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Despite the large number of existing studies of viscous flows in rotating Hele-Shaw
cells, most investigations analyze rotational motion with a constant angular velocity, under
vanishing Reynolds number conditions in which inertial effects can be neglected. In this
work, we examine the linear and weakly nonlinear dynamics of the interface between two
immiscible fluids in a rotating Hele-Shaw cell, considering the action of a time-dependent
angular velocity, and taking into account the contribution of inertia. By using a generalized
Darcy’s law, we derive a second-order mode-coupling equation which describes the time
evolution of the interfacial perturbation amplitudes. For arbitrary values of viscosity and
density ratios, and for a range of values of a rotational Reynolds number, we investigate
how the time-dependent angular velocity and inertia affect the important finger competition
events that traditionally arise in rotating Hele-Shaw flows.
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I. INTRODUCTION

The rotating Hele-Shaw cell arrangement is a variant of the traditional viscous fingering, Saffman-
Taylor instability problem [1]. In its radial geometry setup [2], the Saffman-Taylor instability occurs
when a fluid is injected through a central inlet, displacing a higher viscosity fluid radially outwards in a
motionless Hele-Shaw cell. This cell is an effectively two-dimensional (2D) device composed of two
narrowly spaced parallel glass plates. As the initially circular fluid-fluid interface expands, it deforms,
and fingerlike protuberances form. The perturbed interface evolves, and the produced fingers split at
their tips, in such a way that repeated finger tip-splitting events prosper. This leads to the formation
of highly branched interfacial patterns [3]. In this way, one can say that the injection-mediated,
radial fingering instability is driven by the viscosity difference between the fluids, and that the most
emblematic pattern formation process associated with it is finger tip splitting.

A different type of fingering instability arises if the Hele-Shaw cell is subjected to a rotational
motion about an axis perpendicular to the cell plates [4]. In this alternative configuration, one has a
dense inner fluid surrounded by another fluid of lower density. Under rotation, the originally circular
two-fluid boundary becomes unstable and distorts due to the action of centrifugal forces [5,6]. As a
result, another class of interfacial patterns emerges, being very different from the ones obtained in
the injection-induced, radial fingering Saffman-Taylor situation [1–3]. Usually, the rotating fingering
patterns exhibit nonsplitting fingers of different lengths that compete among themselves. So, instead
of finger tip splitting, one observes the emergence of structures markedly characterized by finger
length variability. Depending on the viscosity ratio between the fluids, the resulting patterns can
assume a variety of shapes, ranging from relatively wide tear-drop-like structures, and thin filamented
arms presenting bulbous ends, to ramified backbone morphologies. Thus, one can affirm that the
centrifugal viscous fingering instability is caused by the density difference between the fluids, where
the most conspicuous pattern-forming growth phenomenon is finger competition.

Over the last three decades, various aspects of the rotating Hele-Shaw cell problem have been
studied both theoretically and experimentally. For example, on the experimental side, researchers
have investigated the dependence of pattern morphologies on viscous [6–9] and wetting [10] effects.
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On the purely theoretical side, people have been giving continued attention to the development
of rigorous exact solutions of the problem [11–15]. Investigators have also employed perturbative
methods, like linear analysis [4,6,9], and weakly nonlinear mode-coupling theory [16], to better
understand interface stability issues, as well as the finger competition mechanism. On the other
hand, intensive numerical simulations, using several methods, including spectral [17,18], boundary-
integral [19], phase-field [20], and diffuse-interface approaches [21], have also been utilized to
get physical insight into finger competition and pinch-off phenomena occurring in both miscible
and immiscible displacements in rotating Hele-Shaw cells. Furthermore, some research groups have
looked into the role played by Coriolis forces on the interfacial dynamics in rotating Hele-Shaw flows
[4,22–27].

Irrespective of the scientific validity and the significant number of investigations on the rotating
Hele-Shaw cell problem (see Refs. [4–27], and references therein), the almost absolute majority
of existing studies focuses on the situation in which the cell’s angular velocity is constant in time.
However, as pointed out in Ref. [7], in real laboratory experiments, the rotating Hele-Shaw cell
cannot reach a constant angular velocity instantaneously. In reality, there is a transient interval at the
beginning of each experimental run where the angular velocity rises from zero to a finite steady value.
Therefore, strictly speaking, the Hele-Shaw cell angular velocity is time-dependent. Nevertheless,
as also discussed in Ref. [7], under ordinary experimental conditions explored so far [zero, or nearly
zero Reynolds number (Re) situation, where Re measures the ratio of inertia to viscous forces], the
mentioned transient time is considerably short, in such a way that the effects of the time-varying
angular velocity can be neglected.

In addition of being relevant to properly describe the unavoidable transient effects occurring even
in rotating Hele-Shaw flows set to achieve a constant angular velocity [7], the effects of a legitimately
time-dependent angular velocity on the fluid dynamics of such confined flows are important by
themselves and only recently started to be investigated in the literature [28]. A theoretical work
presented in Ref. [28] used an inviscid linear stability analysis to examine how the amplitude of
the perturbed rotating two-fluid interface responds to the action of an angular velocity that varied
sinusoidally with time. Their main conclusion was simply that the time-periodic angular velocity
affects the threshold of the instability, tending to stabilize interfacial disturbances.

From the studies performed in Refs. [7,28], the consideration of time variation of the angular
velocity is of importance to both the transient regime in usual constant angular velocity studies, as
well as to linear stability investigations that consider an explicitly time-dependent angular velocity
�(t), acting during the whole dynamic evolution of the fluid-fluid interface in rotating Hele-Shaw
flows. However, it is also clear that a study of the influence of a time-dependent angular velocity
on the nonlinear dynamics of ubiquitous finger competition events in rotating Hele-Shaw cells still
needs to be performed. Additionally, an understanding of the physical conditions under which the
role of such a time-dependent angular velocity cannot be ignored during such confined rotating flows
is lacking. These are precisely the issues we intend to address in this work.

Since we focus on a situation in which two fluids flow in a rotating Hele-Shaw cell having a
time-dependent angular velocity, it is natural to expect that effects connected to the acceleration
of the system should be taken into account. In this framing, at least in principle, inertial effects
should be instrumental in determining the pattern-forming dynamics. Therefore, in contrast to the
overwhelming majority of studies carried out in the rotating Hele-Shaw cell setup, in this work we not
only consider a time-dependent angular velocity, but also study its impact on the evolving two-fluid
interface by taken into consideration the action of inertial effects. It should be noted that, although
the assumption of negligible inertial effects (vanishing Reynolds number) is entirely reasonable and
justified for most of the studies in both motionless, and rotating Hele-Shaw cells, a growing number
of studies [29–35] have demonstrated it could be otherwise. In fact, for the simpler case of a single
fluid displacement in a rotating Hele-Shaw cell with constant angular velocity [34], a theoretical
study has shown that in the circumstances in which the fluid has low viscosity, or large density, or
yet if the cell gap width, or the angular velocity are large, inertial effects can be sizable and cannot
be disregarded.
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FIG. 1. Illustrative sketch of a rotating Hele-Shaw cell.

The remainder of this paper is structured as follows. Section II presents the basic setup of
the physical problem and introduces the governing equations. Then, by taking inertial effects into
account, and by using a generalized gap-averaged nonlinear Darcy’s law, we derive a second-order
mode-coupling equation that describes the time evolution of the interfacial perturbation amplitudes
for the rotating Hele-Shaw cell problem with a time-dependent angular velocity. This is done by
considering a general two-fluid situation, i.e., for arbitrary values of viscosity and density ratios, as
well as for a range of magnitudes for the rotational Reynolds number Re. In Sec. III we discuss the
impact of a time-dependent angular velocity �(t) and inertial effects at linear and weakly nonlinear
stages of the flow. We concentrate our attention on trying to comprehend how the intrinsically
nonlinear finger competition phenomenon is influenced by �(t) and Re. Our final conclusions are
presented in Sec. IV.

II. GOVERNING EQUATIONS

A schematic representation of the rotating Hele-Shaw cell arrangement is illustrated in Fig. 1.
Consider two immiscible viscous fluids in a Hele-Shaw cell of gap width b that rotates with angular
velocity � around the z axis, which is perpendicular to the cell plates. In contrast to most theoretical
works on rotating Hele-Shaw flows, we consider that the angular velocity � = �(t) of the rotating
cell can change with time. We define the rotating coordinate system in such a way that its origin is
located at the center of the cell. The viscosities of the inner and outer fluids are denoted by η1 and
η2, respectively, and the surface tension between them is σ . Likewise, the densities of the fluids are
defined as ρ1 and ρ2.

We describe the perturbed two-fluid interface as R(θ,t) = R + ζ (θ,t), where R is the radius of
the initially circular unperturbed interface, and ζ (θ,t) = ∑+∞

n=−∞ ζn(t) exp (inθ ) represents the net
interface perturbation with Fourier amplitudes ζn(t) and discrete azimuthal wave numbers n. The
perturbative weakly nonlinear model we employ keeps up to second-order terms in ζ and describes
the linear and initial nonlinear dynamics of the system.

We extend the theoretical approach originally developed in Refs. [29–33] for motionless Hele-
Shaw cells and expand it to rotating flows, examining a situation in which the effects of the
time-dependent angular velocity of the cell plates and fluid inertia are taken into account. Within
this context, as opposed to the usual Darcy’s law description [3], we consider that the fluid flow in
the rotating frame of reference is governed by a gap-averaged, generalized Darcy’s law equation
[4,6,29–35]

ρj

[
∂uj

∂t
+ 6

5
(uj ·∇)uj

]
= −∇pj − 12ηj

b2
uj − ρj� × (� × r) − ρj

d�

dt
× r, (1)

and a 2D continuity equation for incompressible fluids,

∇ · uj = 0. (2)
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For a detailed derivation of Eq. (1) when � = 0, we refer the interested reader to an Appendix
presented in Ref. [29]. An alternative derivation is given in Ref. [30]. For the introduction of the
rotational terms see, for instance, Refs. [22,23]. In Eqs. (1) and (2), uj = uj (r,θ ) and pj = pj (r,θ )
denote, respectively, the gap-averaged velocity and pressure for fluids j = 1 (inner fluid), and
j = 2 (outer fluid). The time-dependent angular velocity � = �(t)ẑ, where ẑ is the unit vector in
the z direction, and r is the position vector (in the cell plane) of a fluid element measured from
the rotation axis. The two last terms on the right-hand side of Eq. (1) represent, respectively, the
centrifugal and the angular acceleration contributions. Here we focus on understanding the action of
the time-dependent angular velocity and fluid inertia on the interface dynamics, and neglect gravity
and Coriolis effects.

Rescaling lengths by L = R, and velocities by a characteristic velocity U = (ρ1�0
2b2R)/(12η1),

the generalized Darcy’s law (1) can be conveniently rewritten in a dimensionless form as

Re2αj

[
∂uj

∂t
+ 6

5
(uj ·∇)uj

]
= −∇pj − βj uj + Re2αj [�2r r̂ − �̇r θ̂], (3)

where βj = ηj/η1, αj = ρj/ρ1, and θ̂ (r̂) is the unit vector in the azimuthal (radial) direction.
The overdot denotes total time derivative, so that �̇ = d�/dt . In Eq. (3) the Reynolds number Re
quantifies the effect of fluid inertia on the rotating flow and is defined as

Re = ρ1�0b
2

12η1
, (4)

where �0 is a characteristic angular velocity [see Eq. (28)]. From this point on, we work with the
dimensionless version of the equations.

At this point, we discuss an important issue regarding the usual Darcy’s law [1,3], and its
generalized version [Eq. (3)]. In most works dealing with rotating Hele-Shaw flows [5–21], where
the cell rotates with constant angular velocity and inertial effects are neglected (i.e., Re = 0), the
governing equation of the system is the usual Darcy’s law [1,3], where the fluid velocity is simply
proportional to the gradient of the pressure. In this situation, it is possible to relate the fluid velocity
to a scalar velocity potential due to the irrotational nature of the flow. However, when both a
time-varying angular velocity and inertial effects [for which Re �= 0] are taken into account, as
considered in the present work, the situation is far more complex. Under such more complicated
circumstances, the flow is described by the generalized Darcy’s law (3), which exhibits a nonzero
rotational nature, as one can readily verify by taking the curl operator on both sides of Eq. (3).
Hence, we cannot write the velocity field as a gradient of a scalar velocity potential. Considering the
nonpotential nature of the flow, and in agreement with the extensive literature in rotating Hele-Shaw
flows [4–27], we analyze a low (but nonvanishing) Reynolds number situation. Under this condition,
and by noticing the dependence of Eq. (3) on Re2, we asymptotically expand the velocity, as well as
the pressure field at lowest nonzero order in Re2 as

uj � u(0)
j + Re2u(1)

j , (5)

pj � p
(0)
j + Re2p

(1)
j , (6)

where Re2 � 1, u(0)
j (p(0)

j ) is the zeroth-order viscous term, and u(1)
j (p(1)

j ) the first-order inertial
contribution for the velocity (pressure) field. It should be stressed that our perturbative approach
performs two types of independent expansions: while the dynamic quantities (velocity and pressure)
are expanded up until first order in Re2 [Eqs. (5) and (6)], the interface itself is expanded up to
second order in ζ . The asymptotic expansions we do for the velocity and pressure in terms of Re2

are performed at the level of the generalized Darcy’s law [Eq. (3)], prior to the expansion in ζ . Then
the various velocity and pressure terms (already decomposed in terms of Re2) are expanded in terms
of ζ , when they are taken at the fluid-fluid interface r = R.
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By substituting Eqs. (5) and (6) into Eq. (3), and only keeping zero order terms in Re2, we
promptly verify that

βj u(0)
j = −∇p

(0)
j , (7)

which is exactly the usual Darcy’s law [1,3], valid for the vanishing Re case. By the reasons discussed
in the previous paragraph, the flow is irrotational for the zeroth-order velocity (∇ × u(0)

j = 0), and

applying the incompressibility condition for u(0)
j (∇ · u(0)

j = 0), we can define a zeroth-order velocity

potential u(0)
j ≡ −∇φ

(0)
j . Actually, one can easily see that the zeroth-order velocity potential φ

(0)
j

obeys Laplace’s equation ∇2φ
(0)
j = 0. Under these circumstances, the solution for φ

(0)
j in terms of

the perturbation amplitudes ζn is the same as that for the rotating Hele-Shaw cell problem when both
inertia and the time dependence of the angular velocity are not taken into account [5,6,16].

We now proceed to obtain the first-order velocity contribution u(1)
j in terms of ζn. To do it, we

substitute Eq. (5) and Eq. (6) into Eq. (3), and keep terms up to order Re2, to obtain

Re2αj∇
[

∂φ
(0)
j

∂t
− 3

5

∣∣∇φ
(0)
j

∣∣2

]
= ∇p

(0)
j + Re2∇p

(1)
j + βj

(−∇φ
(0)
j + Re2u(1)

j

)
− Re2αj [�2r r̂ − �̇r θ̂]. (8)

By applying the curl on both sides of Eq. (8), we obtain a much simpler expression

βj∇ × u(1)
j = −αj �̇∇ × (r θ̂). (9)

However, by inspecting Eq. (9), we realize that u(1)
j can be expressed as

βj u(1)
j = −αj �̇r θ̂ − ∇φ

(1)
j , (10)

where φ
(1)
j = φ

(1)
j (r,θ ) is a scalar function to be determined. From Eq. (10) it is apparent that u(1)

j

cannot be written solely as a gradient of a scalar function, immediately characterizing its nonpotential
nature.

In order to obtain φ
(1)
j , we take the divergence of Eq. (10):

∇ · u(1)
j = −∇2φ

(1)
j

βj

. (11)

On the other hand, we see that by taking into consideration the continuity equation (2), and using
the fact that ∇ · u(0)

j = 0, Eq. (5) implies that ∇ · u(1)
j = 0. In this way, by utilizing Eq. (11), one can

verify that φ
(1)
j satisfies Laplace’s equation (∇2φ

(1)
j = 0). Thus, the general solution for φ

(1)
j can be

written as

φ
(1)
j =

∑
n�=0

φ
(1)
jn (t)r−1(j+1)|n| exp (inθ ). (12)

To determine the coefficients φ
(1)
jn (t) that appear in Eq. (12) up to second order in the perturbation

amplitudes ζn, we use the kinematic boundary condition [3,6]

∂R
∂t

= (uj · r̂)r=R −
[

1

r

∂R
∂θ

(uj · θ̂ )

]
r=R

, (13)

which states that the normal components of each fluid velocity are continuous at the interface. By
doing this, we obtain

φ
(1)
jn = (−1)j+1iαj sgn(n)�̇ζn − iαj �̇

∑
n′ �=0

n′
[

sgn(nn′) + (−1)j

|n|
]
ζn′ζn−n′ . (14)
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Substituting the resulting expression for φ
(1)
j into Eq. (10), we have the velocity field u(1)

j completely
determined in terms of the perturbation amplitudes ζn.

Since we now have determined the velocity field uj , we are able to calculate the zeroth, and the
first-order contributions for the pressure field pj . To obtain the zeroth-order pressure, we substitute
u(0)

j = −∇φ
(0)
j into Eq. (7), and integrate. After dropping an arbitrary constant of integration, p

(0)
j is

written as

p
(0)
j = βjφ

(0)
j . (15)

Notice that here (i.e., for Re = 0), the velocity potential φ
(0)
j and the pressure p

(0)
j stand for almost

identical quantities, differing only by βj .
As for the first-order pressure, we go on as follows. We substitute Eq. (10) into Eq. (8), collect

together only the terms of order Re2, and integrate, to obtain

p
(1)
j = αj

[
∂φ

(0)
j

∂t
− 3

5

∣∣∇φ
(0)
j

∣∣2
]

+ αj�
2 r2

2
+ φ

(1)
j . (16)

In order to fully specify the free boundary, interfacial problem, we still need to consider an
additional boundary condition. This remaining boundary condition, known as the Young-Laplace
equation [3,6], connects the pressure jump (or, the jump in the normal stress) across the two-fluid
interface, with the surface tension, and the principal interface curvatures

(p1 − p2)r=R = B

[
κ + 8

π
q

]
r=R

, (17)

where

B = πσ

4ρ1�0
2R3

(18)

represents a rotational Bond number that measures the ratio of surface tension to centrifugal forces,
and q = R/b is the aspect ratio. The first term on the right-hand side of Eq. (17) expresses the
contribution related to surface tension σ , and the interfacial curvature κ in the plane of the Hele-Shaw
cell. The factor π/4 that appears in the Bond number (18) is purely a capillary static effect, coming
from the z average of the mean interfacial curvature [36]. The π/4 factor was absorbed in the
Bond number, just promoting a small decrease in its magnitude in comparison to the situation in
which it is neglected. Consequently, the results presented in this work do not strongly depend on
this π/4 correction to the vertical curvature. The second term on the right-hand side of Eq. (17)
accounts for the contribution of the constant curvature (2/b) associated with the interface profile
in the direction perpendicular to the Hele-Shaw cell plates. Notice that our Eq. (17) is a simplified
version of more sophisticated versions of the pressure boundary condition that take into account
wetting film effects [36,37]. Under certain circumstances, a thin wetting film of the driven fluid
will be left adhering to the Hele-Shaw cell plates as the fluid-fluid interface moves. Variations in
thickness of this film causes the curvature in the direction perpendicular to the Hele-Shaw cell plates
to be velocity dependent, as proposed by Park and Homsy in Ref. [36]. The presence of such wetting
film reintroduces complicated three-dimensional effects into the problem. Ignoring the action of the
wetting thin film to the in-plane curvature corrections in the dynamics of the interface modes is
equivalent to neglect dissipation in the films. So ignoring such a dynamic correction to the in-plane
curvature could indeed be of significance for a more complete analysis of the interface dynamics.
Although the inclusion of such a laborious wetting film contribution is beyond the scope of our
current weakly nonlinear study for nonzero Re, we direct the predisposed reader to Refs. [38,39]
for a detailed description of the action of wetting on the dynamics of injection-driven, and lifting
Hele-Shaw cell flows when Re = 0.

In the pursuit of a dynamic equation for the time evolution of ζn, we substitute Eqs. (15) and (16)
into pj = p

(0)
j + Re2p

(1)
j [Eq. (6)] and evaluate the resulting expression at the perturbed interface
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r = R. Then, by substituting p1 and p2 into the pressure boundary condition (17), we get the
following dynamic equation for the system:{

φ
(0)
1 − βφ

(0)
2 + Re2

[(
∂φ

(0)
1

∂t
− 3

5

∣∣∇φ
(0)
1

∣∣2
)

+ �2 r2

2
+ φ

(1)
1 − α

(
∂φ

(0)
2

∂t
− 3

5

∣∣∇φ
(0)
2

∣∣2
)

−α�2 r2

2
− φ

(1)
2

]}
r=R

= B

[
κ + 8

π
q

]
r=R

, (19)

where the parameters α = ρ2/ρ1 and β = η2/η1 are the density and the viscosity ratios, respectively.
Finally, by keeping terms up to second order in ζ in Eq. (19), and Fourier transforming, we obtain

the equation of motion for the perturbation amplitudes (for n �= 0):

Re2ζ̈n +
(

1 + β

1 + α

)
ζ̇n −

{
�(n) + Re2|n|

[(
1 − α

1 + α

)
�2 + isgn(n)�̇

]}
ζn

=
∑
n′ �=0

[F(n,n′) + Re2K(n,n′)]ζn′ζn−n′ +
∑
n′ �=0

G(n,n′)ζ̇n′ζn−n′

+Re2
∑
n′ �=0

[L(n,n′)ζ̈n′ζn−n′ + H(n,n′)ζ̇n′ ζ̇n−n′ ], (20)

where

�(n) = |n|
[

B

1 + α
(1 − n2)

]
. (21)

The second-order mode-coupling terms are given by

F(n,n′) = −|n| B

1 + α

[
1 − n′

2
(3n′ + n)

]
, (22)

K(n,n′) = |n|
(

1 − α

1 + α

){
�2

2
− in′�̇

[
sgn(nn′) − 1

|n| − 1

]}
, (23)

G(n,n′) =
(

1 − β

1 + α

)
{|n|[sgn(nn′) − 1] − 1}, (24)

L(n,n′) =
(

1 − α

1 + α

)
{|n|[sgn(nn′) − 1]} − 1, (25)

and

H(n,n′) = |n|
(

1 − α

1 + α

)(
sgn(nn′) + 3

5
{sgn[n′(n − n′)] − 1}

)
− 1, (26)

where the sgn function equals ±1 according to the sign of its argument.
Expressions (20)–(26) represent the mode-coupling equations of a quite general viscous fingering

problem in a rotating Hele-Shaw cell, constituting one of the central results of this work. These
equations open up the possibility to investigate the time evolution of the perturbation amplitudes
(accurate to second order) considering the action of a time-dependent angular velocity and inertia.
This is valid for arbitrary values of the viscosity (β) and density (α) ratios, and the rotational Bond
number B, under low (but nonvanishing) Reynolds numbers Re (Re2 � 1). For the particular case
in which α → 0, β → 0 and �̇ = 0, Eq. (20) reproduces the simpler results obtained in Ref. [34]
for the corresponding one-fluid version of the problem with constant angular velocity.

Despite the complex functional form of Eqs. (20)–(26), as we will see in the following section,
they furnish a fairly simple picture to the linear and weakly nonlinear phenomena that occur in
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rotating Hele-Shaw flows. In addition to providing relevant information about the linear stage of the
dynamics (Sec. III A), they offer useful insight into the response of the important finger competition
events to the action of � and Re (Sec. III B).

III. EFFECTS OF TIME-DEPENDENT ANGULAR VELOCITY AND INERTIA

A. Linear stage

Although the main focus of our study is to examine the impact of �(t) and Re on the intrinsically
nonlinear finger competition dynamics in rotating Hele-Shaw cells, in this section we briefly discuss
some noteworthy aspects related to the linear stability of the system.

Here our leading goal is to analyze the influence of a time-dependent angular velocity and fluid
inertia on the two-fluid interface at very early time stages of the flow dynamics. In this initial time
regime, the fluid-fluid interface is just mildly deformed by centrifugal forces. Under these conditions,
the interfacial perturbations ζ are so small that second-order and higher-order terms in ζ can be
safely neglected. This is the reason why such an initial pattern formation stage is commonly referred
to as the “linear” dynamical stage (meaning, linear in ζ ). Within this linear framework, we can
ignore the second-order terms in ζ that appear in Eq. (20), in such a way that the equation of motion
for the perturbation amplitudes is significantly simplified, being reduced to

Re2 ζ̈n +
(

1 + β

1 + α

)
ζ̇n −

{
�(n) + Re2|n|

[(
1 − α

1 + α

)
�2 + isgn(n)�̇

]}
ζn = 0. (27)

Note that, since the rotating Hele-Shaw cell plates accelerate, the coefficients in Eq. (27) that
involve �(t) and �̇(t) do depend on time. For a general functional form of �(t), this implies in a
serious impediment to calculate a closed-form analytical expression for the linear growth rate of
the system. Hence, already at the linear stage, the rotating Hele-Shaw cell problem with a general
time-dependent angular velocity �(t) is usually not amenable to analytical treatment. Therefore,
in general one defines the linear growth rate as λ(n,t) = Real[ζ̇n/ζn] and often deal with it by
numerically solving Eq. (27).

Before we continue, it is worth making a few remarks about the particular time-dependent angular
velocity that will be used throughout this work to illustrate our results. In principle, the functional
form of �(t) can be quite general. However, to keep a close connection with real life experiments
in rotating Hele-Shaw cells, we consider the specific functional form used in the experimental
measurements carried out in Ref. [7]:

�(t) = �0[1 − exp (−γ t)], (28)

where �0 is the asymptotic, steady angular velocity, and γ is a positive constant. Notice that we can
control the intensity of the plates rotation acceleration by changing the value of γ . In this way, the
limit of constant angular velocity is reached by taking γ → ∞.

Providentially, for the specific functional form given by Eq. (28), we find a closed-form solution
for the differential equation (27), which reads

ζn(t) = exp

{
−[

√
δ2 + 4c1(n) + δ]t/2 −

√
c3(n)

γ
exp (−γ t)

}

×
⎧⎨
⎩A1U

⎡
⎣ c2(n)√

c3(n)
+ γ +

√
δ2 + 4c1(n)

2γ
,1 +

√
δ2 + 4c1(n)

γ
,
2
√

c3(n)

γ
exp (−γ t)

⎤
⎦

+A2L

⎡
⎣− c2(n)√

c3(n)
− γ −

√
δ2 + 4c1(n)

2γ
,

√
δ2 + 4c1(n)

γ
,
2
√

c3(n)

γ
exp (−γ t)

⎤
⎦

⎫⎬
⎭, (29)

where U is the confluent hypergeometric function of the second kind, L is a generalized Laguerre
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polynomial,

δ = 1

Re2

(
1 + β

1 + α

)
, (30)

c1(n) = 1

Re2 �(n) + |n|
(

1 − α

1 + α

)
�2

0, (31)

c2(n) = i�0γ n − 2|n|
(

1 − α

1 + α

)
�2

0, (32)

and

c3(n) = |n|
(

1 − α

1 + α

)
�2

0. (33)

In Eq. (29) the constants A1 and A2 are determined by the initial conditions. In spite of the
somewhat cumbersome nature of this linear closed-form solution, now the linear growth rate λ(n,t) =
Real[ζ̇n/ζn] can be evaluated by directly utilizing Eq. (29).

In seeking to strengthen the pragmatic and academic relevance of our study, during the rest of
this work we ensure that the values of all relevant dimensionless parameters we use are consistent
with realistic physical quantities related to existing rotating Hele-Shaw cell arrangements and with
material properties of the fluids [6–10]. It should be stressed that existing experimental studies
in rotating Hele-Shaw cell with constant angular velocity are performed under considerably low
Reynolds number conditions. In these situations, the largest Reynolds number used was Re = 0.04
[9]. However, from the typical Hele-Shaw cell parameters (i.e., cell gap thickness, and cell angular
velocity) and material properties of the fluids involved (viscosities, densities, and surface tension
values), considerably larger values for genuine Reynolds numbers could be used. For instance,
Reynolds numbers like Re = 0.1 and Re = 0.3 are perfectly achievable [5–10,29,32]. So, in our
current theoretical study, in order to examine the role played by inertial effects and �(t), we consider
Reynolds numbers varying in the perfectly feasible range O(10−2) � Re � O(10−1).

Before continuing with our linear analysis, we make a few relevant observations about Eq. (28).
Although our mode-coupling results given by Eqs. (20)–(26) are valid and accurate for any general
functional form �(t) for a time-dependent angular velocity, here we justify the reason for choosing
the specific exponential form given by Eq. (28) to exemplify our theoretical results. In the end, the
utilization of Eq. (28) was motivated by practical reasons, in the sense that this particular functional
form arises, and has already been implemented, and analyzed, in real life rotating Hele-Shaw cell
experiments performed in Ref. [7]. Nonetheless, as commented in Sec. I, the angular velocity given
in Eq. (28) expresses a transient regime that actually occurs during a constant angular velocity Hele-
Shaw cell situation, since in practice the cell cannot reach a constant angular velocity instantaneously.
The experimental verifications carried out in Ref. [7] have shown that, under the very low Reynolds
number conditions of their experiments [Re � O(10−2)], such a short-lived time-dependent velocity
has no influence whatsoever on the fluid dynamic evolution of their rotating Hele-Shaw cell problem.
So one could wonder what is the point of using this apparently uninfluential time-dependent angular
velocity form in our current investigation. As it turns out, in this work, we study a time-dependent
angular velocity rotating Hele-Shaw problem, by taking into consideration the role played by inertial
effects, �(t), and the acceleration of the Hele-Shaw plates, which is quantified by γ . Therefore,
during our study we are allowed to consider Reynolds number values that are larger than those
considered in Ref. [7]. In addition, we can also deal with lower values of γ so that the transient
regime of the rotating process can take much longer than those observed in usual rotating experiments
[6–10]. This opens up the convenient possibility of testing how the time-dependent angular velocity
given by Eq. (28) affects the linear and weakly nonlinear dynamics of the rotating Hele-Shaw cell
problem when inertial effects are non-negligible [i.e., under the action of larger Reynolds number
values, where Re ∼ O(10−1)] and for an arbitrary duration of the rotational acceleration regime.
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FIG. 2. Linear growth rate λ(n,t) as a function of time t , for α = 10−3, β = 0, and B = 3.0 × 10−3. The
action of both a constant (γ → ∞), and a time-dependent (γ = 2) angular velocity is examined. (a) Re = 0.03,
n = 2, n = 4, and n = 8. (b) n = 8, and two Reynolds numbers (Re = 0.03, and Re = 0.2) are considered.

Therefore, the use of Eq. (28) to illustrate our results does not mean that our study is restricted to
analyzing only transient effects of a particular time-dependent angular velocity on the dynamics
of the rotating flow system. After all, our Eqs. (20)–(26) are valid and accurate for any general
functional form �(t), in the presence or absence of an eventual transient regime.

Now, to examine how the linear growth rate behaves as time advances, we analyze Fig. 2. For the
sake of simplicity, we concentrate our attention on a physical situation that is commonly explored
in actual rotating Hele-Shaw cell experiments [6–10], where an initial circular drop of a viscous and
dense oil is surrounded by air (of negligible density and viscosity). In this case, consistently with
usual experiments, the values we take for the density and viscosity ratios are α = 10−3 and β = 0,
respectively. Furthermore, we consider the action of both a constant angular velocity (γ → ∞,
represented by dashed curves), as well as a time-dependent angular velocity (γ = 2, pictured by
solid curves). A typical Bond number is taken as B = 3.0 × 10−3.

In Fig. 2(a) we plot the linear growth rate λ(n,t) as a function of time t , for three representative
Fourier modes: n = 2, n = 4, and n = 8. Moreover, we set a very small value for the Reynolds
number, Re = 0.03. By inspecting Fig. 2(a), we verify that for a constant angular velocity, regardless
of the Fourier mode considered, the growth rate does not depend on time. This is actually in
accordance with the results previously obtained in Ref. [34]. Nonetheless, a notably distinct behavior
is found when the angular velocity varies in time: if γ = 2, we observe that the growth rate evolves
in time differently for each mode n, and its magnitude tends asymptotically to the corresponding
constant angular velocity values at later times.

Interestingly, for γ = 2 in Fig. 2(a), we identify the existence of a series of critical times at which
the two-fluid interface becomes unstable [i.e., λ(n,t) > 0] for a given mode n. It is also clear that
modes having lower n become unstable earlier than larger Fourier modes. This effect occurs due to
the action of the augmenting angular velocity that destabilizes the interface in such a way that higher
Fourier modes become increasingly more unstable as time progresses. Of course, this is not detected
if the angular velocity is constant in time. Curiously, this time-varying rotating flow behavior is
quite similar to the cascade growth of the Fourier amplitudes encountered in injection-driven radial
Hele-Shaw flows [40,41]. However, in contrast to the rotating system we study here [for which
� = �(t), and R is constant], in the injection-driven process, the critical times arise because the
unperturbed interface radius increases with time [i.e., because R = R(t)].

In order to expressly probe the role played by inertial effects at the linear regime, in Fig. 2(b) we
show how the growth rate evolves in time, for two values of the Reynolds number: a very small one,
Re = 0.03, and another considerably larger, given by Re = 0.2. Here we describe things for a fixed
Fourier mode, namely, for n = 8. By examining Fig. 2(b), we see that inertia tends to stabilize the
two-fluid interface in two different ways: when a higher Reynolds number is considered (Re = 0.2),
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we observe (i) a lowering of the growth rate magnitude and (ii) a small delay in the instant of time
at which the Fourier mode becomes unstable.

We have verified that, at the linear level, the dominant dynamic effect comes from the angular
velocity �, and not from the angular acceleration �̇. Moreover, we have observed that the acceleration
provokes only an overall rotation (phase modulation related to the imaginary part of the growth rate)
of the interfacial patterns. This effect bears a curious resemblance to the phase drift that is so typical
in the rotating Hele-Shaw cell dynamics with Coriolis effects [4,22–27].

The basic linear aspects discussed in Fig. 2 are obviously of interest, and useful to understand
interface stability issues at the very beginning of the pattern formation process. But, unfortunately,
one cannot assess the fundamentally important finger competition phenomena usually detected in
rotating Hele-Shaw flows at the purely linear level. This key nonlinear facet of the problem, and the
influence of �(t) and Re on its development, will be scrutinized in the next section, via a weakly
nonlinear approach.

B. Nonlinear stage

From the weakly nonlinear, second-order perturbative studies performed in Refs. [16,41], it has
been shown that the finger competition phenomena detected in Hele-Shaw cells can be accurately
described by considering the coupling between the fundamental mode n and its subharmonic mode
n/2. Therefore, to tackle finger competition issues at the weakly nonlinear level it is convenient to
rewrite the net interface perturbation ζ (θ,t) in terms of these two specific Fourier modes

ζ (θ,t) = ζ0 + an(t) cos(nθ ) + bn(t) sin(nθ ) + an/2(t) cos(nθ/2) + bn/2(t) sin(nθ/2), (34)

where for a given mode an(t) = [ζn(t) + ζ−n(t)] and bn(t) = i[ζn(t) − ζ−n(t)] denote the real-valued
cosine and sine amplitudes, respectively. Besides, by imposing mass conservation (or, by keeping
constant the area encircled by the two-fluid interface), we have that

ζ0 = − 1

4R
{[an(t)]2 + [an/2(t)]2 + [bn(t)]2 + [bn/2(t)]2}. (35)

As demonstrated in Refs. [16,41], one can extract key information about the finger competition
dynamics in Hele-Shaw flows by inspecting the behavior of the cosine and sine subharmonic
perturbation amplitudes. The cosine perturbation amplitude an/2 breaks the n-fold rotational
symmetry of the fundamental mode, by alternately increasing and decreasing the length of each
of the n fingers. This effect describes competition of outward pointing fingers of the inner fluid. On
the other hand, the sine perturbation amplitude bn/2 distorts the fingers while varying the depths of
the “valleys” between the outward pointing fingers. These valleys are in fact the inward pointing
fingers of the outer fluid. It should be noted that, in rotating Hele-Shaw flows, both inward and
outward pointing fingers are allowed to move in order to conserve mass in the fluid system.

This weakly nonlinear picture for finger competition (or finger length variability) in such a
confined fluid flow environment is actually quite simple to grasp. For example, if one verifies that
growth of an/2 is increased, while the growth of bn/2 is inhibited, the result is an increased variability
among the lengths of outward pointing fingers of the inner fluid. As pointed out above, this effect
describes enhanced competition of the outward moving fingers. Note that this nonlinear competition
mechanism determines the preferred direction for finger growth and finger length variability. In
other words, if an/2 increases and bn/2 decreases, even though there exists finger competition in both
directions (outward and inward), the competition among outward pointing fingers is much stronger
than the competition among inward pointing fingers. These conclusions are reversed if instead the
growth of bn/2 is favored over the growth of an/2. In this last case, competition of the inward pointing
fingers of the outer fluid would have preferential growth.

It should be stressed that the validity and correctness of such a finger competition mechanism have
been extensively tested by numerical simulations [18–21]. These sophisticated numerical studies
have verified that the weakly nonlinear predictions regarding finger competition behavior [16,41]
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remain valid for advanced time (fully nonlinear) stages of the rotating Hele-Shaw cell dynamics.
As a matter of fact, the weakly nonlinear predictions are also in line with the rotating Hele-Shaw
experiments conducted in Refs. [6,9,10].

The possibility of capturing important finger competition phenomena already at the lowest
nonlinear level (i.e., at second-order in ζ ) and by conveniently utilizing just two relevant Fourier
modes (the fundamental n and its subharmonic n/2) should not be taken for granted. After all,
the situation could have been much more complicated to describe via theoretical means. For
instance, the inclusion of third, fourth, or higher perturbative orders could have been required,
or the consideration of the coupling among many more Fourier modes could have been necessary.
These observations justify the usefulness of our analytical weakly nonlinear calculations for rotating
Hele-Shaw flows in which the effects of �(t) and Re are taken into account. Regarding other
alternative approaches, for instance, the solution and description of the system through intensive,
fully nonlinear numerical simulations, it is not exactly trivial to implement, and is indeed much
more expensive computationally. Therefore, to probe the onset of nonlinear effects (e.g., finger
competition events) in our confined rotating flow system, the weakly nonlinear scheme we employ
in this work stands as a valuable theoretical tool.

To examine the finger competition behavior under time-dependent angular velocity and
nonvanishing Re conditions, one needs to describe the time evolution of the interface by using
Eqs. (34) and (35). Specifically, one has to know how the amplitudes an(t), bn(t), an/2(t), and bn/2(t)
evolve in time. In practical terms, we do this by rewriting the complex amplitude representation of
the mode-coupling equation (20) in terms of the real-valued sine and cosine modes, by considering
the interplay of modes n and n/2, and then numerically solving the resulting coupled nonlinear
differential equations. Following Refs. [16,41], without loss of generality, we choose the phase of
the fundamental mode so that an(t) > 0 and bn(t) = 0. Another way to obtain the nonlinear evolution
of the rotating interface is through the combination of the linear solution (29) with the nonlinear
equation (20). Since in this work we are considering terms up to second order in ζ , we can replace ζn′

and ζn−n′ (and their derivatives) in the nonlinear terms on the right-hand side of Eq. (20) by the exact
linear solution (29). This calculation results in a very complicated ordinary differential equation for
ζn that represents the early stages of the nonlinear dynamics. Finally, one can rewrite this resulting
differential equation to obtain coupled differential equations for the modes an(t), bn(t), an/2(t), and
bn/2(t), and only after this solve them numerically.

Before proceeding to the analysis of the finger competition responses under time-dependent
angular velocity and Re �= 0 circumstances, we briefly comment on what is already well known
regarding the finger competition dynamics in rotating Hele-Shaw flows with constant angular velocity
and Re = 0. It has been reported that, under constant angular velocity and negligible Re, finger
competition depends strongly on the viscosity ratio β = η2/η1 [6,9,10,16,18–21]. Namely, if 0 �
β < 1 (β > 1) one finds enhanced competition among inward (outward) pointing fingers. Moreover,
it has also been verified that finger competition (for both inward and outward pointing fingers) is
significantly inhibited when β = 1. In this section, we investigate how these conventional (constant
angular velocity, and vanishing Re) finger competition reactions to changes in the viscosity ratio are
affected, if the angular velocity of the rotating Hele-Shaw cell varies in time, and if inertial effects
are taken into consideration.

To study the weakly nonlinear finger competition behaviors expressed by typical pattern-forming
structures in a rotating Hele-Shaw with the time-dependent angular velocity given by Eq. (28), we
begin our discussion by examining Fig. 3. In this figure, we set γ = 2, and consider three increasing
values of the Reynolds number: (a) Re = 0.03, (b) Re = 0.16, and (c) Re = 0.2. On the top panels,
we plot the time evolution of the fluid-fluid interfaces considering the interaction of the fundamental
mode n = 10, and its subharmonic n/2 = 5. The time varies in the range 0 � t � tf , where the
final time tf is defined as the time at which the amplitude of the fundamental mode has reached the
same magnitude [namely, an(t = tf ) = 0.15] for each value assumed by Re. This is done with no
loss of generality, in order to make the generated patterns to have approximately the same size at
t = tf . The various interfaces are plotted separated by equally spaced time steps �t = tf /25. On the
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FIG. 3. Time overlaid plots (top panels) illustrating the typical evolution of the two-fluid interfaces obtained
in rotating Hele-Shaw flows, for a time-dependent angular velocity given by Eq. (28) with γ = 2 and three
increasing values of the Reynolds number: (a) Re = 0.03, (b) Re = 0.16, and (c) Re = 0.2. The resulting
fingering patterns (shaded areas) obtained at the final time t = tf are shown in the middle panels. The snapshots
are taken for times (a) tf = 1.9107, (b) tf = 2.072, and (c) tf = 2.1599, where tf is defined as the time at which
the amplitude of the fundamental mode has reached the value an(t = tf ) = 0.15, for each value of Re. The
small arrows point in the direction of inward or outward motion of the competing fingers. The dashed circles
are added to facilitate visualization of the competition among the fingers. The corresponding time evolution of
the perturbation amplitudes an(t), an/2(t), and bn/2(t), for modes n = 10 and n/2 = 5 is depicted in the bottom
panels. We set α = 10−3, β = 0, and B = 3.0 × 10−3.

middle panels, we depict snapshots of the resulting interfacial patterns produced at final times t = tf .
For clarity, the final shapes have been shaded. The small arrows indicate the direction of motion
(inward, or outward) of the competing fingers, and the dashed circles guide the eye, helping in the
visualization of finger competition events. Finally, on the bottom panels, we show the corresponding
time evolution of the perturbations amplitudes an, an/2, and bn/2. In Fig. 3, similarly to what we did
in Fig. 2, we consider a situation widely explored experimentally, in which the inner fluid is much
more dense and viscous than the outer fluid. Under such circumstances we choose α = 10−3, β = 0,
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and B = 3.0 × 10−3. In addition, we take the initial conditions an(0) = 3.3 × 10−4, and an/2(0) =
bn/2(0) = 2.5 × 10−4. Likewise, we pick ȧn(0) = −9.9 × 10−4 and ȧn/2(0) = ḃn/2(0) = 0.

We call the reader’s attention to a very important point about the way data are presented in Fig. 3.
It is worth noting that, for the values of time chosen to display the interfacial patterns depicted in
Figs. 3(a)–3(c), the angular velocities have almost reached a steady value, in the sense that they are all
approximately equal to �0 (≈0.98�0). Therefore, for these times, the transient regime in which the
system effectively accelerates is basically over. In this way, in Fig. 3 we compare different situations
(each having a different Re), but all of them are considered at times in which the instantaneous
angular velocities are all very similar to one another.

We initiate our discussion by surveying Fig. 3(a), which considers a very small Reynolds number
situation (Re = 0.03). From the interface time evolution depicted in the top panel, and with the
guidance of the auxiliary dashed circles and small arrows indicated in the middle panel of Fig. 3(a),
one readily verifies a strong competition among the inward pointing fingers of the outer fluid, as well
as a not so intense competition among the outward pointing fingers of the inner fluid. These visual
findings are in agreement with what is shown more quantitatively in the bottom panel of Fig. 3(a),
where we see an enhanced growth of the sine subharmonic bn/2(t), as opposed to a comparatively
modest growth of the cosine subharmonic an/2(t). All this information is not entirely surprising,
since it is well established (for the usual constant angular velocity situation, and very small Re)
[6,9,10,16,18–21] that for β = 0 the most prominent finger competition feature is indeed a strong
competition among inward pointing fingers. Therefore, even though in Fig. 3(a) the angular velocity
is actually varying in time, since the Reynolds number is so small, the finger competition behavior for
γ = 2 is not that different from the one typically found under constant angular velocity conditions
(γ → ∞).

A significantly different scenario is revealed in Fig. 3(b), where a larger Reynolds number is
used (Re = 0.16). Now, from the top and middle panels of Fig. 3(b) it is apparent that, in contrast
to what is observed in Fig. 3(a), there is no competition among the inward pointing fingers. In
addition, one also notices an increased competition among the outward pointing fingers. These
pictorial conclusions are supported by the complementary results presented on the bottom panel of
Fig. 3(b), where bn/2(t) is nearly zero and does not change as time progresses. On the other hand,
one can see that an/2(t) grows at later times, reaching a final magnitude that is a bit larger than the
one obtained in Fig. 3(a). From these observations, and knowing that here β = 0, we can say that
these results for Re = 0.16 are certainly unexpected. A comparative analysis between Fig. 3(a) and
Fig. 3(b) does indicate that, depending on the value of Re, the finger competition responses obtained
under a time-varying angular velocity situation can be considerably different.

In Fig. 3(c) we analyze a situation in which an even higher value of the Reynolds number is utilized
(Re = 0.2). By examining the top and middle panels of Fig. 3(c), we find noticeable competition
among both inward and outward pointing fingers. The resulting finger competition behavior in
Fig. 3(c) is a sort of combination of part of the finger competition responses already observed in
Fig. 3(a), and in Fig. 3(b). More specifically, in Fig. 3(c) the inward pointing fingers behave similarly
to the inward pointing fingers of Fig. 3(a), while the outward moving fingers of Fig. 3(c) react as
the outward moving fingers of Fig. 3(b). These remarks can be better understood by going through
the data depicted in the bottom panel of Fig. 3(c). By increasing Re further away from its value at
which bn/2(t) = 0 [namely, Re = 0.16 as in Fig. 3(b)], the result is inducing the growth of a negative
sine perturbation amplitude. So, as in Fig. 3(a), the magnitude of bn/2(t) in Fig. 3(c) increases as
time advances, but in the end it reaches a smaller value. However, instead of being positive, bn/2(t)
acquires negative values. It turns out that this change in sign is inconsequential with respect to the
dominant finger competition behavior for the inward pointing fingers. Additionally, considering that
the growth of an(t), and an/2(t) are quite similar in Figs. 3(b) and in 3(c), it is no surprise to find
similar behaviors for the outward pointing fingers in these two situations.

From Fig. 3 it is evident that the major effects related to changes in Re under time-dependent
angular velocity circumstances are reflected on the growth of the sine perturbation amplitude bn/2(t),
which is significant in Fig. 3 (a), nearly zero in Fig. 3(b), and again sizable in Fig. 3(c). Consequently,
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FIG. 4. Behavior of the perturbation amplitudes an/2 and bn/2 as the Reynolds number Re is changed under
constant angular velocity (γ → ∞, represented by the dashed curves), and under a time-dependent angular
velocity condition (γ = 2, symbolized by the solid curves). All physical parameters and initial conditions are
the same as the ones used in Fig. 3.

one may say that the consideration of a time-varying angular velocity and inertial effects allows
a welcome flexibility for the possible finger competition outcomes when β = 0. If β = 0, and the
angular velocity is constant, one always finds the same dominant dynamic response: i.e., a stronger
competition among inward pointing fingers. Conversely, if β = 0, and the angular velocity varies in
time, one can make this competition behavior among inward fingers to decrease, to simply disappear,
or yet to increase again, just by properly adjusting the value of the Reynolds number.

As a final remark about the results extracted from Fig. 3, one should realize that the reason behind
the fact that the finger competition behavior illustrated in Fig. 3(a) for � = �(t) to be almost identical
to the one that occurs at constant angular velocity, is not due to the particular exponentially increasing
form of Eq. (28) (for which a transient regime naturally arises). But it is related to the fact that the
Reynolds number used in Fig. 3(a) is very low (Re = 0.03). This is exactly what happened in Ref. [7]:
despite dealing with a time-dependent angular velocity [also given by Eq. (28)], their experimental
findings (obtained at very low Re) showed no difference to those obtained at the regime in which
the angular velocity is constant in time. The key role played by Re becomes evident by examining
Fig. 3(b), which utilizes the very same �(t) used in Fig. 3(a) but detects a finger competition response
that is quite distinct from the one observed at a constant angular velocity condition. This is verified
because in Fig. 3(b) a significantly larger Reynolds number is used (Re = 0.16). Actually, this last
remark is also applied to Fig. 3(c). Moreover, this happens irrespective of the fact that a transient
is still present in Fig. 3(b) and in Fig. 3(c). So the results presented in Fig. 3 show that the effects
of a time-dependent angular velocity are consequential for the finger competition dynamics, only if
one considers sufficiently large Reynolds numbers. Is is also worth noting that the weakly nonlinear
theory we developed is valid to a general form, time-dependent angular velocity �(t), and not at
all restricted to the particular exponential form given in Eq. (28). In fact, Eqs. (20)–(26) apply to a
much more general situation that may involve, or not, the existence of an eventual transient regime.

Supplementary information about the changes occurring in the finger competition behavior when
the Reynolds number is varied is provided by Fig. 4. By using the very same set of physical
parameters, and initial conditions utilized in Fig. 3, Fig. 4 illustrates how the perturbation amplitudes
an/2 and bn/2 behave as the Reynolds number continuously sweeps the range of values 0 � Re � 0.2.
This is done for a constant angular velocity situation (γ → ∞, portrayed by the dashed curves), as
well as for a time-dependent angular velocity condition (γ = 2, represented by the solid curves).
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FIG. 5. Variation of the perturbation amplitudes an/2 and bn/2 as the Reynolds number Re is varied, under
constant angular velocity (γ → ∞, expressed by the dashed curves), and under a time-dependent angular
velocity condition (γ = 2, pictured by the solid curves). Three representative values for the viscosity ratio
are considered: (a) β = 0, (b) β = 1, and (c) β = 100. Here we take α = 0.5, n = 8, and n/2 = 4. All other
physical parameters and initial conditions are exactly the same as the ones employed in Fig. 3.

Similarly to what has been done in Fig. 3, the times for which Fig. 4 is plotted are the times at which
the perturbation amplitude of the fundamental mode has reached the magnitude an = 0.15, for each
value assumed by the Reynolds number. This criterion for setting the times used in the plots is also
applied to Fig. 5. By observing the dashed curves in Fig. 4, it is apparent that the magnitudes of an/2

and bn/2 do not change much if the angular velocity is constant. This means that, within the low
Reynolds number situation considered here (Re2 � 1), the finger competition behavior is almost
insensitive to changes in Re, if the angular velocity of the rotating Hele-Shaw cell is constant in time.
Nevertheless, a completely different scheme is unveiled when we follow the changes experienced by
the solid curves when Re is modified. Although the changes in the cosine subharmonic amplitude an/2

are not really impressive as Re is increased, the corresponding modifications in the sine subharmonic
amplitude bn/2 are much more intense. As Re is increased, the magnitude of bn/2 drops significantly,
ultimately reaching a zero value. As a consequence, the competition among inward pointing is
decreased and eventually ceases during this process. So, in spite of the fact that β = 0, by increasing
Re, there is a clear tendency to decrease the competition among inward fingers, accompanied by
a simultaneous inclination to moderately increase competition among outward pointing fingers.
Nonetheless, as Re is increased further, the sign of bn/2 becomes negative, but its magnitude starts
to increase again. In this case, the result is the reoccurrence of finger competition among inward
and outward pointing fingers. The findings of Fig. 4 for a range of values of Re generalize and
substantiate the results discussed in Fig. 3 for just three particular values of Re. Therefore, on the
basis of these facts, one can see that, for β = 0, the finger competition scenario for a time-dependent
angular velocity �(t) and Re �= 0 is considerably richer than the one associated to the simpler
constant angular velocity situation at Re = 0.

As mentioned earlier in this work, it is well known that, under the condition of constant angular
velocity, the finger competition behavior in rotating Hele-Shaw cells depends strongly on the
viscosity ratio β [6,9,10,16,18–21]. Therefore, it is of interest to revisit the situations examined
in Figs. 3 and 4, which are restricted to the case β = 0, and explore them further by considering
other values of the viscosity ratio. This is done in Fig. 5, which illustrates how the perturbation
amplitudes an/2 and bn/2 respond to changes in the Reynolds number Re, considering both constant
(dashed curves) and time-varying (solid curves) angular velocities, for three characteristic values of
the viscosity ratio: (a) β = 0, (b) β = 1, and (c) β = 100. In order to assess such values of β, and still
keep a close connection to the typical material properties of the fluids involved in real experiments,
here we consider that the density ratio is α = 0.5. In addition, we take n = 8, and n/2 = 4. However,
the remaining physical parameters, and all initial conditions are identical to those utilized in Fig. 4.

First, in Fig. 5(a) we consider the situation in which β = 0 (outer fluid is inviscid). Despite the fact
that in Fig. 5(a) β = 0, and α = 0.5, while in Fig. 4 β = 0, and α = 10−3, the way the amplitudes
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an/2 and bn/2 react to changes in Re is rather similar in both cases. If the angular velocity is kept
constant (dashed curves), the amplitudes an/2 and bn/2 hardly change as Re is increased, meaning
that the finger competition events are basically indifferent to variations in the Reynolds number
under such conditions. Nevertheless, if the angular velocity is time-dependent (solid curves), one
easily identifies that bn/2 changes significantly as Re is augmented (bn/2 decreases consistently to
zero, and then changes in sign), while an/2 just increases modestly. So, as it happened in Fig. 4, as
Re grows in Fig. 5(a) one should expect an initial decrease in the competition of inward fingers,
followed by a situation in which such competition goes to zero and then reappears. Likewise, all this
happens while the competition among outward pointing fingers (measured by an/2) mildly increases
as Re assumes larger values.

Now we turn to Fig. 5(b) which focuses on the viscosity-matched situation β = 1. If the angular
velocity is constant (dashed curves), we see that the amplitudes an/2 and bn/2 remain quite small, and
nearly unchanged as Re is varied. So, as expected for the situation in which β = 1 and γ → ∞, the
competition among inward as well as among outward fingers is tempered. This finger competition
dynamical response changes considerably if the angular velocity is time-dependent (solid curves). If
γ = 2, one finds that the cosine (sine) perturbation amplitude increases (decreases) if the Reynolds
number is increased. As a result, although β = 1, since the angular velocity varies in time, one
encounters enhanced (restrained) competition among outward (inward) fingers as Re reaches higher
magnitudes.

Last, we investigate Fig. 5(c) which takes a higher value of the viscosity ratio (β = 100), meaning
that the outer fluid is significantly more viscous than the inner fluid. Recall that for a constant angular
velocity, we anticipate the occurrence of an increased competition among outward pointing fingers.
This is precisely what we find in Fig. 5(c), as expressed by the dashed curves, where the magnitude
of an/2 is considerably greater than the magnitude of bn/2. As usual, for this γ → ∞ case, these
responses do not change much if Re is modified. Amazingly enough, the same type of finger
competition behavior is observed if the angular velocity varies in time. As a matter of fact, as readily
identified in Fig. 5(c), if β = 100 the finger competition behavior for constant and time-dependent
angular velocities are almost indistinguishable. From Figs. 5(a)–5(c), one realizes that the impact
of the time-dependent angular velocity and inertia on the finger competition mechanism becomes
increasingly less important as the viscosity ratio is enlarged. So, regarding the sensitivity of finger
length variability when a whole range of allowed magnitudes for β is considered, we have verified
that the most significant effects related to the action of �(t) and Re should arise at relatively low
values of β (i.e., 0 � β � 10).

IV. CONCLUSION

We have studied some aspects of the dynamics in a rotating Hele-Shaw cell which spins with
a time-dependent angular velocity �(t). Proper evaluation of the effects caused by �(t) on the
fluid-fluid interface behavior requires the inclusion of inertial effects. Hence, we tackled the
interfacial pattern formation problem in such a confined rotating fluid flow environment, by utilizing
a generalized Darcy’s law approach. This allowed us to take into consideration the impact of the
Reynolds number Re and �(t) on the linear stability, as well as on nonlinear finger competition
dynamics of the system.

By employing a perturbative mode-coupling theory, and considering low values of Re (Re2 � 1),
we have derived an equation of motion for the two-fluid interface. Such a nonlinear differential
equation describes the time evolution of the perturbation amplitudes up to second-order [O(ζ 2)]
accuracy, for arbitrary viscosity and density ratios.

At the linear level [O(ζ )], we detected the development of a peculiar cascade of modes which
become increasingly unstable with time due to the action of �(t). In addition, we have found that
inertial effects tend to stabilize the system, by decreasing the magnitude of the growth rate, and by
introducing delay effects into the linear stability dynamics. However, the most significant findings
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regarding the influence of �(t) and Re on the two-fluid interface have been unveiled at the weakly
nonlinear regime.

At the onset of nonlinearities [O(ζ 2)], we have found that the interplay of �(t) and Re significantly
affects the finger competition events, inducing the emergence of various changes in the traditional
(constant angular velocity) finger length variability behavior of the system, as the density and the
viscosity ratios are changed.

In conclusion, our linear and weakly nonlinear results indicate that the time-dependent angular
velocity �(t) and inertia (Re �= 0) introduce a number of nontrivial modifications into the
conventional rotating Hele-Shaw problem (for which � is constant in time, and Re = 0). Based
on the possibilities opened up by our theoretical predictions, we hope our findings will motivate
researchers to try to check them experimentally in the future, considering non-negligible Reynolds
number conditions.
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