary optical
textures. Consequently, we have to consider the meniscus area as immobile respective to the rod, and
we introduce an effective dimension of the rod, by correcting it with the mean size of the meniscus:

L = Lrod + 2Lm, W = Wrod + 2Wm, (5)

where Lrod and Wrod are the length and the width of the bare glass rod, Lm and Wm are mean lengths
and widths of the meniscus, respectively.

The Brownian motion of the rods was recorded over time intervals of 5 to 6 min, an example of
such a trajectory is shown in Fig. 2(c). To determine the viscous drag ζ acting on the rod in a freely
suspended film, we separate the Brownian motion from some unavoidable drift which impedes the
measurement at long time scales. The separation of the two motions is achieved with a procedure
described earlier [14]. The transversal and longitudinal components of the drag are obtained from
the mean-squared displacement (MSD) relative to the rod axes, by separating the displacements
parallel to the rod’s momentary long and short axes [Fig. 2(d)].
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FIG. 3. (a) Parallel and perpendicular drag coefficients for thin rods as a function of their dimensionless
length λ = L/Ls . The solid lines are theoretical predictions by the Levine model [24] for a rod aspect ratio
ρ = 2 and for infinitely thin rods (ρ = ∞), (LM [24]). The dash-dotted line corresponds to the Petrov-Schwille
equation with an argument λ = L/Ls [13]. (b) Ratio of the perpendicular component of the viscous drag to
the parallel component, ζ⊥/ζ‖ as a function of λ. The solid line is the theoretical prediction for thin rods
from Ref. [24]. The experimental data points are separated in two groups of rods with different aspect ratios
ρ = L/W : 2 < ρ < 7 (open symbols) and 7 < ρ < 35 (filled symbols). Due to only a small dispersion of the
rod widths, the data points corresponding to small ρ occur at small λ. The dependence of the mean drag on the
aspect ratio is shown in the inset of (b).

The experimental results for the translational drag coefficients in dependence on the effective rod
length are shown in Fig. 3. Drag coefficients for different film thicknesses and rod lengths are scaled
to the reduced rod length λ = L/Ls . The width of the rods including the meniscus is smaller than Ls

in all cases. A first obvious result is that the diffusion along the rod axis, as expected, is faster than
perpendicular to it. This feature is more pronounced when λ > 1. For λ ≈ 10, a factor of about 2.5
is reached. The translational drag exhibits a distinct nonlinear behavior as a function of the reduced
rod length. Approximating the rods by discs with the effective radius Reff = L/2 [the mean radius
Rm = (L + W )/4 → L/2 for W → L], and setting λ = 2Reff/Ls , we can see that the experimental
data for the mean translational drag ζm = 0.5(ζ⊥ + ζ‖) cannot be satisfactorily approximated by the
2D drag model proposed by Petrov and Schwille (PS) as an extension of the Saffman-Delbrück
theory for isometric particles (discs) [11–13]. The mean drag is systematically lower than the drag
predicted by the PS model. Only for λ 
 1, the experimental data are close to the PS prediction
[Fig. 3(a)]. It is important to note that the PS drag in Fig. 3(a) is plotted as a function of L/Ls . In
the case λ 
 1, the aspect ratios ρ = L/W of the rods used in our study are not large, and the mean
radius is close to L/2. For larger λ, the drag coefficients for the displacements parallel to the rod
axis, ζ‖, and perpendicular to it, ζ⊥, diverge from each other and the displacements become strongly
correlated with the momentary rod axis. The transversal drag ζ⊥ becomes a linear function of the
length λ. The parallel drag ζ‖ shows a slower continuous growth with λ.

IV. DISCUSSION

To calculate the drag on the anisometric particles in 2D, we followed the theoretical approach
developed by Levine et al. [20,24,25], where velocity response functions parallel (χ‖) and
perpendicular (χ⊥) to the rod long axis were used. Specific dimensionless drag coefficients
ζ‖,⊥/4πηm were computed as functions of the reduced length λ using the Kirkwood approximations
in Fig. 3(a). Two pairs of curves are included in Fig. 3(a): the theoretical dependencies ζ‖,⊥/4πηm

for the rod aspect ratio of 2, computed using the Kirkwood approximation [19,25], and the thin-rod
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FIG. 4. Dependence of the rotational drag coefficient ζR on the specific length λ. The experimental data are
compared with the prediction of the Levine theory [24] (solid line) for infinitely thin rods.

approximation from Ref. [24]. The fifth curve is the drag on a disk-shaped inclusion with radius L/2,
computed using the Petrov-Schwille equation [13]. This curve covers both, the 2D Saffman-Delbrück
regime for small λ and 3D Stokes regime for λ � 1.

The smallest value of Ls achieved in our experiment is about 40 μm, which is comparable
with the widths of the rods used in our experiments (W ≈ 40–45 μm). However, for thicker films,
Ls significantly exceeds the width W . This justifies using the theoretical model for thin rods. In
agreement with the theory by Levine et al. [25], even for thick rods, the translational drag coefficients
become independent of ρ, and can be described in the thin-rod approximation, when λ is sufficiently
small [Fig. 3(a)]. The plot in Fig. 3(a) shows an excellent agreement between the experimental drag
and the theory for the 2D hydrodynamics. It is remarkable that no fitting parameters are used here.
The anisotropy of the translational diffusion is already measurable for the shortest rods with the
specific lengths, λ, as low as 0.01, and it increases with increasing length [Fig. 3(b)]. Even when
λ 
 1, the anisotropy of the viscous drag remains appreciable. The two curves for the transversal
and longitudinal drag coefficients converge logarithmically. In the limit λ → 0, the rod represents
a singular distortion of the flow field and the structure of the rod on a scale much smaller than
the Saffman-Delbrück length Ls becomes less important. The drag coefficients become nearly
independent of the inclusion size and approach the values given by the PS formula [13] for isometric
particles with a diameter of L in an isotropic membrane. This can be understood from the asymptotic
behavior of the response functions, χ‖ and χ⊥, which leads to the Saffman-Delbrück drag force in
the limit of small λ.

The rotational drag coefficient weighted by the length squared, ζR/4πηmL2, is shown in Fig. 4.
In agreement with the theoretical prediction by Levine et al. [20,24,25], the drag coefficient exhibits
an algebraic dependence on the rod length in the asymptotic limits. It is proportional to λ2 for λ 
 1
and proportional to λ3 for λ � 1. Our experimental data fully cover the quadratic regime of ζR and
show the cross over to the third-power regime for λ > 1. Remarkably, these results are different
from those obtained using active microrheology in oil (PDMS) films [10], where the agreement with
the Levine’s theory was significantly poorer, especially in the range of small λ. This discrepancy
was attributed to the compressibility of the oil layer on a fluid substrate and the flow of the oil over
the inclusion. In the case of smectic films, however, the film is nearly incompressible and a change
of the film thickness in response to a compressive stress may occur only through the nucleation of
dislocations. The latter can be excluded in our experiment.
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The meniscus around the inclusion is composed of a complex layer structure featuring regular
arrangements of topological defects and dislocations on a microscopic scale. This inhibits flow
within the decorated regions around the inclusions. At the same time, the film outside the meniscus
is perfectly uniform and flat on the hydrodynamic scale, so that there is no influence of potential
curvatures on the viscous dynamics [26,27].

In summary, we reported an experimental study of translational and rotational viscous drag
coefficients for rod-shaped inclusions in an isotropic quasi-2D fluid, modeled by a freely suspended
liquid crystal film. The drag coefficients show a distinct nonlinear dependence on the rod size. The
translational drag exhibits an anisotropic behavior already for the smallest aspect ratios and is in an
excellent agreement with the theory by Levine et al. [24]. Immobile meniscus has to be accounted
for in the effective size of the inclusion. We confirm a crossover behavior of the translational drag
coefficient, ζ⊥, to a regime where the drag is purely local and depends linearly on the length L. For
sufficiently small lengths L 
 Ls , the translational drag coefficients can be well described by the
thin-rod approximation.

Notably, the transversal mobility of thin rods can be reasonably well described by the Petrov-
Schwille equation, where the radius of an equivalent circular inclusion is taken as L/2. The enormous
aspect ratio of freely suspended smectic films in combination to the easy adjustment of homogeneous
film thicknesses from nanometers to micrometers allowed quantitative measurements of the diffusion
of rods over more than three orders of magnitude in the effective rod length λ, which is hardly
achievable with any other physical system.
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