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Film flow along an inclined, solid substrate featuring periodic rectangular trenches may
either completely wet the trench floor (Wenzel state) or get pinned on the entrance and
exit corners of the trench (Cassie state) or assume other configurations in between these
two extremes. Such intermediate configurations are examined in the present study. They
are bounded by a second gas-liquid interface inside the trench, which adheres to its walls
forming two three-phase contact lines, and encloses a different amount of air under different
physical conditions. The Galerkin finite-element method is used to solve the Navier-Stokes
equations in a physical domain, which is adaptively remeshed. Multiple steady solutions,
connected by turning points and transcritical bifurcations as well as isolated solution
branches, are revealed by pseudo-arc-length continuation. Two possible configurations
of a single air inclusion inside the trench are examined: the inclusion either surrounds
the upstream convex corner or is attached to the upstream trench wall. The penetration
of the liquid inside the trench is enhanced primarily by increasing either the wettability of
the substrate or capillary over viscous forces or by decreasing the flow rate. Flow hysteresis
may occur when the liquid wetting of the upstream wall decreases abruptly, leading to
drastically different flow patterns for the same parameter values. The interplay of inertia,
viscous, gravity, and capillary forces along with substrate wettability determines the volume
of the air encapsulated in the trench and the extent of deformation of the outer free surface.
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I. INTRODUCTION

Steady film flow of a Newtonian liquid over an inclined plane with variable topography is of
great importance in various engineering applications. This is a basic model for coating and liquid
film deposition processes, which is very widely used in fabrication of microelectronic components,
integrated circuits, and other storage devices, such as magnetic discs and tapes, memory devices,
optical discs, and photographic films. Such flows also arise in printing processes (e.g., gravure
printing [1]) and in arrangements aiming at intensifying heat or mass transfer operations (e.g., two-
phase heat exchangers and adsorption or distillation columns using structured packings; Argyriadi
et al. [2]), falling film reactors and in many other applications (Craster and Matar [3]). Spreading
of a liquid drop can take place by applying an external body force, either gravity or the centrifugal
force. A popular process in electronics and optics industry is spin coating, where a substrate is
covered by a blob of fluid under the impact of centrifugal force [4]. In the present work, gravity
is the externally applied force. A common difficulty that appears is that substrates are not flat
and their variable topography induces variations in the thickness of the deposited layer, as pointed
out by Stillwagon and Larson [5]. There is need for more realistic representations of coating
failures where the fluid does not cover completely the bottom of the topography, leading to the
formation of gas inclusions between the coating layer and the substrate. Also, the wetting of the
solid substrate depends on the advancing and receding contact angles, which are properties of
the liquid, solid, and air. A nonuniform coating leads to low-quality products or to manufacturing
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failures, which naturally are undesirable, because they let humidity get in contact with the printed
circuits of the electronic boards leading to their corrosion and malfunction. Therefore, the film
flow and film thickness have to be controlled to suppress the resulting nonuniformities or partial
coatings [5].

So far, researchers have assumed almost exclusively that the film is in complete contact with the
substrate (Mazouchi and Homsy [6], Kalliadasis et al. [7], Bontozoglou and Serifi [8]). Examining
the possibility of having air entrapped inside the trench will, on one hand, facilitate understanding
of the mechanisms that lead to nonuniform coating and, on the other hand, contribute important
new ideas in another research area: In microfluidics, it is of great interest to determine conditions
for drag reduction without chemically modifying the channel wall. Drag reduction can be achieved
by a gaseous film somehow placed between the wall and the fluid (Tsai et al. [9]). Clearly, such
a configuration is not stable in straight or smoothly varying substrates (Kouris and Tsamopoulos
[10]). This led to the development of walls with periodic trenches up to a few tenths of μm
in width and often larger depth, inside which air is entrapped, and, because of surface tension,
liquid is not expected to penetrate the trench. As a result, the solid-liquid friction arises only in
part of the confining wall where these two phases come in contact. These surfaces are called
super-hydrophobic (Muralidhar et al. [11], Moulinet and Bartolo [12]). Immediately, it becomes
apparent that several factors, such as the size, geometry, and direction of these trenches with
respect to the flow, the liquid-solid affinity, the applied pressure from the liquid side, or from inside
the trench, will play a crucial role in the development and maintenance of gas inclusions in the
trenches.

Two extreme configurations of the liquid flowing over a trench have been routinely assumed:
(i) The liquid fully displaces air from the trench, the so-called Wenzel state; and (ii) The liquid forms
an interface with the air pinned at the two top corners of the trench, the so-called Cassie-Baxter
or fakir state (Duez et al. [13]). Clearly, one can readily envision that between these two extreme
states a host of others may arise in which the liquid-gas interface forms one or more contact points
with the side walls or the bottom of the trench. Lampropoulos et al. [14] and Karapetsas et al.
[15] recently investigated transient coatings of two-dimensional and three-dimensional rectangular
trenches, respectively. They found that among the several possible coating failures of a trench, the
following two seem to arise more frequently: the so-called capping failure, where the liquid fails
to coat the trench, leaving entrapped air in the entire bottom of the trench and the bubble in the
upstream corner configuration, where a large air inclusion is formed at the upstream corner of the
trench. Recently, Pettas et al. [16] investigated the degree of wetting of a slit by a liquid film flowing
along an inclined plane, which resembles the flow over a very deep rectangular trench. A more
extensive literature review can be found in these three publications.

The main objective of this study is to develop an accurate and efficient numerical method to
solve the steady thin film flow of a Newtonian film over a substrate with topography and to examine
new possible film arrangements not studied so far by taking into consideration the existence of
a bubble with two contact lines inside the trench. This will also definitively demonstrate that the
widely used ideal Cassie state is not the only possible or the preferred arrangement, something that
has been routinely assumed. The steady-state calculations are less expensive than the transient ones
and able to cover adequately the multidimensional parameter space in this problem. We simplify
the problem assuming that the primary direction of film flow is normal to the entrance of the
rectangular trench, making the flow two-dimensional. The problem formualtion is given in Sec. II.
The Galerkin finite-element method combined with a quasielliptic mesh generator (Dimakopoulos
and Tsamopoulos [17]), to solve the full two-dimensional Navier-Stokes equations along with the
continuity equation are described in Sec. III. Characterisitcs of the film arrangement and comparison
with earlier studies are given in Sec. IV, followed by an extensive parametric analysis to study the
effect of physical and geometric parameters on the free surface shapes and the resulting flow field
in Sec. V. Conclusions are drawn in Sec. VI.
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FIG. 1. Sketch of the film flow over a rectangle trench with air inclusion at the upstream corner (left) or at
the upstream wall (right). The geometric parameters, the unit vectors on each surface and the contact points
and angles are indicated. When the indicated lengths are dimensional, the film thickness in the entrance is H ;
when they are dimensionless, it is unity.

II. PROBLEM FORMULATION

A. Definition of the physical problem

We consider as a model system the steady, two-dimensional film flow of a Newtonian fluid on
a plane inclined with respect to gravity by an angle α and featuring a trench. For the most part we
will take α = 90◦. The fluid is incompressible with constant density ρ, interfacial tension σ , and
dynamic viscosity μ. The film of thickness H is flowing over the topographic feature with a sudden
expansion in the flow cross-section, called a step-down hereafter, and located at distance l from the
entrance. The trench that is formed has depth d and width w, while the distance from the sudden
contraction, called a step-up hereafter, to the exit is l (see Fig. 1). The fluid is driven by the action
of gravity generating a flux q = UH where U and H are the characteristic velocity and the flat film
thickness, respectively, far from the feature. The liquid may form with the solid an apparent contact
angle θ , which is the angle between nw, the unit normal vector to the solid wall, and the normal
n to the visible free surface at a putative contact line. When the contact line is free to migrate, it
prompts a sudden change from adherence at the solid surface to no shear along the free surface and
induces a local singularity, which is known to be logarithmically weak and integrable (Michael [18],
Richardson [19]). So the apparent contact angle is accepted as an overall measure of the wettability
(Kistler and Scriven [20]), although different effects may influence this wetting measure (Johnson
and Dettre [21], Oliver et al. [22], Teletzke et al. [23]). Figure 1 shows the flow geometry where the
coordinates x and y originate at the intersection between the entrance plane and the upper flat wall
and correspond to the local streamwise and its normal direction. The pressure of the entrapped air is
a function of the initial conditions of the coating process. In this study, however, we directly solve
for the steady-state arrangements and need to assume the pressure of the air inside the inclusion.
To this end, this pressure is assumed to be equal to that of the ambient air. This particular choice is
found to be valid, as explained by Young [24], and by examining the transient coating simulations
of Lampropoulos et al. [14] and the simulations we present in Sec. IV C. One of the two liquid
interfaces is the outer gas-liquid free surface and the other one is formed inside the trench between
the contact lines A and B. Contact line A is allowed to migrate along the upstream wall of the trench,
while contact line B is allowed to migrate either on the bottom wall of the trench (a bubble is formed
in the upstream corner Fig. 1, left) or on the upstream wall of the trench (a bubble is formed in the
upstream wall Fig. 1, right). These two bubble locations are favored over others, which were less
often found by Lampropoulos et al. [14], simply because for hydrostatic reasons the pressure in the
liquid is lower around the upper trench wall. The penetration of the liquid inside the trench as well
as its impact on the deformation of the outer interface are investigated as well.
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TABLE I. Properties of the glycerine-water mixture 98% at different temperatures.

T (◦C) σ (N/m) ρ (kg/m3) μ (Ns/m2) Ka lc (mm) lv (mm)

10 0.0635 1290 0.245 2.10 2.240 1.543
20 0.0622 1260 0.0939 7.35 2.243 0.827
30 0.0620 1230 0.0409 22.02 2.267 0.483
40 0.0615 1200 0.0195 58.17 2.286 0.299

We scale all lengths with the film thickness H , and velocities with the cross-sectional average
film velocity, U , at the entrance. In addition, both the pressure and stress components are scaled
with a viscous scale, μU/H . Thus, the dimensionless groups that arise are the Reynolds number,
Re = ρUH/μ, the capillary number Ca =μU/σ , and the Stokes number St = ρgH 2/(μU ). Note
that at the inlet and the outlet the dimensionless film thickness is equal to unity due to our choice of
characteristic scales. The capillary number is directly determined but not used, because a parameter
which depends only on liquid properties, the Kapitza number Ka = σρ1/3g−1/3μ−4/3 = (lc/lv)2 is
preferred. This choice automatically determines the value of Ca via the expression

Ca−1 = St1/3Ka Re−2/3. (1)

The capillary length lc and the viscous length lv are calculated by

lc =
(

σ

ρg

)1/2

, lv =
(

μ2

ρ2g

)1/3

. (2)

We also define the Weber number, We = ρU 2H/σ = Re Ca, a measure of the relative importance
of fluid inertia compared to its surface tension, the Bond number, Bo = ρgHw/σ , a measure of the
relative importance of the gravity force acting on the film (length scale, H, the film width) compared
to the capillary force on the bubble inside the trench (length scale, w, the width of the trench).
These dimensionless numbers will prove very useful in analyzing the flow patterns determined by
our simulations.

By examining the model equations in dimensionless form, our results are applicable to a variety of
liquids. Nevertheless, relating the values of the dimensionless parameters to actual liquids is certainly
important. As an example, in Table I we present the physical properties of the glycerin-water mixture
at different temperatures and how they affect the Kapitza number and the characteristic viscous and
capillary lengths of the mixture. Varying the Reynolds number, i.e., the flow rate, affects the Nusselt
film thickness H and the mean velocity U at the entrance of the liquid as depicted in Table II for a
vertical substrate. H is calculated by the expression (H/lv)3 = Re St and U from the definition of
Stokes number St. We choose to examine cases where the height of the film at the entrance of the
domain is up to 2 mm, because most of the industrial applications of this type of flow take place at
film thickness up to this magnitude. In what follows all variables used will be dimensionless.

TABLE II. Variation of the length and velocity scales for
lv = 0.483 mm.

Re St H (mm) U (mm/s)

0.1 3 0.323 10.27
1 3 0.697 47.74
10 3 1.50 221.47
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B. Governing equations and boundary conditions

The two-dimensional steady-state flow is governed by the laws of mass and momentum
conservation,

∇ · u = 0, (3)

Re u · ∇u − ∇ · T − St [g sin(α)ex − g cos(α)ey] = 0, (4)

where the total stress tensor is defined as T = −pI + (∇u + ∇uT ) and u = (u,v)T and p are the
velocity vector and pressure fields.

Along the two shear-free air-liquid interfaces, the dynamical condition is imposed to balance the
capillary force and normal stress with the ambient air pressure, pa , which is set to zero as the datum
pressure,

n · T = −pan + Ca−1 dt
ds

, (5)

where n is the outward unit vector to the free surfaces and t is the unit tangent vector pointing in
the direction of the increasing distance s along the free surfaces (Ruschak [25]). The interface shape
obeys the kinematic condition, which in a steady-state requires setting the normal component of
velocity to zero,

u · n = 0. (6)

At the two intersections of the inner interface (its unit normal vectors denoted as ns1, ns2) with
the two trench walls (their unit normal vectors denoted as nw1, nw2), the following equations are
imposed allowing the contact lines to move along the walls,

ns1 · nw1 = cos θ1, (7)

ns2 · nw2 = cos θ2. (8)

Because of the complex pattern of slow recirculation flow inside the trench, the contact lines A
and B may have the role of either a receding or an advancing contact line, as in Ref. [16]. Moreover,
it will become clear in the results section that the flow inside the trench and especially closer to
the contact lines is much slower than the flow in the rest of the film. Thus, it is reasonable to
neglect the specific role of each angle and assume that they have the same equilibrium value θ ,
characterizing the specific liquid/solid pair; i.e., we set θ1 = θ2 = θ . This also allows us to carry out
the parametric simulations in terms of just one equilibrium contact angle θ and investigate its role
on the flow. On all walls of the topographic feature we impose the usual no slip and no penetration
conditions:

u = 0. (9)

Boundary conditions must be also applied at the entrance and exit of the flow domain. The
periodicity of the substrate geometry irrespective of its particular features allows us to impose
periodicity between the inflow and the outflow boundaries in all primary variables. In particular,
we apply periodicity on both the streamwise and normal velocity components, on the pressure as
well as on the location of the fluid-air interface in the usual manner; see, for example, Kouris and
Tsamopoulos [26] and Pozrikidis [27]. Moreover, we choose to impose periodicity, to avoid the
requirement of fully developed flow at the inlet and the outlet. If the distance of the feature from the
inlet and outlet is large enough, the flow will be fully developed, the normal velocity will vanish,
while the streamwise one will depend only on the normal to the wall direction and the periodic
conditions will reproduce the steady solution derived by Pavlidis et al. [28]. To achieve this, we
have chosen l = 15. The Stokes number, St, which appears in the above equations is determined by
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requiring that the dimensionless, average film-velocity, or the dimensionless flow rate q̃, are equal to
unity, since the mean velocity at the inflow boundary is used as a characteristic velocity for making
the model equations dimensionless. Therefore, the additional equation that arises is

q̃ =
∫ 1

0
udy = 1. (10)

The Stokes number depends strongly on the rheological properties of the material and it is
computed as part of the solution. For fully developed flow of Newtonian fluid over a vertical wall,
the well-known Nusselt solution is recovered, where the uniform film thickness is H = (3μq/ρg)1/3,
q is defined as the dimensional volumetric flow rate per unit span. Then, St = 3, as discussed in
Ref. [28].

III. COMPUTATIONAL METHOD

A. Elliptic grid generation and mixed finite element method

The mixed Galerkin finite-element method is used to solve numerically the governing equations.
The mesh is generated by solving the system of two quasielliptic partial differential Eqs. (11) and
(12), which map the physical domain (x,y) to the computational domain (ξ,η), and it is dynamically
adapted to the deforming liquid domain. This procedure has been advanced by Dimakopoulos
and Tsamopoulos [17] and subsequently applied in various geometries and problems; e.g., see
Refs. [29,30]. The mesh generation equations are

∇ ·
{[

ε1

√
x2

η + y2
η

x2
ξ + y2

ξ

+ (1 − ε1)

]
∇ξ

}
= 0, (11)

∇ ·
⎧⎨
⎩

⎡
⎣ε2

√
x2

ξ + y2
ξ

x2
η + y2

η

+ (1 − ε2)

⎤
⎦∇η

⎫⎬
⎭ = 0, (12)

where the parameters ε1 and ε2 control the smoothness and orthogonality of the mesh lines and
ε1, ε2 are selected by trial and error. Following a triangulation, the mesh consists of only triangular
elements, each one of which has three vertex nodes and three midedge nodes. The velocity and
coordinate vectors are then represented elementwise in terms of six-node Lagrangian basis functions
(K = 6) and the pressure in terms of three-node Lagrangian basis functions (L = 3),

u =
K∑

i=1

ukϕ
k(ξ,η), x =

K∑
i=1

xkϕ
k(ξ,η), p =

L∑
i=1

plψ
l(ξ,η). (13)

The number of total degrees of freedom must be equal to the total number of discretized equations.
So, these basis functions are employed, respectively, as weighting functions for the momentum,
grid-generating, and continuity equations in the weak formulation of the problem. The number of
resulting residual equations is equal to the number of the nodal unknown variables ui , vi , pj , xi ,
and yi (forming the unknown variable vector S). To trace the steady-state solution vector (S), the
pseudo-arc-length continuation (Doedel et al. [31]) is incorporated into the finite-element code.
Given an initial solution (S0) at an initial parameter value (λ0), the value of the parameter λ for
the next computation is unknown a priori, but a function of the pseudo-arc-length sa . The inner
product between the derivative of the initial solution with respect to pseudo-arc-length (Ṡ0) and
(S − S0) is added to the product of the derivative of the initial value of the parameter with respect to
pseudo-arc-length (λ̇0) and (λ − λ0) and set to be equal with the pseudo-arc-length �sa to produce
the additional equation G (14),

G(S,λ,�sa) = ṠT
0 · (S − S0) + λ̇0(λ − λ0) + �sa = 0. (14)
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FIG. 2. Part of the mesh around the trench in the physical domain before (left) and after the remeshing
(right). Here the two contact points are on the upstream side wall and the bottom of the trench.

The system of equations is solved by the Newton-Raphson iteration method. The Jacobian matrix
of all residual equations except for Eqs. (10) and (14) is a banded matrix that can be stored by three
single-index arrays according to the so-called compressed sparse row (CSR) format and solved with
a sparse matrix solver (Watson package, Gupta [32]). However, these two equations, in particular,
have a different structure because they involve several additional terms. If they were incorporated
into the system and solved simultaneously, they would destroy the sparsity of the Jacobian in the
CSR format. The way around this is to apply a special algebraic procedure (Zacharioudaki et al.
[33]) to solve first for the two extra global variables, which are the Stokes number and the unknown
value of parameter λ in the arc-length continuation.

Another crucial feature of this partial penetration problem is that the elements of the mesh suffer
from large anisotropic deformations during parametric continuation, often making the Jacobian
matrix singular. For different values of the parameter the free surfaces change shape and length, but
the number of elements mapping the gas-liquid interfaces remain the same. As a result, the elements
become much larger in one of the directions adding error to the transformation and after a few steps
leading to divergence of the Newton-Raphson scheme. To cope with this problem, we used an adaptive
remeshing algorithm that can add elements in the outer or inner free surface, if needed, preventing the
boundary elements from becoming very large in one direction, thus conserving the high quality of our
mesh as it can be seen in Fig. 2. The interested reader may refer to Refs. [16,29,30] for more details.

With regard to the accuracy of the numerical results reported in this paper, we performed mesh
convergence tests to assure that our solution converges. A very efficient way to do so in this problem
is by observing the position of the two contact lines with consecutively finer meshes, as this is the
most sensitive and important feature of this problem. In all cases examined, we used meshes in which
doubling the number of their elements resulted in error less than 10−2 dimensionless film thickness
units in the position of the contact lines, before and after the remeshing. Different mesh sizes were
used in each simulation; the trench size mainly defines the number of the elements in each mesh,
as well as the deformation of the outer and inner free surface. A typical mesh for a trench whose
dimensions are l = 15, w = 5, and d = 5 consists of about 20 000 triangular elements.
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FIG. 3. Characteristic measures of film deformation.

IV. PRELIMINARY CONSIDERATIONS

A. Characteristic measures of film deformation

The results that follow will be presented in terms of pressure and stream function contours as
well as in terms of the liquid penetration in the trench. A measure for estimating the overall liquid
penetration and the amount of entrapped air is the position of contact lines A and B. As mentioned
above, the position of contact line A (will be denoted as CLA from now on) in the upstream wall of
the trench is measured using as a reference point the upstream convex corner of the trench, while
the position of contact line B (CLB) is measured using as a reference point the downstream concave
corner of the trench as it can be seen in Fig. 3. Another characteristic feature of this flow is the
deformation of the outer gas-liquid interface, which is determined by the difference between its
maximum and minimum heights. In particular, before a step down the so-called “capillary ridge”
(Mazouchi and Homsy [5]) is formed and before a step up a capillary depression arises. An important
feature of the film flow is the magnitude of the capillary ridge and the capillary depression, because
the former drives the liquid inside the trench by capillarity and the latter decelerates it before
it can flow around the downstream corner. A compact form for presenting these two geometric
characteristics of the film is by defining the deformation amplitude of the outer free surface:

Ad = yMAX − yMIN

2
(15)

Where yMAX denotes the y coordinate of the maximum height and yMIN denotes the y coordinate
of the minimum height of the outer interface.

B. Comparison with previous simulations

The predictions of the present work were compared with the results of Lampropoulos et al. [14],
who performed transient simulations of gravity-driven viscous films over substrates with rectangular
topographical features. Using the VOF method implemented in the OpenFoam software package
they found that the transient coating process does not lead always to full coating; air inclusions
of various sizes can be formed and sustained as the system reaches a steady state. The study
presented in this paper, on the other hand, is a steady-state analysis aiming at more thoroughly and
accurately examining the different film arrangements for different parameter values. We need to
compare our results with those from transient simulations, because, to our knowledge, they are the
only ones available in the literature. To this end, we have to make sure that the VOF simulations
have reached a steady state. In Fig. 4 we present such a comparison between the predicted steady
state (a) by Lampropoulos et al. [14] when this is achieved at t = 265.7 and (b) by this work for
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FIG. 4. Comparison of transient VOF simulations in OpenFoam by Lampropoulos et al. (a) with our
predictions (b) for Re = 5.5 × 10−4, Ka = 0.139, θ = 30◦, w = 14, and d = 12.2.

Re = 5.4 × 10−4, Ka = 0.139, θ = 30◦, w = 14, and d = 12.2. One has to take into account that
VOF computes the velocity field in both the air and the liquid assuming them to be a single material
and accounting for a smooth change in the relevant physical properties. Moreover, it determines the
liquid-air interfaces a posteriori locating them approximately within an element, see for example,
Fraggedakis et al. [34]. In spite of this decreased accuracy of VOF, we can observe that the results
are in very good agreement. In Table III we can see that the positions of either contact line have a
relative error of less than 0.08 dimensionless length units. This error could be attributed additionally
to the fact that Lampropoulos et al. [14] used curved convex corners in the trench to facilitate the
transient computations, while we use sharp corners in our simulations.

Apart from validating our numerical method, this comparison can be very useful in this study
since it can give information about the stability of the steady states we track. The fact that transient
simulations lead only to stable steady states implies that the steady solution we have found, as well
as neighboring solutions of the same solution branch are also stable and can be observed in coating
processes over structured topography. Furthermore, our assumption that the entrapped air is in the
same pressure with the ambient air is reaffirmed, because in the simulation of Lampropoulos et al.
[14] shown in Fig. 4(a), they found that the pressure of the air inside the air inclusion (bubble in
upstream corner) is less than 0.3 Pa smaller than the ambient pressure.

C. Pressure inside the air inclusion

As we have mentioned in Sec. II, the value of pressure inside the air inclusion is an extra
unknown of this problem. However, estimating the value of the pressure is not possible in the present
steady-state calculations, since it depends on the initial conditions of the transient coating problem
and requires transient simulations. Setting the pressure of the air allowed us to perform simulations
using hydrophilic substrates for the bubble in the upstream concave corner case and the bubble in the
upstream wall case, as the pressure near the upstream wall is lower than the ambient pressure and a
mean curvature of the inner free surface can be supported. Again, this assumption is consistent with
the simulations of Lampropoulos et al. [14] and Karapetsas et al. [15] who found in their transient
coating simulations that when large air inclusions are formed at the upstream corner of the trench,
the pressure of the entrapped air is almost equal to that of the ambient air. It is interesting though, to
examine the limitation of this simplification.

TABLE III. Relative error in the position of contact line A and B between this work and Ref. [13].

Position of contact line A, CLA Position of contact line B, CLB

Lampropoulos et al. [13] 4.4811 7.0402
This work 4.8638 6.9598
Relative error − 0.0787 + 0.0116
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FIG. 5. Dependence of the pressure inside the air inclusion on the volume of air inside the air inclusion for
different values of the Reynolds number, Ka = 2, θ = 60◦, d = 5, and w = 5.

To do so, along with the already presented governing equations of the physical problem, we solve
an additional equation by which we impose the volume of the air inclusion when it is located at
the upstream corner of the trench. The unknown of this extra equation is the pressure of the air
inclusion. As it can be seen in Fig. 5, we carry out continuation in the volume of the air inclusion for
various values of the Reynolds number. We can observe that for air inclusions with volume larger
than 0.1 dimensionless units there is a small deviation (up to 2 dimensionless pressure units) of
the absolute value of the pressure inside the air inclusion from the ambient pressure value. Since
in this study we are interested in air inclusions that can be comparable to the trench dimensions
and affect the coating quality, setting the pressure inside the air inclusion equal to the ambient air
is a very good approximation. In addition, this is a necessary simplification, because the purpose
of this work is to estimate the volume of the air inclusion under parameters that can be controlled
in the physical problem such as the flow rate, the dimensions of the trench, the coating liquid,
etc. We also performed numerous simulations using different values of the pressure inside the air
inclusion, ranging from −2 to 2 dimensionless units and altering the Reynolds number. We found
that they produced insignificant changes to the physical phenomena that take place. As noted by
one of the reviewers, setting the pressure in the bubble to the ambient pressure could be achieved
experimentally by a very small ventilation hole on the trench wall, which does not permit liquid
penetration. Therefore, all the simulations presented subsequently were performed considering that
the pressure of the entrapped air is equal to that of the ambient air.

V. NUMERICAL RESULTS AND DISCUSSION

A. Bubble in upstream corner case

1. Flow and pressure fields

First, it is useful to examine the flow field in detail especially for the liquid near and inside the
trench. The streamlines and the pressure field at Re = 1 are shown in Figs. 6(a) and 6(b). At this flow
rate the liquid wets slightly the upstream wall and the film falls almost vertically above the trench.
Note that the two contact angles do not necessarily assume their expected function (because of their
position), as an advancing or receding contact angle, but their function depends also on the existence
or not of recirculation nearby. This was one of the reasons we assumed θ1 = θ2 = θ . The liquid
enters the trench by wetting the upstream wall. Further downstream it forms a neck, which induces a
maximum in the x velocity, while the y velocity is almost zero. After that point, the liquid decelerates
as it approaches the downstream wall. The decrease in the streamwise velocity is accompanied by a
sharp rise in the y velocity in order for the liquid to exit the trench and satisfy the mass balance. The
film is split in two regions: the outer one, which continues its steady flow over the trench, and the
inner one, in which the fluid just recirculates remaining in contact with the downstream trench wall.
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FIG. 6. Close-up views around the trench and just before and after it showing the streamlines and the
pressure field, respectively, for two values of Reynolds number: (a), (b) Re = 1, (c), (d) Re = 3 at parameter
set Ka = 2, θ = 60◦, w = 5, and d = 5, with l = 30.

A streamline separates the two regions and liquid particles in the two regions do not communicate.
The former region is also bounded by the outer and inner film interface. In the recirculation region,
the velocities are at least two orders of magnitude lower than those in the outer region. The pattern
of recirculation that is formed resembles the so-called Moffatt eddy pattern [35]. Despite the fact
that in the 1D Nusselt flow there is no pressure variation, i.e., the pressure in the liquid is uniform
and equal to the pressure of the ambient air, in Fig. 6(b) we can see that the pressure follows an
almost hydrostatic variation inside the trench, except near the its two vertices in its entrance and exit,
where it increases abruptly. This hydrostatic variation can be justified by observing that the inner,
very slowly moving fluid is not affected by the rest of the falling film. In the middle of the neck, the
pressure is almost the same with that of the ambient air and the y component of velocity is almost
zero; the flow there approaches the perfect plug flow.

At higher Reynolds number Re = 3 [Figs. 6(c) and 6(d)], the contact line A is located deeper in
the trench, still the film does not penetrate much into the trench and again forms a large air inclusion
around the upstream concave corner. The plug flow profile in the middle of the neck has disappeared,
as the film is deflected from its vertical fall significantly. The mean curvature of the outer free surface
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is greater to support the sharp changes in the direction of the velocity vector as the liquid enters and
exits the trench. The recirculation area is observed to shrink near the downstream concave corner
which is a result of the longer wetting of CLA and the consequent inward deflection of the film. The
dividing streamline seems to be a direct extension of the inner interface of the film. This locally
increases the curvature of the inner surface, tending to form a cusp. With regard to CLB , we can
observe that it is located in the recirculating area where the flow is very slow, balancing the gravity
force which pulls the stagnant liquid downwards with the tendency of the hydrophilic contact line B
to advance upwards. This resembles the capillary rise in a tube made of hydrophilic material. As the
width of the recirculating region is reduced, the free surface is located higher, because the capillary
effect dominates gravity. A small increase in the pressure is observed exactly at the point where the
flow is separated from the recirculating eddy on the downstream wall, which is very reasonable,
because a stagnation point is located there and greater velocity leads to greater pressure at that point.

2. Inertial effect

To examine the dependence of the solution family on the Reynolds number, Fig. 7 depicts the
wetting lengths CLA, CLB and the deformation amplitude Ad along with insets of film arrangements
with streamline patterns. At least two steady states coexist for most of the range of Re where
we performed simulations, composing two solution branches: a branch in which the flow profiles
feature deep penetration of the liquid in the trench leading to almost full coating with a tiny air
inclusion (this will be called the “upper” branch from now on) and a branch in which the liquid
penetrates partially the trench forming a large air inclusion (this will be called the “lower” branch
from now on). These two branches are connected at a turning point at Re ≈ 0.18 and solutions of
this type (bubble in upstream corner) cease to exist for this set of parameters below this value of
Reynolds number. This fact stems from the definition of the capillary number. It is easy to see that
when Re → 0 results in Ca−1 → ∞ [Eq. (1)], thus no solution can exist for Re = 0. According to
bifurcation theory [36], a real eigenvalue of the system changes sign at the turning point. Given that
the transient simulations of Lampropoulos et al. [14] for a different trench geometry converge to the
corresponding steady-state families on the lower branch even near the turning point (see Fig. 3), the
present solutions are expected to be stable. A more comprehensive study of the linear stability of
the steady states to even time periodic or three-dimensional disturbances is beyond the scope of the
present study, but will be reported in a forthcoming study.

First, we examine the lower branch following the change of the flow profile with increasing
inertia or flow rate starting with Re = 1. We note that the wetting distance of CLA and CLB as
well as the deformation amplitude of the outer free surface Ad tend to increase until a maximum is
reached for CLA and Ad . Then we can observe two successive turning points defining a hysteresis
loop at about Re ≈ 3.9, which resembles the hydrodynamic hysteresis that Kistler and Scriven [20]
observed in the so-called teapot effect, and also the hydrodynamic hysteresis Pettas et al. [16] found
when examining the flow of a liquid film over an inclined plane with a slit. This hysteresis does not
affect as much the location of CLB . At even higher flow rates, CLA tends to become pinned on the
convex upstream corner, but the solution family ends before CLA = 0. For this set of parameters, we
could not perform parametric continuation on the lower branch for Re > 6.3, because of numerical
difficulties generated by the cusp formed on the inner gas-liquid interface at the point where the
falling film meets the recirculating liquid, which deforms too much elements nearby, making the
Jacobian of the transformation singular. The formation of this cusp at the lower part of the inner
interface could be a genuine physical limit, possibly signifying the onset of air entrainment from the
bubble into the liquid. However, such flow configurations could not be tracked by our steady-state
numerical scheme, because they are transient phenomena.

Second, examining the upper branch, we can see that the positions of contact lines A and B
vary only slightly, always remaining near the upstream concave corner. On the other hand, the
deformation amplitude of the outer interface is affected significantly by the change on the flow rate
at about Re ≈ 9.8, where a second hysteresis loop arises leading to a less deformed outer air-liquid
interface as well as the onset of an “inertia ridge” at the exit of the trench. It is very interesting that
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FIG. 7. Map of the steady-state solutions in terms of the wetting of contact line A (CLA), contact line B
(CLB ), or the deformation amplitude (Ad ) for Ka = 2, θ = 60◦, d = 5, and w = 5. Here and in similar figures
that follow the symbols in the solution family correspond to one of the flow patterns around the three figures.

both CLA and CLB are only slightly affected by this major change in the flow pattern and the shape
of the outer interface.

Observing the continuation curves and the flow patterns we can define three flow regimes: at low
inertia (Re < 1), the dominant forces are gravity and capillarity defining a capillary-gravity region,
while at high values of flow rate (Re > 4) inertia dominates capillarity leading to an inertia-gravity
driven flow. For the range 1 < Re < 4, a competition between the capillarity, viscous, and inertia
forces takes place as the film arrangement moves from one region to the other giving rise to the
hydrodynamic hysteresis on the lower branch. Next, we will examine each region separately.
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FIG. 8. Enlarged capillary-gravity region for Ka = 2, θ = 60◦, d = 5, and w = 5 along with contours of
the pressure field for Re = 0.18 and Re = 0.7.

3. Capillary-gravity region

This part of the solution branches and the related film shapes with the pressure contours are
depicted in Fig. 8. Starting from the minimum wetting length of CLA, which arises for Re ≈ 0.96 or
Bo ≈ 5 (this is the upper bound of the capillary-gravity region) and decreasing the flow rate we can
see an increase in the wetting length of CLA. This can be explained by the fact that with decreasing
Re, Ca decreases as well [Eq. (1)], making the capillary force the dominant one to be balanced by
gravity. This makes the decreasing Bond number, the more relevant parameter in this range. The
increased capillarity in the normal stress balance [Eq. (5)] can be equilibrated only by an increased
pressure jump across the inner air-liquid interface. This is achieved by the shrinkage of the air
inclusion to increase its surface curvature and by its migration towards the upstream wall where the
pressure is considerably lower. Overall, CLA translates deeper in the trench and a pressure gradient
arises in the film along the upstream wall, which pulls the liquid into the trench, thus amplifying
the deformation of the outer gas-liquid interface; see Fig. 8. As a result, the stagnation point, which
separates the recirculating region from the outer film flow, is moved deeper into the trench making the
recirculation region narrower. In accordance with the capillary tube phenomenon, the CLB wetting
length increases as capillarity becomes more important than gravity in the recirculating liquid region.
This trend remains in effect until Re ≈ 0.18, where a saddle-node bifurcation takes place and no
steady states of this type exist below this value of flow rate.

As can be seen in Figs. 7 and 8, another solution branch also exists in this region in which the flow
approaches full coating. Here the air inclusion is even smaller generating an even higher pressure
decrease in the liquid side of the inner interface. The increased pressure gradient within the film
near the upstream wall pulls the outer free surface towards the trench deforming it considerably. No
recirculation region exists (see Fig. 7). In other words, in this branch, the fluid that enters the trench
pushes the air inclusion deeper in the trench. In contrast to the lower branch, here we can observe
that with increasing Re the air inclusion decreases monotonically. In fact, the air inclusion attains an
almost circular cross section (mean curvature ≈1/Rair inclusion) and shrinks, to maintain the balance
between capillarity and the pressure jump term across the inner air-liquid interface. The fact that
we cannot find a solution of this type for Reynolds less than 0.18, for this set of parameters, is in
accordance with the flow maps of Gramlich et al. [37] who found full coating of the substrate in the
absence of inertia for Ca = 0.1, d = 5, w = 5 in their transient simulations.
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4. Transition region

In Fig. 7 we observed that increasing Re above unity results in deeper penetration of the liquid in
the trench, as both CLA and CLB increase even in the lower branch. While inertia is becoming more
significant than capillarity and viscous forces, the capillary ridge above the trench entrance vanishes
and an inertia ridge appears before the trench exit. The decrease of the capillary ridge decreases the
capillary pressure it generates driving the film inside the trench. Now it is the capillary force by the
inner interface near CLA and the pressure gradient it generates as well as the wall hydrophilicity
the mechanisms producing this result. In contrast to what one could have expected, increasing Re
above unity leads to CLA migrating deeper in the trench. This awkward development of the flow is
attributed to the fact that with increasing Re, inertia becomes more significant than viscous forces,
so the viscous resistance to the advancing of CLA decreases allowing CLA to advance deeper in
the trench. With CLA located deeper in the trench the pressure gradient below the upstream corner
increases pulling more liquid inside the trench. Thus, a raise in the y component of velocity is
triggered, leading to a sharp change in the direction of the velocity vector as the film enters the
trench. This change generates increased values of the components of the stress tensor, which in turn
along with the pressure variation provoke an intensified deflection of the outer free surface. The
minimum of the outer gas-liquid interface moves deeper in the trench and closer to the downstream
wall as the flow rate increases. This can be explained again by the ballistic effect, as explained
for coating flows over sinusoidal topographies by Nguyen and Bontozoglou [38]. Monitoring the
trajectory of a single particle flowing in the outer film region as it is being ejected from the substrate
wall inertia and gravity pull it downwards, while the pressure gradient caused by the contact line A
pulls it inside the trench. At low flow rate the particle lands closer to the upstream wall, while with
increasing flow rate it lands closer to both the bottom of the trench and the downstream wall; this
explains the observation that the minimum of the outer free surface is moved deeper in the trench and
closer to the downstream wall as Re increases (compare the first two insets in the left side in Fig. 7).

This trend continues until, at a critical value of the Reynolds number, Re ≈ 3.5, CLA reaches
a maximum wetting distance. At this point inertia along with gravity have grown enough and the
particles flowing at the outer region are less affected by the pressure gradient in the upper wall,
which pulls them inside the trench and more affected by the adverse pressure generated at the
stagnation point in the lower wall. This outward displacement of the film increases again the domain
of recirculating liquid, Fig. 9. Overall, the minimum of the free surface is moved rather closer to the
downstream wall rather than deeper in the trench. Slight increase of the flow rate from its value at the
maximum in CLA leads to a chain reaction of the effects discussed above as the particles are no more
affected by the hydrophilic contact angle and the hysteresis loop is reached with the abrupt dewetting
of the upstream wall and the so called “jump” in the wetting distance of CLA and the deformation
amplitude of the outer free surface Ad . In the new flow pattern, inertia is clearly dominant, the outer
free surface is less deformed featuring an inertia ridge and CLA is almost pinned to the upstream
convex corner. The system reaches a new state with reduced drag force, as the wetting distance of
CLA is reduced by an order of magnitude and the liquid barely enters the trench while the outer
gas-liquid interface is considerably flatter letting the liquid pass quickly from the outer region (see
inset in the bottom right of Fig. 9).

The stability of the film arrangements around the hysteresis loop can be inferred using simple
bifurcation ideas [36]. As explained earlier, while Re increases from unity the steady solutions
are stable until the limit point is reached at Re ≈ 4. Moving further along this solution family the
solutions are unstable until the second limit point is reached. From thereon it is likely that they
will be stable again. A definitive answer can be obtained by performing a linear stability analysis,
although the transient simulations [14,15] indicate that they are indeed stable.

5. Upper-branch hysteresis at high Reynolds numbers

As we have already mentioned, on the upper branch a hysteresis loop arises at Re ≈ 9.8, which
is clearer by examining the variation of Ad in Fig. 7. Increasing the flow rate in the upper branch,
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FIG. 9. Enlarged transition zone (lower branch) for Ka = 2, θ = 60◦, d = 5, and w = 5 along with contours
of the stream function for Re = 2 and Re = 3.8.

see also Fig. 10, we observe that the minimum of the outer free surface is moved deeper and closer
to the downstream wall. This variation in the film shape decreases the cross-section through which
the liquid enters and exits the trench, increases the y component of the velocity and moves deeper
in the trench the stagnation point at the downstream wall. The pressure around the stagnation point
increases, as can be seen in Fig. 8 pushing the outer free surface away from the trench and leading
to a pure inertia-gravity dominated flow with a large recirculation inside the trench (see also Fig. 7),
like the patterns observed at high inertia for full coating flows by Serifi and Bontozoglou [8]. Similar
to the hysteresis in the lower branch, the abrupt decrease in the deformation amplitude around
the upper-branch hysteresis is related to the fluid elements landing further downstream as inertia

FIG. 10. Enlarged inertia-gravity zone (upper branch) for Ka = 2, θ = 60◦, d = 5, and w = 5 along with
contours of the pressure field for Re = 7 and Re = 9.8.
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FIG. 11. Solution families for the wetting by contact line A (CLA) or the deformation amplitude (Ad ) for
Ka = 2, d = 5, and w = 5 under different contact angles, along with certain film configurations.

increases. The fact that the two contact lines are unaffected by this intense change in the flow pattern
as well as that the air inclusion is very small leads us to consider that a similar flow pattern could be
obtained even in the absence of the air inclusion, i.e., in the case of full coating. Indeed, performing
simulations in the absence of an air inclusion for the same parameter values, we found that the
same hysteresis in Ad occurs as Re varies. This confirms our hypothesis that this “jump” in the
deformation amplitude has to do only with the forces acting on the bulk and the outer free surface
of the liquid (Fig. 7).

6. Effect of contact angle

Figure 11 presents the solution families of the wetting distance of CLA and the deformation
amplitude Ad for different contact angles as a function of Re. Clearly the extent of the liquid
penetration and the film shape strongly depend on the contact angles, since the more hydrophilic
the substrate the larger the force applied on the contact point, FCL = σ cos(θ ). On the other hand,
the contact angles do not affect qualitatively the bounds of the four regions defined and analyzed
in the previous section. First, we will discuss small contact angles, θ = 30◦. In comparison to the
previous case with θ = 60◦, the entire lower branch has moved upwards and to the right, while its
variation with Re is stronger. As a result the local minimum in CLA at the capillary-gravity region
has moved to larger values and appears at slightly larger Re, while the upper turning point of the
hysteresis loop is located at considerably higher Re and also CLA reaches quite deeper into the trench
before the hysteresis occurs. These observations can be explained by the fact that in more hydrophilic
surfaces the liquid wets easier the trench and, thus, more inertia is needed to dominate over the
capillary forces and moving the transition to the inertia region to higher values of flow rate and
making the “hysteresis jump” more intense. Also, the deformation amplitude Ad intensifies, because
deeper wetting of CLA leads to increased values of the y component of velocity under the downstream
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FIG. 12. Solution families for the wetting by contact line A (CLA) for θ = 60◦, d = 5, and w = 5 for
different liquids characterized by their Ka.

wall, leading to sharper change in the direction of the velocity vector and larger stresses near the
outer free surface. On the upper branch the smaller contact angle has very little effect on CLA, while
it has no effect on Ad . We have already mentioned that for this set of parameters the upper branch
is unaffected by the location of the contact lines and the tiny air inclusion.

In the case of neutral contact angles, θ = 90◦, we can see that the local minimum in the wetting
length at the capillary-gravity region has moved almost to zero, as expected. Since the film deflection
towards the trench is eliminated, here gravity pulls it almost vertically downwards. Hence, its shape
varies only slightly, as also indicated by the very small values of Ad in this range of Re. CLA

is located near the upstream convex corner and the contact angle makes the interface normal to
the wall minimizing the curvature and eliminating the pressure gradient across the film thickness,
which would force it to enter the trench with increasing inertia. This results in no appreciable rise
in the y component of velocity, lower stress components and considerably smaller increase in the
deformation amplitude. Thus, the hysteresis loop vanishes as the transition from the capillary-gravity
region to the inertia gravity region is very smooth, since the increasing inertia can be translated to
just a raise in the film velocity. At Re = 4.6, CLA gets pinned on the upstream convex corner and
the simulation stops. Again, the different contact angle has only a slight effect on the upper branch.

We also examined the flow over a hydrophobic substrate, θ = 120◦. We observe that the lower
branch does not exist anymore, since CLA gets pinned on the upstream convex corner for all Re.
The contact line length on the upper branch however, decreases monotonically and finally the
contact point gets pinned on the upstream convex corner, i.e., CLA → 0 as Re → 0, before the
saddle-node bifurcation on the capillary-gravity region occurs. As Re increases along the upper
branch, the liquid penetrates further in the trench. The fact that we can find steady-state solutions
with large penetration in a trench with a hydrophobic substrate, is in contrast with the transient
coating simulations of Lampropoulos et al. [14], who found that the liquid never entered in a trench
featuring a hydrophobic substrate but rather formed a Cassie-like state. Adding to this fact that no
lower branch exists for a hydrophobic substrate, leads us to deduce that the upper branch is unstable.

7. Inertial effect for different liquids

Figure 12 presents the wetting distance of CLA in terms of the Reynolds number for different
liquids. We do not show the variations of CLB or Ad for conciseness and because the solution families
become quite complex. In practice, the Kapitza number varies mainly due to liquid viscosity, because
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surface tension and density of common liquids do not vary as much. All liquids exhibit a drastic
change of the wetting distance and deformation amplitude around a specific range of Reynolds
number.

Initially we examine a liquid with less significant capillary effect (Ka = 0.6) than our base case
(Ka = 2). In the lower branch there is no hysteresis loop, the minimum of CLA at the capillary-gravity
region is located at a lower Re and, generally, it has decreased for all Re. The first two observations
can be explained by considering that the net force per unit of depth acting on CLA and pulling the
liquid into the trench is equal to σ cos θ . A decrease in the surface tension, when compared to the
viscous effects, results in decreasing this force, thus, the transition from the capillary-gravity region
to the inertia-gravity region is smoother and takes place earlier. The third observation similarly
derives from of the fact that smaller Ka at a constant Re leads to a bigger Ca and thus to a less
significant capillary effect. This moves the region bounds to lower values of the flow rate. This
pattern resembles the one of increasing the contact angle, in fact both these changes in the fluid
characteristics affect in the same way the solution family vanishing the hysteresis. Our simulation
stops at Re = 3 because the neck of the film above the trench is so thin that the transformation
cannot map any more the computational domain to the physical one, since the extremely deformed
elements make the Jacobian of the transformation singular.

Next, we examine a liquid with slightly higher Kapitza number (Ka = 3) than our base case.
We observe again that the trends are like those with decreasing the contact angle, for the reasons
analyzed above. Slight further increase of Ka leads to dramatic changes in the flow patterns, because
at Ka = 3.40875 a transcritical bifurcation occurs. We examine first the evolution of the lower
branch. A relative increase in the capillary force leads on the one hand to deeper wetting of CLA,
and on the other advancing of CLB because capillarity increases with respect to gravity moving
higher the contact point on the bottom wall of the trench. As a result, the penetration of the liquid is
increased and the flow patterns near the two contact points start to interact with each other. On the
upper branch, the increased surface tension leads to less deformed inner and outer free surfaces, thus,
less wetting of the upstream wall and larger air inclusion, until the two branches intersect forming a
transcritical bifurcation at Ka = 3.40875.

For Ka = 6 we can observe in Figs. 12 and 13 that there is no continuous transition from
the capillary-gravity region to the inertia-gravity region. The capillary-gravity zone now forms an
isolated solution branch. Such so-called isolas are common in many types of nonlinear systems (Iooss
and Joseph [39]) and film flows [20]. Here the isola is a product of the breaking of the transcritical
bifurcation (Seydel [33]) forming two turning points, which separate the solution branches for lower
Re from those for larger Re. For the range of 5 < Re < 7.2 no solutions exist for Ka = 6, while
for Re > 7.2 we can identify the inertia-gravity zone with two branches connected via a turning
point at Re ≈ 7.2. As it can be seen in Fig. 12, the solution families in each region have the similar
features after the breaking of the transcritical bifurcation. The same holds for the film shapes in
nearby solution families before or after the bifurcation. The capillary-gravity region is bounded by
two limit points, no transition zone exists and the two hysteresis loops at high Re have merged
forming a sequence of three limit points at Re ≈ 7.2, Re ≈ 11.6, and Re ≈ 10.9.

Moving to even higher Kapitza numbers, the isola in the capillary-gravity region shrinks and
eventually at Ka = 12 it ceases to exist. As the capillary effect becomes more significant than
gravity, it is easier for the liquid to penetrate the trench and finally solutions partially filling it are
not possible for low flow rates. Considering the inertia-gravity zone, while solutions for Ka = 6
extend to large Re, at higher Ka the two branches merge forming an isola, as seen at Ka = 20,
which exhibits four turning points. Further increase of the Kapitza number eliminates all solutions
with partial trench filling for all Reynolds numbers. This is in accordance with the flow maps of
Lampropoulos et al. [14] who found full coating in a trench of this size (d = 5 and w = 5) by a liquid
with Ka = 35. Note that with increasing the Kapitza number, side-wall effects would come into play,
affecting the flow configuration, as suggested by Georgantaki et al. [40]. Future experimental studies
should take under consideration that trenches should be wide enough in the third direction to achieve
two-dimensional flow and examine liquids with higher Kapitza numbers than our base case.
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FIG. 13. Solution families for the wetting by contact line A (CLA) or amplitude of deformation (Ad ) for
Ka = 6, θ = 60◦, d = 5, and w = 5 along with film shapes and contours of the stream function.

Two very interesting observations, can be made if we plot the wetting length CLA as a function
of the Bond number Bo and the Weber number We, respectively. Figure 14 presents such diagrams
for different Kapitza numbers. Examining CLA as a function of Bom, we can observe that the
saddle-node bifurcation in the capillary gravity region takes place at the same Bom ≈ 1.7 for all Ka
examined in this section. Note that the diagram is presented in semi-logarithmic scale to highlight this
observation by locally expanding the position of the different turning points. In addition, CLA ≈ 1.8
at this turning point for all liquids. To explain the physics behind this observation, we introduce a
simplified momentum balance in the film:

ρU 2

H
≈ μ

U

H 2
+ ρg, (16)

where ρU 2

H
is the inertia force, μ U

H 2 is the viscous force, and ρg is the gravity force. In the
capillary-gravity region the inertia term is negligible and, thus, it is omitted from Eq. (16). To
relate the viscous contribution with the capillary contribution we examine the normal stress balance.
We note here that the local characteristic length, which scales the viscous forces in the area between
the bubble and the outer region, is CLA; this is the characteristic length normal to the main flow for
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FIG. 14. Solution families in terms of CLA as a function of (a) Bom and (b) We, for θ = 60◦, d = 5, w = 5
for different liquids. The lines correspond to the same Ka as in Fig. 12.

negligible inertia. The curvature term is scaled by the width of the trench w. Having set the ambient
air pressure to zero, we get

μ
U

CL∗
A

≈ σ

w
, (17)

where CL∗
A is the dimensional wetting of contact line A. Neglecting the inertia term, combing

Eqs. (16) and (17), and rearranging the terms, we get

ρgHw

σ
≈ CL∗

A

H
→ Bo ≈ CLA. (18)

Equation (18) indicates that at the limit of vanishing inertia force, CLA should be of the same
order of magnitude as the Bond number. This is clearly depicted in Fig. 14 (left), especially if we
observe that at the turning point (lowest value of Bo for which solution of this type exists), the values
of Bo and CLA are almost the same, irrespective of the physical properties of each liquid.

Another relation between the different liquids can be made, if we notice that the inertia-gravity
region arises at We = 3, regardless of the physical properties of each liquid. This has been also
observed and explained in our previous work, where we studied the partial penetration flow of a
viscous liquid over a slit; see Pettas et al. [16]. A criterion of entering the inertia-gravity region is
obtained if we substitute the definition of the capillary number in the equation We = 3 and solve for
Rec. In fact, this critical Reynolds number is a function only of the physical properties of the liquid:

Rec = (3St1/3Ka)3/5. (19)

Simulations with bigger trenches, which will be presented in a next section, have proved that
these relations are also independent of the geometry of the trench. However, we should mention that
this relation is valid only for flow over hydrophilic substrates, because for hydrophobic ones these
solution families do not exist.

8. Effect of the inclination angle

In many cases of coating processes, the inclination angle is not fixed at α = 90◦. In Fig. 15
we present the impact of α on the flow profiles and on the evolution of the solution families as a
function of the flow rate. For α = 80◦ we observe a deeper wetting distance of CLA, the capillary
gravity region is found again in an isolated solution branch and there is no continuous transition to
the inertia-gravity region. The x component of the gravity vector is weaker compared to the case of
α = 90◦, allowing CLB to move closer to the upstream wall, while the y component of the gravity
vector pushes more fluid inward the trench. Thus, we observe a smaller air inclusion. The fact that
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FIG. 15. Solution families in terms of CLA or Ad , for Ka = 2, d = 5, and w = 5 under different inclination
angles along with film configurations.

the solution branches are disconnected is caused by the breaking of a transcritical bifurcation as
discussed in the previous section. Further decrease of the inclination angle leads to a shrinkage of the
isolated branch and a displacement of the inertia gravity region to higher Reynolds number, again
like examining higher Kapitza numbers. In fact, for inclination angles lower than 68◦, solutions
of this type cease to exist. This observation is in qualitative agreement with the experiments of
Schörner et al. [41,42]. They examined the flow of thin Newtonian films over sinusoidal substrates
and rectangular trenches for liquids with 1.3 � Ka � 3.7 and inclination angles up to 36.7◦ and did
not find any air inclusions even for high flow rates (Re � 30). This fact is easy to interpret physically:
For inclination angles less than 45◦ the y component of the gravity force will be dominant, and more
effectively assist in filling the trench with liquid and, thus, will not allow air inclusions to be formed.

Increasing the inclination angle to α = 100◦ and examining the inertia effect leads to flow patterns
with large air inclusions on the lower branch, because in this case gravity pulls liquid out from the
trench. Both hysteresis loops on the lower branch and on the upper branch vanish. The effect of
the inclination angle on the bifurcation curves resembles the effect of the Kapitza number. This can
be justified by the fact that both parameters have a major effect on the balance of forces acting on
the film close to the contact lines A and B.

9. Effect of the trench depth

In this section we investigate how the flow over patterned substrates is affected by different
trench depth. In Fig. 16 the wetting distance of CLA and the deformation amplitude Ad are plotted
as a function of Re for different solution families corresponding to different depths of the trench.
Examining the lower branch we see that increasing the trench depth from our base case of 5 has
only a slight impact on either CLA or Ad . Moreover, the insets in Fig. 16 also show that CLB does
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FIG. 16. Solution families in terms of wetting by contact line A (CLA) or amplitude of deformation (Ad )
for Ka = 2, θ = 60◦, and w = 5 and different trench depths.

not change appreciably by increasing d from 5 to 7. All these are attributed to the fact that the
recirculating region is large enough already at d = 5 and increasing the trench depth further affects
only the liquid in the recirculating region, which, when it is large enough, plays almost no role on
(a) the formation of the outer film profile, because it does not communicate with it and (b) the local
force balance near point CLB , where the flow remains much slower than in the outer film. On the
upper branch of the solution family, however, the contact lines do not take part in the formation of
the flow pattern as the air inclusion is always minimized around the upper convex corner and an
increase of the trench depth (to the extent we have presented it here) at a constant Reynolds number
simply leads to the outer free surface moving deeper into the trench (film profiles not shown for
conciseness).

Decreasing the trench depth below 5 leads to vanishing of the upper branch hysteresis at high Re,
because the outer free surface cannot abruptly change the depth to which it enters the trench, since
the trench is too shallow to allow this. On the lower branch, a shallower trench has again a little
effect, as we observe CLA migrating slightly closer to the upstream convex corner and the outer free
surface becoming slightly flatter. We also observe that CLB migrates higher at the bottom of the
trench as the recirculation region tends to vanish and contact line B interacts directly with the main
stream of the flow.

10. Effect of the trench width

In contrast with the previous section, changing the trench width has a noteworthy effect on
the flow characteristics, Fig. 17. Increase in the trench width above the base case of 5 moves the
upper-branch hysteresis to higher values of the flow rate as more inertia is needed to move abruptly
the minimum of the outer free surface deeper and closer to the downstream wall causing the “jump”
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FIG. 17. Solution families in terms of the wetting by contact line A (CLA) or amplitude of deformation
(Ad ) for Ka = 2, θ = 60◦, and d = 5 and different trench widths.

on the deformation amplitude Ad as described in Sec. V A 5 (corresponding film shapes not given
for conciseness).

On the lower branch, increase of w above 5 has a small effect on the wetting of CLA, but affects
considerably the deformation amplitude of the outer free surface which is in accordance with the
ballistic effect mentioned in Sec. IV A 4 and makes thinner the part of the film freely falling.

Decreasing the width of the trench to w = 4 results in vanishing of the hysteresis in both branches
since in the upper branch, the upstream wall comes close enough to the downstream wall and they
do not allow the outer free surface to penetrate in the trench, while on the lower branch the transition
is smoother. Further decrease of the trench width leads to a transcritical bifurcation and, when this
is broken, to splitting again of the capillary-gravity from the inertia gravity region. This forms an
isola and two new branches connected with a limit point as shown in Fig. 17 for w = 3.

B. Bubble formed in the upstream wall

In this section we examine the case in which contact line B is attached to the upstream wall and
along with contact line A they are free to move remaining in contact to it. According to the flow
maps of Lampropoulos et al. [14] this is not a common case of coating failure, since it is reported
to take place for a very limited range of values of the parameters they examined. Figure 18 presents
the wetting length of contact line A and the deformation amplitude of the outer free surface in terms
of the Reynolds number. Here we observe that a single solution branch exists and seems to carry
certain features of either the lower or the upper branch found in the case of a bubble in the upstream
corner case. For example, it has two hysteresis loops. The first one is in the range of 5.8 < Re < 8.2,
is clearer in CLA and seems to correspond to the one in the lower branch in the previously studied
cases, whereas the second hysteresis arises at higher Reynolds 9.6 < Re < 9.8, is clearer in Ad and
resembles the one observed in the upper branch in Sec. V A.
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FIG. 18. Solution family in terms of CLA or Ad , for Ka = 2, d = 5, w = 5, and θ = 60◦ along with film
shapes and contours of the streamlines.

We could not extend the simulations for Re < 0.2, because the bubble surface gets very close
to the bottom of the trench and the elements mapping the fluid in this area become too deformed.
As the flow rate increases so that the Reynolds number increases from Re ≈ 0.2 to Re ≈ 0.5 the
wetting length from the convex corner in the upstream wall increases and the bubble size decreases
so that the wetting length to the concave corner increases. Hence, the liquid occupies a larger area
near the upstream concave corner, which allows for the previously larger recirculation covering most
of the bottom of the trench to split in two smaller recirculations each one located in each concave
corner. Increasing the flow rate further so that Re = 1, we observe that the wetting length increases
and the bubble size decreases considerably, while the size of both recirculations decreases. Up to
this value of Re, these variations are the same as in the capillary-gravity region in the lower branch
of the “bubble in the upstream corner” case, when inertia becomes more significant than viscous
forces, so wetting of the upstream wall is facilitated. The increase in CLA forces the bubble to
move inwards and decrease in size, but CLB cannot decrease below a certain value, because of the
viscous forces developed between its surface and the bottom of the trench by the local recirculation.
Simultaneously, the increased inertia causes a stronger deformation of the outer free surface.
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For 1 < Re < 8 neither the bubble size nor the wetting lengths change appreciably, a pattern
reminiscent of that in the upper branch in Sec. V A. For Re > 1 the air inclusion has become so
small that it does not affect the main flow or the outer film surface at all, on the contrary, it is
affected by them. As the Reynolds number increases further, the first hysteresis loop is reached.
This is generated by the increased inertia and the ballistic phenomenon, which moves the minimum
in the outer free surface towards the downstream wall, increasing the area occupied by the liquid
near the upstream wall and decreasing the pressure there. Both allow the bubble to migrate closer to
the upstream corner sharply decreasing CLA and increasing CLB . Nevertheless, the first hysteresis
loop has no effect on the main flow or the outer free surface, as it can be seen in the variation of
Ad in Fig. 18. Further increasing Re leads to the second hysteresis loop, which can be more clearly
observed when the solution family is depicted in terms of Ad . This is also attributed to the ballistic
effect, which pushes the free surface minimum even closer to the downstream wall. There however,
the flow needs to exit the trench, which decreases the size of this minimum drastically, generating
the second hysteresis. At Re = 12, the bubble is next to the upstream convex corner and most of the
trench is occupied by a large liquid recirculation.

VI. CONCLUSIONS

The steady film flow of a Newtonian liquid has been studied over a trench of orthogonal cross-
section examining the formation of either one of two types of air inclusion in contact with the
trench walls. The contact lines of the inclusion are determined by imposing the angle at which
the fluid detaches and reattaches to the solid wall. Gravity is the external force driving the flow,
which is two-dimensional, assuming that the third distance of the trench is much larger. The mixed
finite element method has been combined with a quasi-elliptic mesh generation scheme, which
allows accurately capturing large deformations of the free surface of the fluid as it flows over the
topography. Periodic conditions are imposed on velocity components, pressure, and position of the
interface between the inflow and the outflow boundary.

The steady-state results are in very good agreement with those reported in previous observations
and transient simulations. In this study, however, the evolution of entire solution families is presented
in detail, as the flow rate, fluid properties trench geometry, and orientation are varied. A competition
between capillary, viscous, and inertia forces gives rise to hydrodynamic hysteresis loops, which have
been tracked in the parameter space using an arc-length-continuation algorithm. The mechanisms
that lead to abrupt changes in the flow profiles have been explained in detail. Flow maps have been
presented that demonstrate whether complete trench coating fails because a bubble is formed either
in the upstream concave corner or in contact with the upstream wall, the two failure cases that arise
most often. The coating quality can be improved mainly by increasing the Kapitza number. This can
be implemented in a given liquid by increasing, for example, its temperature. Finally, using a more
hydrophilic substrate or decreasing the inclination angle can also improve the coating quality.

The combined effect of inertia and viscoelasticity should be examined next, under partial wetting
conditions following Pavlidis et al. [43] and Pavlidis et al. [44] who studied the corresponding full
coating problem. The aspect of viscoelasticity is very important, as in most industrial applications
the coating liquid is a viscoelastic solution. In a different direction, a linear stability analysis of
the obtained steady-state solutions is necessary, as in Ref. [45], to definitively determine which
configuration will prevail. This will be examined also in a forthcoming study.
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