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Drag reduction capability of uniform blowing in supersonic turbulent boundary layers
is investigated by means of direct numerical simulation of channel flows with uniform
blowing on one side and suction on the other. The bulk Reynolds number based on the bulk
density, the bulk mean velocity, the channel half-width, and the viscosity on the wall is set
to Reb = 3000. The bulk Mach number is set at 0.8 and 1.5 to investigate a subsonic and
a supersonic condition, respectively. The amplitude of the blowing or suction is set to be
0.1%, 0.3%, or 0.5% of the bulk mass flow rate. At both Mach numbers, modifications of
the mean streamwise velocity profiles with blowing and suction are found to be similar
to those in an incompressible turbulent channel flow: The skin friction is reduced on the
blowing side, while it is increased on the suction side. As for the drag reducing effect
of blowing, the drag reduction rate and net-energy saving rate are hardly affected by the
Mach number, while the control gain is increased with the increase of Mach number due
to the increased density near the wall. The compressibility effect of drag reduction and
enhancement is also examined using the physical decomposition of the skin friction drag.
A noticeable Mach number effect is found only for the contribution terms containing the
viscosity, which is increased by the increased temperature.
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I. INTRODUCTION

In order to reduce skin friction drag in turbulent boundary layers, which is much higher than
that in laminar flows due to near-wall turbulent structures [1], various techniques have been studied
especially since Kim et al. [2] performed a direct numerical simulation (DNS) of an incompressible
turbulent channel flow [3]. In addition to the passive control methods such as riblets [4] and
superhydrophobic surfaces [5,6], active feedback (i.e., closed-loop) control methods have extensively
been studied aiming at greater drag reduction effects [3,7,8]. As a classical example, Choi et al.
[9] suggested the opposition control, in which the skin friction drag is reduced by about 20%–
25% by applying local blowing and suction from the walls so as to oppose the quasistreamwise
vortices.

In contrast to the closed-loop control, which requires high fabrication cost for tiny sensors and
actuators [8], it has recently been demonstrated that predetermined approaches (i.e., open-loop
control) also have a high potential for friction drag reduction. Min et al. [10] used an upstream
traveling-wave-like blowing and suction from the walls in a turbulent channel flow and demonstrated
that the drag could be reduced to a sublaminar level (although the total power required to drive
the flow has been proven greater than that for the laminar flow [11,12]). Nakanishi et al. [13]
considered a downstream traveling-wave-like wall deformation instead of blowing and suction. They
demonstrated that the flow could be relaminarized, whereby the drag was reduced by about 70% at a
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relatively low Reynolds number. Very recently, Mamori et al. [14] performed an extensive parametric
study of streamwise traveling-wave-like blowing and suction and showed that the relaminarization
could also be achieved by a downstream traveling-wave-like blowing and suction.

On the other hand, it has been well known that uniform blowing or suction from the wall decreases
or increases the drag in a turbulent boundary layer. With uniform blowing, the mean velocity profile
is pushed away from the wall, whereby the velocity gradient on the wall becomes milder. With
uniform suction, on the contrary, the velocity gradient is steepened. The mean velocity profile in
the presence of uniform blowing or suction is reasonably well scaled by the modified logarithmic
law of the wall proposed by Stevenson [15]. More detailed modification of turbulent structure was
studied by Sumitani and Kasagi [16] by means of DNS of a turbulent channel flow with blowing on
one wall and suction on the other wall. They found that the turbulence is enhanced on the blowing
side (where the friction drag is reduced) and suppressed on the suction side (where the drag is
increased). This counterintuitive phenomenon was quantitatively explained by Fukagata et al. [17]
using the mathematical relationship between the friction drag and the turbulent statistics, called the
Fukagata-Iwamoto-Kasagi (FIK) identity: On the blowing side, for instance, the contribution of the
mean wall-normal momentum that works to reduce the drag is greater than the increased contribution
of the Reynolds shear stress. For a spatially developing turbulent boundary layer with a uniform
blowing, Kametani and Fukagata [18] performed a DNS at a relatively low Reynolds number and
found that a blowing at the amplitude of only 0.1% of the freestream velocity could reduce more
than 10% of the drag. A similar drag reduction effect has also been confirmed at higher Reynolds
numbers [19–21].

The studies mentioned above have been made for incompressible flows. In practical high-speed
applications, such as aircrafts, the Mach number Ma is often greater than the value where the
assumption of incompressible flow holds. If one considers applying such a friction drag reduction
technique to a supersonic aircraft, such as the silent supersonic transport [22] being developed at
Japan Aerospace Exploration Agency whose cruising Mach number is Ma = 1.5, consideration of
the compressibility effect is inevitable.

Supersonic turbulent boundary layers have also been studied by means of DNS [23–26]. Among
others, Lagha et al. [26] systematically studied the effect of compressibility on turbulence statistics
in the Mach-number range from 2.5 up to 20. They showed that the turbulence statistics in supersonic
and hypersonic boundary layers are basically similar to those of incompressible boundary layers
and that a small difference is attributed to the variable density. A similar conclusion was obtained
by the study of Gomez et al. [27], who extended the FIK identity [17] to compressible flows and
quantitatively analyzed the different contributions to the friction drag in a supersonic turbulent
boundary layer. They concluded that, similarly to incompressible flows, the dominant contributor
to the skin friction is the Reynolds shear stress and the small difference from the incompressible
flow comes from the variable dynamic viscosity. These findings imply that the effects of uniform
blowing or suction through the wall in supersonic turbulent flows should also be similar to
those in incompressible flows. However, this implication still needs to be confirmed on a solid
basis.

In the present study, we perform direct numerical simulations of compressible turbulent channel
flows with uniform blowing on one side and suction on the other side in order to investigate the
similarity and difference in the control effects among an incompressible, a subsonic, and a supersonic
condition. Similarly to the previous study on an incompressible channel flow [17], we investigate the
compressibility effect on the skin friction modification using the physical decomposition using the
compressible flow version of the FIK identity [27]. We also discuss the control efficiency in terms
of the net-energy saving rate and the gain.

II. DIRECT NUMERICAL SIMULATION

We consider a flow between two parallel walls kept at the same temperature θ∗
w (hereafter,

the subscript w denotes quantities on the wall). The governing equations are the continuity, the
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Navier-Stokes, and the energy transport equations for a compressible flow, i.e.,

∂ρ

∂t
= −∂ρui

∂xi

, (1)

∂ρui

∂t
= −∂ρuiuj

∂xj

− ∂p

∂xi

+ 1

Re

∂τij
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+ fbδi1, (2)

∂ρθ
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∂uj
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Re Pr
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∂ui

∂xj

. (3)

The density ρ, the velocity components ui , the coordinates xi , and the time t are made dimensionless
by the bulk density ρ∗

b , the bulk velocity U ∗
b , and the channel half-width δ∗, where the asterisk

denotes dimensional quantities. The Einstein summation convention applies to the dummy indices.
For convenience, the velocity components u1, u2, and u3 are also denoted by u, v, and w, respectively.
The bulk density ρ∗

b and the bulk mean velocity U ∗
b are defined as

ρ∗
b = 1

2δ∗

∫ 2δ∗

0
〈ρ∗〉dy∗ (4)

and

U ∗
b = 1

2δ∗ρ∗
b

∫ 2δ∗

0
〈ρ∗u∗〉dy∗, (5)

where 〈·〉 denotes the Reynolds average. Following the DNS of Coleman et al. [23], the bulk
Reynolds number is defined as Re = ρ∗

bU
∗
b /μ∗

w, where μ∗
w is the dynamic viscosity on the wall. The

temperature θ is made dimensionless by the wall temperature of the isothermal wall θ∗
w. The Prandtl

number and the bulk Mach number are defined as Pr = μ∗
wc∗

p/λ∗
w and Ma = U ∗

b /c∗, where c∗
p, λ∗

w,
and c∗ are the specific heat under constant pressure, the thermal conductivity on the wall, and the
speed of sound, respectively; γ is the specific heat ratio (γ = 1.4 in the present study).

The viscous stress τij and the heat flux qi are calculated by

τij = μ

(
∂ui

∂xj

+ ∂uj

∂xi

− 2

3
δij

∂ul

∂xl

)
(6)

and

qi = −λ
∂θ

∂xi

, (7)

where δij denotes the Kronecker delta and the Stokes hypothesis has been assumed. Similarly to
Coleman et al. [23], the dimensionless viscosity μ and the dimensionless thermal conductivity λ are
calculated by assuming the power law, i.e.,

μ = λ = θ0.7, (8)

and the thermodynamical variables ρ, θ , and p are related to one another by the perfect gas state
equation, i.e.,

γ Map = ρθ. (9)

The periodic boundary condition is used in the streamwise and spanwise directions. The no-slip
condition is applied on the walls, i.e., (ρui)w = 0. In the cases with uniform blowing and suction, a
constant wall-normal mass flow is added to the wall boundary condition, i.e., ṁw = (ρv)w = const
(>0), on both walls, as shown in Fig. 1.

The bulk Mach number is set at Ma = 0.8 and 1.5 (hereafter referred to as the Ma0.8 and Ma1.5
cases, respectively). The bulk mass flux ṁb = (ρU )b is kept constant by adjusting the effective
pressure gradient fb so that the bulk Reynolds numbers is fixed at Re = 3000. The magnitude of
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FIG. 1. Schematic of the computational domain.

mass flux through the walls is varied as ṁw = 0.001, 0.003, and 0.005, i.e., 0.1%, 0.3%, and 0.5%
of the bulk mass flow rate.

The present DNS code for a compressible flow was developed based on that for an incompressible
channel flow of Fukagata et al. [28]. The governing equations are discretized by the fourth-order
fully conservative central-finite-difference method of Morinishi et al. [29] for the advection term in
the streamwise and the spanwise direction, while the second-order fully conservative central-finite-
difference method is used for the wall-normal direction. The second-order central-finite-difference
method is used for the other terms. The time integration is done by using the low-storage third-order
Runge-Kutta–Crank-Nicolson (RK3-CN) scheme [30]. For comparison with an incompressible
case, we also performed simulations using the incompressible DNS code of Fukagata et al. [28],
in which the energy-conservative second-order finite-difference method [31] is used for the spatial
discretization and the RK3-CN scheme is used for the time integration together with the simplified
marker and cell [32] –like velocity-pressure coupling.

The streamwise, the wall-normal, and the spanwise lengths of the computational domain are
(Lx,Ly,Lz) = (4πδ,2δ,4πδ/3). The corresponding numbers of grid points are (Nx,Ny,Nz) =
(256,120,128) and the resultant grid resolutions are (
x+0,
y+0

min,
z+0) = (9.32,0.22,6.22) in
the Ma0.8 case and (10.8,0.26,7.80) in the Ma1.5 case, where the superscript +0 denotes the wall
units in the base flow (i.e., without blowing and suction). The grid is uniform in the streamwise and
spanwise directions and stretched in the wall-normal direction using a hyperbolic tangent function.

III. BASE FLOW

First, the results for the cases without blowing and suction are presented. The physical and
computational conditions used are listed in Table I. In order to validate the present compressible
flow code, the major statistics are compared with literature. The statistics are accumulated in the
period of T +0 ≈ 3000. First of all, the resultant friction Reynolds number Reτ in the Ma1.5 case is
found to be in good agreement with those of Coleman et al. [23] and Morinishi et al. [24].

Hereafter, 〈·〉 denote the Reynolds average whereas {·} denotes the Favre average, i.e., {f } =
〈ρf 〉/〈ρ〉. The fluctuations with respect to these averages are defined, respectively, as f ′ = f − 〈f 〉
and f ′′ = f − {f }.

TABLE I. Conditions used for base flow and the resultant friction Reynolds number Reτ .

Case Reτ Ma Pr γ Lx × Ly × Lz Nx × Ny × Nz

Ma0.0 188 incompressible 4πδ × 2δ × 4πδ/3 256 × 120 × 128
Ma0.8 190 0.8 0.72 1.4 4πδ × 2δ × 4πδ/3 256 × 120 × 128
Ma1.5 220 1.5 0.72 1.4 4πδ × 2δ × 4πδ/3 256 × 120 × 128
Coleman et al. [23] 222 1.5 0.7 1.4 4πδ × 2δ × 4πδ/3 144 × 119 × 80
Morinishi et al. [24] 218 1.5 0.72 1.4 4πδ × 2δ × 4πδ/3 120 × 180 × 120
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FIG. 2. Mean streamwise velocity 〈u〉 (blue), mean density 〈ρ〉 (black), and mean temperature 〈θ〉 (red).
The solid line shows Ma = 1.5, the dashed line shows Ma = 0.8, and circles show the Ma = 1.5 case of
Coleman et al. [23].

The Reynolds-averaged streamwise velocity U = 〈u〉, density 〈ρ〉, and temperature 〈θ〉 are plotted
in Fig. 2. The temperature is increased in the bulk of the channel and the density is increased in the
vicinity of the walls. The profiles are found to be in good agreement with the results of Coleman
et al. [23] at Ma = 1.5.

The Reynolds-averaged temperature at the center of the channel 〈θc〉 and the density on the wall
〈ρw〉, and the density at the center of the channel 〈ρc〉 are listed in Table II. Again, the values at
Ma = 1.5 are in good agreement with those of Coleman et al. [23]. The table also shows that a lower
Mach number results in lower values of 〈θc〉 and 〈ρc〉.

Figure 3 shows the profiles of the van Driest–transformed mean streamwise velocity, i.e.,

UvD =
∫ 〈u〉

0

( 〈ρ〉
〈ρ〉w

)1/2

d〈u〉, (10)

in wall units, which also collapses with that of Coleman et al. [23]. It is also noticed that the velocity
in the logarithmic-law region is slightly higher in the supersonic case (Ma = 1.5) than that in the
subsonic case (Ma = 0.8).

The root-mean-square (rms) values of the streamwise, the wall-normal, and the spanwise velocity
fluctuations, i.e., urms vrms, and wrms, are plotted in Fig. 4. As the Mach number increases, the rms
values increase due to the increase of density near the wall [26]. At Ma = 1.5, the rms velocity
fluctuations are in good agreement with those of Coleman et al. [23].

TABLE II. Temperature and density on the wall and at the center of the channel.

Case Ma 〈θc〉 〈ρw〉 〈ρc〉
Ma0.8 0.8 1.11 1.10 0.99
Ma1.5 1.5 1.38 1.37 0.98
Coleman et al. [23] 1.5 1.38 1.36 0.98
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D
D

D
FIG. 3. The van Driest–transformed mean streamwise velocity. The black line shows Ma = 1.5, the red

line shows Ma = 0.8, and blue circles show Ma = 1.5 of Coleman et al. [23].

Figure 5 shows the shear stress balance based on the approximated momentum equation [33]

〈μ〉∂{u+}
∂y+︸ ︷︷ ︸
I

+〈μ〉∂〈u′′+ 〉
∂y+︸ ︷︷ ︸
II

+
〈
μ′ ∂u′+

∂y+

〉
︸ ︷︷ ︸

III

− 〈ρ〉
〈ρw〉 {u

′′+v′′+}︸ ︷︷ ︸
IV

= 1 −
∫ y

0
〈ρ〉dy︸ ︷︷ ︸

V

. (11)

It can be observed that the dominant contributors are the viscous shear stress (I) and the Reynolds
shear stress (IV), while contributions from the other terms (II, III, and V) are very small. The total
shear stress slightly deviates from the linear line due to the density variations, as reported by Huang
et al. [33].

FIG. 4. Turbulent intensities. The black solid line shows Ma = 1.5, the red solid line Ma = 0.8, and the
gray solid line the incompressible case. The solid lines are for urms, the dashed lines vrms, and the dash-dotted
lines wrms. Circles mark Ma = 1.5 of Coleman et al. [23].
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FIG. 5. Shear stress balance for Ma = 0.8 (left) and Ma = 1.5 (right). The black solid line shows term I in
Eq. (11), the dashed black line term II the blue solid line term III, the red solid line term IV, and the green solid
line I + II + III + IV.

IV. UNIFORM BLOWING AND SUCTION

A. Thermal properties

The turbulent statistics in the cases with uniform blowing and suction are presented here. The
statistics are accumulated in the period of T = 100δ/Ub after the flow has reached its new statistically
steady state, which corresponds to T +0 ≈ 1200 in the Ma0.0 and Ma0.8 cases and T +0 ≈ 1600 in
the Ma1.5 case.

Profiles of the Reynolds-averaged density 〈ρ〉 and temperature 〈θ〉 are depicted in Fig. 6. In both
the subsonic and supersonic cases, the density profiles are observed to shift from the blowing side
to the suction side. Although the density gradient is moderated on the blowing side and increased
on the suction side, the minimum density around the center of the channel is hardly affected by the
blowing and suction. This observation is also supported by the values of 〈ρc〉 presented in Table II
and 〈ρ〉min and 〈ρ〉max presented in Table III. The Reynolds-averaged density on the wall in the
subsonic case, listed in Table III, does not show a significant difference between the blowing side
and the suction side. In the supersonic case, however, a small amount of increase and decrease in the

FIG. 6. Mean density (black) and temperature (red) profiles for Ma = 0.8 (left) and Ma = 1.5 (right). The
solid line shows 0.1%, the dashed line 0.3%, the dash-dotted line 0.5%, and the gray solid line the uncontrolled
case.
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TABLE III. Thermodynamical properties.

Case
〈
ρb

w

〉 〈
ρs

w

〉 〈ρ〉min 〈θ〉max

Ma0.8BS0.1 1.10 1.10 0.99 1.11
Ma0.8BS0.3 1.10 1.10 0.99 1.11
Ma0.8BS0.5 1.10 1.10 0.99 1.11
Ma1.5BS0.1 1.36 1.33 0.98 1.38
Ma1.5BS0.3 1.36 1.33 0.98 1.39
Ma1.5BS0.5 1.36 1.33 0.98 1.39

density is found on the blowing and suction sides, respectively. Table III also shows the maximum
temperature 〈θ〉max around the center of the channel. In the subsonic case, the maximum temperature
is hardly affected by blowing and suction. On the other hand, in the supersonic case, a slight increase
of 〈θ〉max is found due to heating by viscous dissipation.

The density distribution in a y-z cross section is visualized in Fig. 7 together with the velocity
vectors. The high-density region is thickened on the blowing side, while it is thinned on the suction
side in both the Ma0.8BS0.5 and Ma1.5BS0.5 cases. Hereafter, the number following “BS” denotes
the amplitude of blowing and suction (in percentage) to the bulk mean velocity; for instance,
Ma0.8BS0.5 denotes the case of Ma = 0.8 and ṁw = 5.0 × 10−3. The higher bulk Mach number
results in the higher density near the wall. It can also be observed that the density is entrained by
the quasistreamwise vortices near the wall. Figure 7 also illustrates that the mass flux at a constant
temperature introduced from the walls attenuates the density fluctuations on the isothermal walls.
Similarly, the temperature decreases on the blowing side, while it increases on the suction side.
While the maximum temperature 〈θ〉max in the subsonic cases is not affected by the blowing and
suction, 〈θ〉max in the supersonic case is slightly increased due to enhanced turbulence when the
blowing and suction amplitude is larger than 0.1%.

B. Turbulence statistics

The variation of density might directly affect on the Favre-averaged turbulence statistics. Figure 8
shows the van Driest–transformed mean streamwise velocity scaled by the local wall unit on each

FIG. 7. Density distribution in the cross section: top left, Ma0.8; bottom left, Ma0.8BS0.5; top right, Ma1.5;
and bottom right, Ma1.5BS0.5.
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D D

FIG. 8. The van Driest–transformed mean streamwise velocity for Ma = 0.8 (left) and Ma = 1.5 (right)
for the uncontrolled case (black), the blowing side (red), and the suction side (blue). The solid lines show 0.1%,
the dashed lines 0.3%, and the dash-dotted lines 0.5%.

wall. In both the Ma = 0.8 and Ma = 1.5 cases, the linear-law region can be found in the range of
y+ < 2. However, the logarithmic law does not seem appropriate anymore. An upward (downward)
shift is observed in the blowing (suction) side due to the decreased (increased) friction velocity. The
amount of such a shift becomes larger as the amplitude of blowing (suction) is increased.

The rms of velocity fluctuations in the local wall unit are plotted in Figs. 9 and 10. These
figures show that all the components increase by blowing but decrease by suction under both the
supersonic and subsonic conditions. Although the peak values cannot be scaled by the wall units,
the peak location of the streamwise fluctuation is fixed at y+ ≈ 15, whether on the blowing side or
the suction side and under the supersonic or subsonic conditions. A similar argument can be made
about the wall-normal and spanwise fluctuations, i.e., y+ ≈ 60 for the wall-normal components and
y+ ≈ 40 for the spanwise components.

In order to compare the shear stress distributions between the controlled case and the uncontrolled
case, the viscous shear stress (VSS), i.e., term I in Eq. (11), and the Reynolds shear stress (RSS),
i.e., term IV in Eq. (11), scaled by the wall units in the uncontrolled case are plotted in Fig. 11. It is
apparent that, at both Ma = 0.8 and 1.5, RSS is increased on the blowing side, while it is decreased

FIG. 9. Favre-averaged turbulent intensity at Ma = 0.8 for the blowing side (left) and the suction side
(right). The solid lines show u′, the dashed lines v′, and the dash-dotted lines w′. Gray shows the uncontrolled
case, black 0.1%, blue 0.3%, and red 0.5%.
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FIG. 10. Favre-averaged turbulent intensity at Ma = 1.5 for the blowing side (left) and the suction side
(right). The solid lines show u′, the dashed lines v′, and the dash-dotted lines w′. Gray shows the uncontrolled
case, black 0.1%, blue 0.3%, and red 0.5%.

on the suction side. On the other hand, VSS has the opposite trend: VSS is decreased on the blowing
side and increased on the suction side. As a result, the summation of the two shear stresses (RSS +
VSS) shifts towards the suction wall by uniform blowing and suction. The profiles of the total shear
stress in the controlled case are not symmetric around the center of the channel; the wall-normal
position of zero shear stress shifts towards the suction wall. Although the friction Reynolds number
is different in the cases of Ma = 0.8 and 1.5, the amount of shift in the total shear stress looks to be
determined primarily by the amplitude of blowing and suction rather than the Mach number. Here
the vortical structures in the 0.5% blowing and suction case are visualized in Fig. 12 by the Laplacian
of pressure. The number of vortices is decreased on the suction side, while it is increased on the
blowing side, in accord with the modification in the Reynolds shear stress observed in Fig. 11. This
trend is similar to that in the incompressible turbulent boundary layer [18–21].

C. Local Mach number

Although the Mach number based on the bulk velocity is fixed in each case, the local Mach
number may be affected by the blowing or suction. Figure 13 shows the local Mach number

FIG. 11. Shear stress balance with blowing and suction for Ma = 0.8 (left) and Ma = 1.5 (right) for the
uncontrolled case (black), 0.1% (red) 0.3% (blue), and 0.5% (green). Solid lines show term I in Eq. (11), dashed
lines term IV, and dash-dotted lines term I + IV.
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FIG. 12. Flow structures by isosurfaces of ∇2p = −2 and contour of wall shear stress for the blowing side
(top) and the suction side (bottom).

Mal = Ma〈u〉/√〈θ〉 in both bulk-Mach-number cases. For the uncontrolled case and the 0.5%
blowing and suction cases, the turbulent Mach number Mat = Ma

√
〈u′2 + v′2 + w′2〉/√〈θ〉 is also

displayed as bands, i.e., Mal ± Mat . The local Mach number is found to be below unity in the
region near the walls in both Mach-number cases; namely, the flows are subsonic near the wall. The
profiles show that in both cases the local Mach number is decreased on the blowing side, while it is
increased on the suction side. This trend appears more strongly as the control amplitude increases.
The rms of turbulent Mach number is increased on the blowing side, while it is decreased on the
suction side.

FIG. 13. Local Mach number as a function of y: Ma = 0.8 (left) and Ma = 1.5 (right) for the uncontrolled
case (gray), 0.1%BS (black), 0.3% (blue), and 0.5% (red). Gray and red bands show the range of ±Mat of the
uncontrolled and 0.5%BS cases, respectively.
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FIG. 14. Drag reduction rate R (×102) for Ma = 1.5 (black) and Ma = 0.8 (red) on the suction side, ×;
the blowing side, ◦; and averaged, +.

D. Skin friction drag and heat transfer

Uniform blowing and suction affect the skin friction drag and the heat transfer. The drag reduction
rate on the suction side, the blowing side, and their average are defined as

Rs = C0
f − Cs

f

C0
f

, (12)

Rb = C0
f − Cb

f

C0
f

, (13)

R = C0
f − (

Cs
f + Cb

f

)
/2

C0
f

, (14)

where the superscripts of s and b denote the suction side and the blowing side, respectively, and the
friction coefficient Cf is defined as

Cf = 2τ ∗
w

ρ∗
wU ∗2

b

. (15)

Negative values of R indicate drag increase. The reduction rate in each case is shown in Fig. 14.
The drag reduction (increase) rate on the blowing (suction) wall increases as the control amplitude
increases. Although the drag reduction rate by blowing is nearly insensitive to the Mach number,
the drag increase rate on the suction side is slightly increased with the Mach number.

Similarly, the heat transfer reduction rate can be defined

Rs
θ = St0 − Sts

St0
, (16)

Rb
θ = St0 − Stb

St0
, (17)

where the Stanton number St is defined as

St = q∗
w

cpθ∗
wU ∗

b

. (18)
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FIG. 15. Heat transfer reduction rate Rθ (×102) for Ma = 1.5 (black) and Ma = 0.8 (red) on the suction
side, ×; the blowing side, ◦; and averaged, +.

The heat transfer reduction rate is plotted in Fig. 15. Although the Mach-number dependence of
the heat transfer cannot directly be compared among different cases because the temperature profile
varies with the Mach number, it is clear that the heat transfer is enhanced on the blowing side, while
it is suppressed on the suction side. The average values show that the heat transfer is promoted in all
controlled cases. The plot shows that the heat transfer is more sensitive to the amplitude of blowing
and suction as well as the bulk Mach number. By blowing the cold fluid (θ = 1) from the wall, the
temperature gap between the near-wall region and the wall becomes smaller. By suction, in contrast,
the temperature gap becomes larger since the hot fluid is attracted from the channel center towards
the wall. This trend is more noticeable in the case of higher amplitude of blowing and suction, and
this additional mechanism amplifies the effect of blowing and suction on heat transfer as compared
to that on momentum.

The control efficiency on the blowing side is of great interest if we consider a boundary layer in
practical applications, although the present simulation of channel flow includes the effect of suction
on the opposite wall to keep the mass flux constant. The net-energy saving rate S and the control
gain G on the blowing side are therefore defined as

S = C0
f − (

Cb
f + Win/Ub

)
C0

f

, (19)

G = C0
f − Cb

f

Win/Ub

, (20)

where Win is the input power of blowing defined as

Win = 〈
1
2ρv3

〉
w

= 〈
1
2 ṁwv2

w

〉 ≈ 1
2 〈ρw〉〈vw〉3. (21)

Here, in order to discuss an ideal situation, the contribution from the pressure difference between the
inside and outside of the blowing plate is assumed to be negligibly small compared to the one from
the wall-normal velocity. The net-energy saving rate and the control gain is plotted in Fig. 16 as
an S-G map. The figure shows that weaker amplitude of blowing results in higher control gain and
lower net-energy saving rate, while higher amplitude of blowing works opposite at all bulk Mach
numbers. Remarkably, the Mach-number dependence can be found: The control gain is increased as
the bulk Mach number increases.
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FIG. 16. The S-G map: gray, the incompressible case; black, Ma = 1.5; and red, Ma = 0.8 for 0.1%, ◦;
0.3%, 
; and 0.5%, �.

In order to investigate the reason for this Mach-number dependence, we take a look at the profile
of the mean wall-normal velocity. Basically, the wall-normal velocity due to the mass flux introduced
from the wall moves the mean streamwise velocity profile away from the wall. Although the mass
flux works directly on the wall-normal velocity in the incompressible flow, that in the compressible
flow works differently due to the variable density.

Figure 17 shows the Favre-averaged and the Reynolds-averaged wall-normal velocities. As the
Mach number increases, the mean wall-normal velocity near the wall decreases. It is obvious that
the Favre-averaged and the Reynolds-averaged wall-normal velocities do not agree with each other.
On the blowing side, a clear gap between Favre-averaged and Reynolds-averaged profiles can be
found. From the definition of the Favre-averaged and the Reynolds-averaged values, this gap is

FIG. 17. Favre-averaged (solid lines) and Reynolds-averaged (dashed lines) wall-normal velocity for
Ma = 0.8 (left) and Ma = 1.5 (right) for the uncontrolled case (gray), 0.1% (black), 0.3% (blue), and 0.5%
(red).
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FIG. 18. Effect of Mach number on drag reduction by blowing.

caused by

{v} − 〈v〉 = 〈ρv〉
〈ρ〉 − 〈v〉

= 〈〈ρ〉〈v〉 + ρ ′v′〉
〈ρ〉 − 〈v〉

= 〈v〉 + 〈ρ ′v′〉
〈ρ〉 − 〈v〉

= 〈ρ ′v′〉
〈ρ〉 . (22)

Here 〈ρ〉 is positive throughout the channel, so the correlation between the fluctuations of the density
and the wall-normal velocity determine the gap between the Favre- and the Reynolds-averaged
wall-normal velocities. Figure 18 shows the schematic of the streamwise mean velocity influenced
by blowing. Near the lower wall, the positive wall-normal velocity fluctuation v′ carries heavy fluid
to a region with lighter fluid as shown in Fig. 18 and the positive fluctuation is induced (see Fig. 7).
Hence, a positive correlation ρ ′v′ is obtained. Similarly, from the upper wall, a negative v′ will
induce also the positive ρ ′ so that the negative ρ ′v′ is obtained. As stated in Eq. (22), the difference
between the Favre-averaged and the Reynolds-averaged v is 〈ρ ′v′〉/〈ρ〉, where 〈ρ〉 > 0. Near the
lower wall, since 〈ρ ′v′〉/〈ρ〉 is positive, then {v} > 〈v〉. On the other hand, near the upper wall, since
|〈ρ ′v′〉| decreases, {v} approaches 〈v〉 as depicted in Fig. 19. As a result, the difference between the
Reynolds-averaged and the Favre-averaged wall-normal velocities diminishes on the suction side.

As shown in Fig. 16, the net-energy saving rate S tends to be determined by the amplitude of the
blowing mass flux because the wall-normal gradient of the streamwise velocity is more moderate
with the stronger blowing. A similar mechanism was mentioned by Kametani and Fukagata [18]
for the incompressible turbulent boundary layer. The Mach-number dependence of the control gain
G is supposed to be caused by the increased density near the wall. Since the control input Win is
proportional to 〈vw〉3, Win decreases as the bulk Mach number increases under the condition of
constant blowing mass flux. Although the wall-normal momentum flux is constant, the wall-normal
velocity on the blowing side is decreased since the density is increased near the wall as shown in
Fig. 17. As the Mach number increases, the density near the wall is increased, so the control input
Win becomes smaller. As shown in Fig. 18, by blowing, the mean streamwise velocity profile shifts
toward the channel center with reduction of the wall shear stress. As the Mach number increases,
the control input power is decreased because of the increased density near the wall. In order to push
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FIG. 19. Correlation of density and wall-normal velocity fluctuation 〈ρ ′v′〉 for Ma = 0.8 (left) and Ma = 1.5
(right) for the uncontrolled case (gray), 0.1% (black), 0.3% (blue), and 0.5% (red).

up heavier fluids, more blowing velocity is required. The decreased blowing velocity input result in
an increase of the control gain. On the other hand, the Mach-number dependence of the net-energy
saving rate is less clear because the control input Win is negligibly small.

Here the readers might have a concern about the effect of blowing with adiabatic walls because
most cases of external flow assume the adiabatic walls. In contrast to the isothermal walls, the density
is decreased and temperature is increased on adiabatic walls (see, e.g., Ref. [34]). The drag reduction
effect by uniform blowing on an adiabatic wall should be basically similar to that on the isothermal
wall because the third term of the FIK identity (CBS) is the main contributor to the drag reduction
effect. Concerning the net-energy saving rate, however, the input power of blowing is predicted to
be increased due to reduced density on the wall.

E. Decomposition of the skin friction drag

Based on the compressible flow version of the FIK identity derived by Gomez et al. [27], the
physical decomposition of the total friction drag in the presence of blowing and suction can be
expressed as

CFIK
f = 2τ ∗

w

ρ∗
bU ∗2

b

= CL + CT + CBS + Cμ + CμT

= 6

Re︸︷︷︸
CL

+ 3
∫ 2

0
(1 − y)〈ρ〉{−u′′v′′}dy︸ ︷︷ ︸

CT

+ 3
∫ 2

0
(1 − y)〈ρ〉(−{u}{v})dy︸ ︷︷ ︸

CBS

+ 6

Re

∫ 2

0
(1 − y)(〈μ〉 − 1)

∂〈u〉
∂y

dy︸ ︷︷ ︸
Cμ

+ 6

Re

∫ 2

0
(1 − y)

〈
μ′

(
∂u′

∂y
+ ∂v′

∂x

)〉
dy

︸ ︷︷ ︸
CμT

, (23)

which decomposes the skin friction drag into four components, i.e., contributions from the laminar
flow, the Reynolds shear stress, blowing and suction, the compressible contribution, and the
compressible-turbulent interaction. In the incompressible case, the corresponding components are
CL, CT , and CBS (see Ref. [17]). The decomposed total skin friction drag is depicted in Fig. 20.
Here the total skin friction, i.e., the average of the friction coefficient of the blowing and suction
sides, is discussed. Because of the different friction Reynolds numbers, the total values are not
comparable. The balance of all the components is shown in Table IV. Since the bulk Reynolds
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MaMa Ma

FIG. 20. Decomposed skin friction drag for CL (black), CT (red), CBS (blue), Cμ (green), and CμT [gray
(invisible)].

number is fixed, CL is constant in all cases. The dominant contributors are CL, CT , CBS, and Cμ.
The compressible-turbulent interaction term CμT is negligibly small. The Reynolds shear stress term
CT tends to decrease by the blowing and suction in all bulk-Mach-number cases due to the following
two reasons: (i) Turbulence is shifted away from the wall on the blowing side and (ii) turbulence is
decreased on the suction side. It should be noticed that, in the Ma1.5 case, CT is increased again
from a 0.3% to a 0.5% blowing-suction amplitude because the enhancement of RSS by blowing
overcomes the reduction of RSS by suction. At the same bulk Reynolds number, CT in Ma0.8 is
larger than that in Ma1.5 for all blowing amplitudes including uncontrolled case, while Cμ in Ma0.8
is smaller than that in Ma1.5.

Unlike the Reynolds shear stress term CT , the blowing and suction term CBS is negligibly small
at all Mach numbers at 0.1% of blowing and suction. For 0.3% blowing and suction cases, CBS

increases up to around eight times larger than that of the 0.1% blowing and suction cases at all Mach
numbers.

The compressible contribution term Cμ appears only in the compressible cases. The amount of
Cμ increases as the Mach number increases, while it is hardly affected by the control amplitude.
The integrand of Cμ in Eq. (23) is very small near the wall because the viscosity on the wall is unity,
i.e., limy→0 (〈μ〉 − 1) = 0. This is a consequence of the constant wall temperature condition. On
the other hand, with an increase of Mach number, Cμ increases due to the increased viscosity in the
vicinity of the wall.

TABLE IV. Different contribution of the FIK identity (×103).

Case CL CT CBS Cμ CμT Total

Ma0.0 2.0 5.77 0.00 7.78
Ma0.0BS0.1 2.0 5.83 O(10−3) 7.83
Ma0.0BS0.3 2.0 5.40 0.67 8.07
Ma0.0BS0.5 2.0 5.39 1.72 9.11
Ma0.8 2.0 5.65 0.00 0.18 O(10−3) 7.83
Ma0.8BS0.1 2.0 5.20 0.12 0.18 O(10−3) 7.90
Ma0.8BS0.3 2.0 5.30 0.98 0.18 O(10−3) 8.47
Ma0.8BS0.5 2.0 5.49 2.00 0.18 O(10−3) 9.68
Ma1.5 2.0 5.30 0.00 0.62 0.02 7.93
Ma1.5BS0.1 2.0 5.14 0.12 0.62 0.02 7.91
Ma1.5BS0.3 2.0 5.09 0.94 0.63 0.01 8.67
Ma1.5BS0.5 2.0 5.28 2.34 0.64 0.01 10.3
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V. SUMMARY AND CONCLUSIONS

A series of DNSs of compressible turbulent channel flows with uniform blowing and suction were
performed in order to investigate the Mach-number effect of uniform blowing and suction from the
wall. Similarly to the incompressible turbulent channel flow, drag reduction on the blowing side and
drag increase on the suction side were confirmed.

The present DNS results show that the drag reduction rate is primarily affected by the control
amplitude rather than the bulk Mach number. A similar trend appears on the net-energy saving rate
because of the small amplitude of blowing. In contrast, the control gain has a clear Mach-number
dependence: It increases as the bulk Mach number increases. This was explained by the decrease
of wall-normal velocity due to the increased density near the wall. The decomposition of the skin
friction drag using the FIK identity confirms the absence of the Mach number dependence except
for the viscosity term Cμ, which comes from the viscosity variation due to temperature.

In summary, the Mach-number dependence on the uniform blowing and suction effect in a
supersonic turbulent channel flow is merely due to the varied thermal properties such as density and
temperature, similarly to the Mach-number dependence on the turbulent statistics in uncontrolled
flows. This in turn suggests that the uniform blowing, which has been extensively studied for drag
reduction of incompressible flows, can effectively be used also for supersonic turbulent boundary
layers.
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