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We study a mechanism for active aerodynamic drag reduction on morphable grooved
cylinders, whose topography can be modified pneumatically. Our design is inspired by the
morphology of the Saguaro cactus (Carnegiea gigantea), which possesses an array of axial
grooves, thought to help reduce aerodynamic drag, thereby enhancing the structural robust-
ness of the plant under wind loading. Our analog experimental samples comprise a spoked
rigid skeleton with axial cavities, covered by a stretched elastomeric film. Decreasing the
inner pressure of the sample produces axial grooves, whose depth can be accurately varied,
on demand. First, we characterize the relation between groove depth and pneumatic loading
through a combination of precision mechanical experiments and finite element simulations.
Second, wind tunnel tests are used to measure the aerodynamic drag coefficient (as a func-
tion of Reynolds number) of the grooved samples, with different levels of periodicity and
groove depths. We focus specifically on the drag crisis and systematically measure the asso-
ciated minimum drag coefficient and the critical Reynolds number at which it occurs. The
results are in agreement with the classic literature of rough cylinders, albeit with an unprece-
dented level of precision and resolution in varying topography using a single sample. Finally,
we leverage the morphable nature of our system to dynamically reduce drag for varying
aerodynamic loading conditions. We demonstrate that actively controlling the groove depth
yields a drag coefficient that decreases monotonically with Reynolds number and is signifi-
cantly lower than the fixed sample counterparts. These findings open the possibility for the
drag reduction of grooved cylinders to be operated over a wide range of flow conditions.

DOI: 10.1103/PhysRevFluids.2.123903

I. INTRODUCTION

The Carnegiea gigantea, commonly known as the Saguaro cactus [Fig. 1(a)], is an iconic and
endemic plant to the Sonoran desert in the American southwest. These cacti can grow to be 15 m
tall with diameters over 0.8 m and weigh over 1800 kg [1,2]. Despite their shallow root base, these
essentially cylindrical plants are able to withstand wind speeds of up to 38 ms−1 without failure
due to this aerodynamic loading and live as long as 150 years [1,3]. The surface morphology of a
mature Saguaro cactus comprises between 10 and 30 vertical (axial) grooves that are equally spaced
around its circumference [1]. The depth of these grooves varies along the trunk [4], and their shape
also changes with the seasons [1]. During the wet season, the trunk undergoes hygroscopic swelling
and the grooves are less pronounced. In reverse, during the dry season, the stored water is gradually
comsumed and the grooves deepen [1]. For a 1.5-m-tall cactus, the ratio between groove depth and
plant diameter has been measured to be approximately 0.07 [5]. A possible evolutionary advantage
of the grooves is that they may provide additional structural support to the plant. Another prevailing
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FIG. 1. (a) Representative photograph of a Saguaro cactus (Scottsdale, Arizona) [15]. (b) Photographs
of a grooved cylindrical sample covered by a stretched latex film. The surface topography can be morphed
pneumatically by increasing the pressure differential between the inside and the outside of the samples: (b1)
�p = 1000 Pa, (b2) �p = 5000 Pa, (b3) �p = 10,000 Pa. A laser sheet aligned at 45◦ with respect to the cross
section of the sample is used to measure the depth of the surface grooves.

hypothesis in the literature [4,6] is that the axial corrugations are thought to yield an aerodynamic
advantage that reduces the overall form drag on the structure. This drag reduction may then allow
the plant to withstand high wind loads, for example, during storm conditions. In our current study,
we do not set out to determine which hypothesis is correct. Instead, we use the latter interpretation
of the effect of the grooves on drag reduction as an original source of inspiration and motivation for
our work.

Smooth cylinders under high-Reynolds-number flow conditions (Re � 2 × 105, taking the
diameter as the characteristic length), are well known to undergo a phenomena referred to as the drag
crisis [7]. With increasing Re, the drag coefficient, Cd, first drops sharply (critical regime), until a
minimum is reached at a critical Reynolds number, Re∗, after which Cd increases again (supercritical
regime), before plateauing (transcritical regime) [8,9]. This drop in drag is related to a delay in
separation caused by a laminar-to-turbulent flow transition in the boundary layer. Roughening the
surface of the cylinder causes the drag crisis to occur earlier by promoting the transition from a
laminar to turbulent boundary layer [4,9,10]. Numerous past studies have investigated the influence
of surface topography on the drag crisis of bluff bodies [9,11–14]. For example, covering the surface
of cylinders or spheres by sand grains to produce an uniformly random surface roughness has been
shown to reduce their drag coefficient by as much as a factor of 1.8 (for cylinders) [9] or 5 (for
spheres) [12], when compared to their smooth counterparts. Periodic patterns of dimples have also
proven to be effective at reducing the drag on both spherical [11,14] and cylindrical [13] bluff bodies.

Returning to the resilience of Saguaro cacti under wind loading, it has been proposed that the
axial grooves on their surface have an effect similar to the aforementioned rough cylinders, thereby
enhancing the aerodynamic performance of the plant [10]. This hypothesis inspired our work.

Also motivated by the cactus analogy, a series of previous studies have addressed the aerodynamics
of cylinders with longitudinal grooves [4,6,10,16–21]. For example, Refs. [4,10] report experiments
that explore the effect the surface shape (smooth, rough and cactus-shaped grooves) of cylinders
at high Reynolds numbers (2 � Re [×104] � 20). In this study, the samples with v-shaped grooves
(similar to those of cacti) were machined with a depth to cylinder diameter ratio spanning 0.035 �
L/D � 0.105. Within the tested range of Re, the grooved cylinders showed a monotonic increase
in Cd with increasing Re, then asymptoting at values in the range 1.04 � Cd � 1.13, depending
on the groove depth (the deepest grooves providing the lowest Cd). This monotonic dependence
indicates that all cases considered in these experiments were already in the supercritical and
transcritical flow regimes (i.e., the critical Reynolds number was below the the explored range of Re;
Re∗ < 2 × 104) [4].
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A subsequent experimental study [19] also examined the effect of the shape of grooves on Cd

over a range of Reynolds numbers (1 � Re [×104] � 10). These experiments used 48-mm-diameter
cylinders with 0.5-mm-deep grooves of triangular and arc-shaped geometries. The results showed
that both triangular and arc-shaped grooves induced the drag crisis at the same value of Re, but
the triangular-grooved cylinders exhibited a lower value of the minimum drag coefficient [19]. A
more recent study [21] focused on catenary shaped grooves in the critical Reynolds number regime
(2 � Re [×104] � 12). The experiments were performed with cylinders of varying groove depth,
width and area. Increasing the ratio, A∗, between the area of all the grooves and the area of the
cylinder decreased the critical Reynolds number and increased the minimum drag coefficient. This
finding was robust regardless of whether A∗ was increased by increasing the groove depth, groove
width or shape factor [21].

In addition to the shape of grooves, the effect of the number of grooves on the drag on cylinders
(with triangular-shaped features) has also been investigated [20]. Samples with an increasing number
of grooves (from 20 to 30) exhibited the drag crisis at lower values of Re, and the drag crisis was
characterized by a more gradual drop, even if the minimum drag coefficient appeared unchanged [20].

Overall, combining the findings from the past studies mentioned above establishes that different
groove patterns can change the aerodynamic performance of a cylinder. However, these investigations
were limited in the range and extent of the explored parameter space by the time and cost needed to
fabricate individual samples for each configuration. Additionally, each individually manufactured
samples (with a fixed surface shape) minimizes the drag coefficient at a single value of Reynolds
number, Re∗, whereas, for all other Re, the drag can be specifically higher. As such, an important
shortcoming precluding the translation of this drag reduction mechanism with fixed topographies
into engineering applications is that any aerodynamic enhancement is limited to relatively narrow
ranges of Re.

Here, we study the aerodynamic performance of cylinders using a single, albeit morphable,
sample whose topography that can be varied systematically and precisely on demand. The tuning
of the surface shape is accomplished by the pneumatic actuation of the flexible elastomeric film
covering an inner rigid skeleton, with a single pressure signal that can be continuously varied. In
Fig. 1(b), we present representative photographs of a sample at three different states of pneumatic
loading (�p = 1, 5, and 10 kPa). Therefore, by varying the internal pressure of the sample, we can
set the sample to numerous fixed groove shapes, specifically the groove depth. Wind tunnel tests are
used to characterize the aerodynamic drag of our samples, over a wide range of Reynolds numbers,
for each fixed depth. We determine which groove depth exhibits the lowest drag coefficient at any
given Reynolds number. Finally, we present a system in which the drag on the samples can be
automatically minimized by changing the groove depth, depending on the measured velocity of the
oncoming flow.

Our paper is organized as follows. In Sec. II, we describe our experimental apparatus used
to measure the drag forces on the cylindrical samples and detail the sample fabrication method.
In Sec. III, we describe the finite element simulations and mechanical experiments used to study
the mechanics of deformation of the outer elastomeric film and establish a relationship between
the groove depth and the internal pressure in the samples. Next, the protocol of the wind tunnel
experiments is presented in Sec. IV A. Finally, the results of the aerodynamic experiments are
presented in Secs. IV B and IV C.

II. THE EXPERIMENTS

Our cylindrical samples comprised a rigid acrylic skeleton covered by a stretched cylindrical film
made of latex. The rigid skeleton contained a series of inner cavities set by an array of equally spaced
radial spokes, aligned axially. Decreasing the internal pressure in the cavities caused the outer latex
film to stretch further and, consequently, increased the depth of the axial grooves. Therefore, the
topography of the samples could be tuned gradually and on demand, through pneumatic actuation.
These samples were then loaded aerodynamically in a flow field generated by a wind tunnel. The
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FIG. 2. (a) Photograph of the experimental apparatus used to measure the drag force on a grooved cylindrical
sample under aerodynamic loading. The sample (1), mounted across the wind tunnel (2), is rigidly connected to
a force sensor (5) via an air bearing (4) to measure the exerted aerodynamic drag forces. The internal pressure
of the sample is set by a regulated vacuum pressure source (3). The air flow with average far-field speed U

is aligned perpendicularly to the axis of the sample. (b) Schematic diagram of the cross section of the sample
(top) comprising a rigid acrylic skeleton (red) covered by a thin latex film (blue, thickness t = 0.25 mm).
Depressurizing (�p) the inner cavity of the shell results in deeper grooves (bottom).

resulting drag force was measured directly by a precision system containing a load cell. The velocity
of the incoming flow was then varied systematically to determine the drag coefficient, Cd, over a
range of Reynolds number (2.5 < Re [×104] < 15), and for different set values of the groove depth.

Next, we describe in more detail first the experimental apparatus and then the sample fabrication
procedure.

A. Experimental apparatus

Figure 2(a) shows a photographs of the experimental apparatus used throughout this investigation.
The incoming air flow was produced by an open return wind tunnel with a 30.5 × 30.5 cm2 test
section, which was capable of producing uniform steady flow speeds of 5 < U [ms−1] < 34,
measured by a Pitot tube and a high-accuracy capacitance manometer (690A Baratron, MKS
Instruments). For all the values of U used in this study, the turbulence intensity, defined as fluctuations
of the wind speed, was below 1% of the mean velocity. The flow direction was aligned with the y

axis [see the definition of the axes in Fig. 2(a)]. The cylindrical samples were mounted such that
they spanned the width of the wind tunnel, along the x direction, perpendicular to the incoming flow,
and positioned at the vertical center of the test section. The sample protruded through holes in the
y−z side walls of the test section.

The cylindrical samples were 43 cm long with a 3.5 cm radius (measured from the center of the
cylinder to the extremity of one of the spokes). Circular caps made out of acrylic were inserted
at both ends of the sample to ensure sealing. One of these end caps [left and side of Fig. 2(a)]
contained a port to connect the sample, via PVC tubing, to a vacuum pump (DOA-P704-AA, Gast).
A high-resolution electronic pressure control valve (QPV1, Proportion-Air, Inc.) was introduced
between the sample and the vacuum pump to automatically regulate the pressure of the system using
a data-acquisition device (DAQ, USB-6008, National Instruments). This pressure control valve was
then controlled by a custom LABVIEW program (LABVIEW 2010, National Instruments). The two
end caps of the sample were mounted onto a U-shaped aluminum frame, which was itself bolted
to one end of a linear air bearing (RAB2, Nelson Air Corp.). The other end of the air bearing was
connected to a precision load-cell (LRM200 Minature S-Beam Load Cell, Futek). With this setup,
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aerodynamic drag forces exerted onto the grooved cylindrical samples could be measured in the
range 0.05 < Fd [N ] � 22.2.

Both the force and the wind velocity signals were digitized simultaneously by the DAQ system.
The experimental setup detailed above allowed for the control of the internal pressure of the
cylindrical samples (and thus the shape of the grooves), while simultaneously enabling measurement
and recording of both the drag forces on the sample and the velocity of the incoming flow.

B. Fabrication of the samples

In Fig. 2(b), we present a schematic diagram of the cross section of our cylindrical samples,
which were custom fabricated. The samples consisted of a latex film [represented by the blue line
in Fig. 2(b)] stretched over a rigid acrylic skeleton [represented by the red circle with spokes in
Fig. 2(b)].

To manufacture the rigid skeleton, first, spokes with a height of 9.5 mm were laser cut (Laser Pro,
Spirit GLS) out of 1.6-mm-thick acrylic plates. Second, a series of rectangular holes were laser cut
on the surface of an acrylic tube (50.8 mm outer diameter and 3.175 mm wall thickness). There were
two sets of holes cut into the base tube. The first set was uniformly spaced around the circumference
of the cylinder and was subsequently plugged with the spokes to create the skeletal structure, with an
outer diameter of 69.8 mm. The second set of holes was cut to allow air to flow between the inside of
the tube and the cavities created beneath the latex film (more below). This allowed for the pressure
to equalize inside the base tube and in the cavities. The spacing between the ends of two neighboring
spokes, w, depended on the number of grooves in the sample. In our experiments we used samples
with N = {14, 16, 20, 24} grooves (i.e., w = {15.5, 13.6, 10.9, 9.1} mm, respectively).

Thin latex sheets (McMaster-Carr, part 8611K13, thickness t = 0.25 mm, and shear modulus
G = 577 ± 32 kPa) were cut into rectangles, and the ends were glued together to form tubular shells
with 50.8 mm diameter. The latex film was then stretched over the acrylic skeleton and the ends were
sealed with o rings. The resulting value of the prestretch (defined as the ratio between the perimeter
of the latex film after and before stretching over the skeleton) depended on the number of grooves of
the sample: λ = {1.364, 1.366, 1.369, 1.371} for N = {14, 16, 20, 24}, respectively. These values
of prestretch were chosen to ensure that no fluttering of the latex membrane was observed in the
wind tunnel experiments (Sec. IV B), especially in the upper range of Reynolds numbers explored,
where vortex-induced vibrations were otherwise possible.

The elastic properties of the latex films (needed for the finite element simulations detailed
in Sec. III, below) were determined using an universal testing machine (5943, Instron). Dog
bone specimens (ASTM D412 type A and B) were laser cut from the same latex material used
to make the samples and tested under uniaxial tension. The experimental data for the engineering
stress versus stretch obtained from the tensile test were then fitted to a Gent constitutive model [22].
This model is widely used to describe elatomeric materials under large deformation and involves three
parameters: two elastic coefficients, C1 and C2, and one coefficient, Jm, related to the maximum
stretch ratio. The two elastic coefficients can be used to estimate the shear modulus, G, of the
material. From the fitting of the Gent model to the stress-stretch data we obtained Jm = 37.5 ± 1.7,
C1 = 115.7 ± 5.7 kPa, C2 = 518.0 ± 30.2 kPa, and G = 577 ± 32 kPa.

III. MECHANICS OF DEFORMATION OF THE GROOVED SURFACE

In this section, we present the results of both mechanical experiments and finite element (FE)
simulations used to characterize how the shape of the grooves; specifically, the groove depth, d,
depends on the internal pressure, �p. This relationship between d and �p will be required later
(Sec. IV) to inform the wind tunnel experiments. In Fig. 2(b), we show a schematic diagram of a
segment of the latex film suspended above a single cavity of the rigid skeleton. When the value of
the pressure inside the cavity, pi , is smaller than the exterior pressure, pe, the pressure differential,
�p = pe − pi , loads the latex film. This loading causes the film to deform inward and, thus, deepen
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FIG. 3. (a) Schematic diagram of a single groove after applying the pneumatic loading by setting the pressure
differential to �p. The groove depth, width, and film thickness are represented by d , w, and t , respectively.
(b) Results of experiments (solid lines) and FEM simulations (dashed lines) showing the shape of the surface
of the latex film at increasing values of �p = {2, 4, 6, 8, 10} kPa, for a sample with N = 14 grooves. The rigid
(acrylic) skeleton is represented by the thick black lines. Given the periodicity of the system, only the data for
a single groove are shown.

the surface groove. To study the mechanics of deformation of the film, we performed a series of
experiments where �p was fixed to a set value and a laser sheet was then projected onto its surface,
at a 45◦ angle relative to the central axis of the cylinder. Photos were taken of the resulting line of
illumination, representative examples of which are shown in Fig. 1(b). From these photographs, we
extracted the height profile of the grooves, using a custom image processing code (MATLAB).

Along with the physical experiments, we performed finite element modeling (FEM) using
ABAQUS/STANDARD 6.14. Given the axial symmetry of the system, the model was simplified to
a single two-dimensional (2D) groove section (shown in Fig. 3). The acrylic skeletal structure was
simulated with rigid elements, while the film was simulated with 2D solid elements (CPE4H). A
convergence study was performed, which led to the selection of a regular mesh with 150 elements
along the arc length of the latex film and eight elements along its thickness. The simulation protocol
was as follows: (i) first, the film was preconditioned by deforming it to appropriate value of prestretch
(λ = {1.364, 1.366, 1.369, 1.371} for the samples with N = {14, 16, 20, 24}, respectively) and (ii) a
uniform negative pressure was applied to the inner surface of the film, so that the pressure differential
was increased linearly from �p = 0 to �p = 10 kPa. This pneumatic loading was implemented as
a live pressure, such that the force was always applied normal to the surface.

In Fig. 3(b), we show examples of the experimental and computed surface profiles of a single
groove, at five different values of the internal pressure (�p = {2, 4, 6, 8, 10} kPa), for a sample with
N = 14 grooves. The groove profiles closely resemble catenaries, especially for small values of �p,
which is to be expected given the nearly radial pneumatic loading on the latex film. We find excellent
agreement between the experiments and the FEM simulations, noting that the latter involve no free
fitting parameters.

From the groove profiles, a representative set of which was shown in Fig. 3, we measure the
groove depth as d = ro − rf , where ro and rf are defined in Fig. 2(b), and d is drawn schematically
in Fig. 3(a). It is worth noting that the groove depth, d, is defined relative to the initial state of
the sample with no pressure being applied. This means that for a sample with N grooves, d = 0,
corresponds to an N -sided polygon rather than a perfect cylinder. However, for increasing values
of N , the sample approaches the smooth cylinder case. In Fig. 4(a), we plot d versus �p, for four
different samples with N = {14, 16, 20, 24}, from both the experiments and the corresponding FEM
simulations; excellent agreement is found between the two. The error bars on the experimental data
represent the standard deviation of five different tests. We find a linear relationship between the
groove depth and the internal pressure. The constant of proportionality decreases for the samples
with increasing N . This is likely due to the difference in stretch required to reach the same groove
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FIG. 4. (a) Groove depth, d , vs pressure differential, �p, for samples with different numbers of grooves; see
legend, which also applies to panel (b). Solids lines and data points correspond to simulations and experiments,
respectively. (b) Normalized groove depth, d = d/w, as a function of normalized pressure, �p = �pw/[Gt],
for the same data as in panel (a). The slope of the best linear fit to the data is α = 0.152 ± 0.001.

depth in samples with more grooves. Given a constant groove depth, samples with higher N achieve
a higher stretch than those with fewer grooves. Thus, a larger load, i.e., �p, must be applied to
samples with more grooves.

Next, we nondimensionalize the groove depth as d̄ = d/w, and the pressure as �p̄ = �pw/[Gt].
The latter was chosen based on dimensional analysis. In Fig. 4(b), we plot these dimensionless
quantities and find that all the experimental and numerical data collapse onto a linear master curve,
for all of the samples tested,

d̄ = α�p̄, (1)

where α = 0.152 ± 0.001 was determined by fitting the data.
Thus far, our results establish a predictive relationship between the groove depth and the internal

pressure of the samples. This, together with the electronic pressure control valve, we are able to
set and vary the depth of the grooves on demand. This capability was used in the subsequent wind
tunnel experiments to systematically characterize the dependence of the aerodynamic performance
of our samples, specifically the drag coefficient, on the groove depth. The details and results of these
experiments are addressed next.

IV. WIND TUNNEL TESTS

Above, through mechanical experiments and FEM simulations, we established a relationship
between the depth of the grooves and the internal pressure of the samples. We proceed by
characterizing the aerodynamic performance of our grooved samples using wind tunnel tests. More
specifically, we shall systematically quantify how the aerodynamic drag coefficient of the samples,
Cd, varies with the Reynolds number of the flow (in the range 2.5 < Re [×104] < 15), as a function
of the groove depth, d.

Two types of experiments were undertaken with either (i) fixed or (ii) active grooves. (i) For
the fixed groove experiments, we measured Cd across the full range of Re, while setting the
internal pressure of the sample at a fixed value, to target a constant value of d. In doing so, we
followed the mechanical design principles identified in Sec. III that relate d with �p. For each
value of d, we tabulated the corresponding minimum value of Cd and the critical Re∗ at which it
occurred. (ii) Additionally, we performed active groove experiments where the Reynolds number
was gradually increased, and at each Re, the groove depth was automatically adapted to minimize
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the drag coefficient. As we shall show below, these morphable cylinders with an active control of
their groove depth exhibited an overall aerodynamic drag, across the full range of Re, that was
significantly lower than any of their fixed counterparts.

A. Experimental protocol to measure the aerodynamic drag coefficient

During testing, the groove depth of the samples was set by varying the internal pressure through the
vacuum regulator as described in Sec. II A. The groove depth was varied from d = 0 to d = 0.81 mm
(i.e., d̄ = d/w = 0.1 in dimensionless form), for four samples with the following numbers of
grooves: N = 14, 16, 20, and 24. The wind speed was then slowly increased at a rate of U̇ ≈
0.05 ms−2, until either the wind speed reached a maximum (at U = 34 ms−1) or the signal from load
cell became saturated (at Fd = 22.25 N).

Based on the measured quantities, we calculated the Reynolds number as

Re = UD

ν
, (2)

where D = 6.98 cm is the outer diameter of the sample, and ν = 1.57 × 10−5 m2s−1 is the kinematic
viscosity of air (at 25◦C). Moreover, the drag coefficient was calculated as

C̄d = 2Fd

ρU 2LD
, (3)

where ρ = 1.18 kg m−3 is the density of air (at 25◦C), and L = 30.5 cm is the width of the wind
tunnel. All experiments were performed in the range 2.5 < Re [×104] < 15, over which the measured
drag force was within 0.3 < Fd [N ] < 17.

It is important to note that the projected area of the sample is relatively large compared to the
cross-sectional area of the test section of wind tunnel; the blockage ratio is β = DL/L2 = 0.23. As
such, blockage effects [23] need to be taken into account. Otherwise, calculating the drag coefficient
directly from Eq. (3) would lead to artificially high values. In order to compensate for this blockage,
Maskell’s theory [24] was used to correct the measured drag coefficient as

Cd = C̄d

1 + ε β C̄d
, (4)

where C̄d is the uncorrected drag coefficient [from Eq. (3)] and ε = 0.3453 is a numerical factor
determined using the following fitting protocol. Wind tunnel experiments were first performed using
four smooth, rigid cylinders of diameters D = {1.90, 3.81, 6.35, 7.62} cm, in the range of Reynolds
number, 2.5 < Re [×104] < 15. The results of these experiments are shown in Fig. 5.

Throughout this range of Re, our smooth cylinders, unlike the grooved samples, remained in the
subcritical regime (i.e., prior to the drag crisis), where the drag coefficient for a smooth cylinder is
well-known to be 1.2 [7]. As expected, for all the diameters tested experimentally, the C̄d calculated
through Eq. (3) were consistently above this classic value. We then took the experimental data for
C̄d(Re), displayed as the solid symbols in Fig. 5, and calculated Cd through Eq. (4), while taking ε

as a free fitting parameter. In the fitting procedure, we minimized the difference |〈C̄d〉 − 1.2|, using
the fminsearch algorithm in MATLAB [25], where 〈·〉 represents averaging over the full Re range.
In the fitting procedure, the uncorrected drag coefficients of all of the cylinders were considered
simultaneously in order to attain a single value of ε that applied to all the samples by minimizing
the total difference from the expected classic value of 1.2. This procedure yielded ε = 0.3453. The
open symbols in Fig. 5 represent the drag coefficients for each sample when this particular value
of ε is used for the blockage correction. As a result, all four cylinders used in this calibration,
upon correction, exhibited the same value of Cd ≈ 1.2. For the remainder of this study, we will
report aerodynamic drag coefficients corrected through Eq. (4), with this specific value of ε, to take
blockage effects into account.
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FIG. 5. Drag coefficient, Cd , vs Reynolds number, Re, for smooth cylinders of different diameters and thus
blockage ratios ranging from 1.90 < D [cm] < 7.62 and 0.0625 < β < 0.25, respectively. The solid black
corresponds to the classic curve for a smooth cylinder [7]. The solid symbols are the uncorrected experimental
results, and the open symbols are the corrected results using Maskell’s theory [24] with ε = 0.3453, which was
determined using the procedure described in the text.

B. Aerodynamic drag coefficient versus Reynolds number for the fixed grooved samples

In Fig. 6(a), we plot a family of curves of the measured (and corrected for blockage effects)
drag coefficient, Cd, as a function of Reynolds number, Re, for a sample with N = 24 grooves. The
curves represent the sample in several fixed states with normalized groove depth in the range 0 �
d̄ � 0.093, at equally spaced increments of d̄ = 0.0072. The classical results for smooth cylinders
by Wieselsberger [7] are also plotted (solid black line). For this smooth cylinder case, in the range
of 2 � Re [104] � 20, the drag coefficient is constant, at 1.2. The onset of the drag crisis occurs at
Re ≈ 2 × 105, after which Cd drops dramatically for increasing Re until it reaches the minimum of
Cd = 0.3 at Re = 5 × 105. From here on, we refer to the lowest value of the drag coefficient and the
critical Reynolds number at which it occurs as C∗

d and Re∗, respectively.
For the shallowest groove depth (d̄ = 0), the drag coefficient in the subcritical regime decreases

slowly from Cd = 1.24 to 1.17 over the range 2.5 � Re[×104] � 7. This indicates that in the
subcritical regime, the drag on the samples starts slightly higher than that on a smooth cylinder,
presumably due to the slightly noncircular cross section. The fixed sample also deviates from
the smooth cylinder in terms of the value of Reynolds number for the onset of the drag crisis:
Re = 7 × 104 for the fixed grooves sample with d̄ = 0, and Re = 20 × 104 for the smooth cylinder.
For this fixed case, past the initiation of the drag crisis, Cd decreases for increasing Re, but never
reaches a minimum. This means that for the fixed groove depth of d̄ = 0, the critical Reynolds number
is above the maximum Reynolds number that we could explore experimentally, Re∗ > 1.5 × 105.

As the groove depth is systematically increased, the dependence of drag coefficient versus
Reynolds number changes dramatically. Focusing on d̄ = 0.043, the drag crisis begins at
approximately Re = 2.75 × 104 and the drag coefficient drops sharply until reaching a minimum
drag coefficient of C∗

d = 0.75, at Re∗ = 4.85 × 104. As the Reynolds number is increased further,
the drag coefficient increases until asymptoting at Cd = 0.9. For experimental runs with deeper
grooves, e.g., d̄ = 0.093, the Cd(Re) curve is starkly different from the cases with shallower
grooves. The drag coefficient first increases monotonically with Re, but eventually asymptotes
to Cd = 1.1. This behavior points to the fact that for this particular value of the groove depth
(d̄ = 0.093), the critical Reynolds number is lower than the lower bound of the available experimental
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FIG. 6. Drag coefficients, Cd , vs Reynolds number, Re, for grooved cylinders at increasing values of
depressurization (and consequently increasing normalized groove depth, d̄). Solid black line correspond to the
result for a smooth cylinder (W21: Ref. [7]). (a) Fixed samples with N = 24 grooves at increasing values of
normalized groove depth, d̄ (circles), and actively controlled sample (squares). The fixed samples range in
groove depth from d̄ = 0 to 0.093 in equally spaced increments of d̄ = 0.0072. (b) Actively controlled samples
with N = 14 (circles), N = 16 (triangles), N = 20 (diamonds), and N = 24 (squares).

range, i.e., Re∗ < 2.5 × 104). While the curves for the extreme values of d̄ appear to take on a very
different shape than those for smaller d̄ , it is likely that, if the experimental range of Re could
be expanded to both lower and higher bounds, then all the samples would show clear subcritical,
critical, supercritical, and transcritical regimes.

The above results (for N = 24 grooves) indicate that as d̄ increases, Re∗ decreases, whereas C∗
d

increases. This trend also holds for samples with different number of grooves. In Fig. 7(a), we plot
C∗

d vs d̄ , for samples with N = 14, 16, 20,and 24 grooves. For all of these cases, C∗
d increases with

increasing d̄ . Moreover, for a given value of d̄ , samples with increasing N exhibit a decreasing value
of C∗

d . Note that even though C∗
d � 0.9 for all the data shown in Fig. 7(a), this is not necessarily the

absolute maximum value of the C∗
d for these samples since only curves with a well-defined minimum

were considered in our analysis. As described above for the case with (N,d̄) = (24,0.093), samples
with grooves deeper than those plotted in Fig. 7 exhibit a monotonically increasing Cd with Re,
without a clear minimum (the drag crisis occurs below the experimentally available range).

Figure 7(b) shows the critical Reynolds number as a function of groove depth, for samples with
different values of N . We find that Re∗ decreases with d̄ for all cases. It is interesting to note that
while there does not seem to be a trend with N , the data for each sample is consistent with a
power-law scaling, Re∗ ∼ d̄−0.5, as is made more clear in the double-logarithmic plot in the inset of
Fig. 7(b).

The results presented thus far for the C∗
d (d̄) and Re∗(d̄) behavior are in agreement with the classic

work of Achenbach [9] on the effect of surface roughness on drag coefficient for smooth cylinders.
In his seminal studies, cylinders with different levels of roughness were fabricated by gluing sand
grains of different sizes to the surface of cylinders. His studies defined a roughness coefficient as
ks/D, where ks is the sand-grain roughness and D is the cylinder diameter. The results showed
that increasing the roughness coefficient decreased the critical Reynolds number and increased the
minimum drag coefficient [9]. In our experiments, the groove depth is analogous to the sand-grain
roughness. For sake of comparison with Achenbach’s data, Figs. 7(c) and 7(d) show C∗

d (d/D) and
Re∗(d/D), respectively. Both Achenbach’s work [9] and our own demonstrate that at each Reynolds
number there is a specific groove depth (or roughness in Achenbach’s case) which minimizes drag.
However, unlike Achenbach’s work, which required a separate sample for each value of roughness,
we can obtain a family of curves for different groove depths with a single sample. This makes it
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FIG. 7. (a) Minimum drag coefficient, C∗
d , of each Cd(Re) curve in Fig. 6(a), vs normalized groove depth, d ,

for samples with different numbers of grooves (see legend). (b) Critical Reynolds number, Re∗, vs normalized
groove depth, d , for the same samples used in panel (a). Inset: Log-log version of the same data suggesting
consistency with the power-law scaling Re∗ ∼ d̄−1/2 (solid line).

possible to more readily and systematically gather data for a large number of surface shapes. Being
able to explore a larger number of groove depths allowed for the determination of the drag minimizing
groove depth at each value of Re. This relationship will be leveraged next to actively control the
sample, such that, given variable wind loading conditions, the grove depth can be automatically
varied to minimize the aerodynamic drag.

C. Minimal aerodynamic drag from active pneumatic control of the surface deformation

The active system used to minimize the drag under changing conditions involved combining all of
the results presented thus far. First, in Sec. IV B, we determined the groove depth which minimized
the drag coefficient at each Reynolds number. To set the groove depth to the optimal value, the
corresponding internal pressure was determined according to the relationships found in Sec. III.
Combining these, we found the internal pressure required to minimize Cd at each Reynolds number.
Therefore, an experimental control system was developed to actively change the surface morphology
to minimize the drag coefficient. This system used the wind velocity data measured by the pitot tube
(and therefore Re) and then employed the relationship described above to set �p in the sample to
target the drag-minimizing value.
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The green squares in Fig. 6(a) show experimental data obtained using this active drag-minimizing
mechanism, demonstrating that the drag coefficient can be reduced significantly and consistently
when compared to the fixed surfaces. This minimal behavior is achieved by essentially surfing the
wave of minimum drag coefficient C∗

d (Re). As such, the behavior of the active sample is a lower
bound envelope of all of the fixed samples for different values of d̄ . Across the full range of Reynolds
numbers explored (2.5 � Re [×104] � 15), the drag coefficient of the active samples decreases
monotonically from Cd = 0.90 to 0.54, which is in stark contrast to the highly nonmonotonic
behavior of the fixed samples (due to the presence of the drag crises).

Figure 6(b) reproduces the data in Fig. 6(a) (for the active sample with N = 24), but now also
adding the results for the active samples with N = 14, 16, and 20. For clarity, the Cd(Re) curves
of the corresponding static samples have not been included. Both active samples with N = 20
and N = 24 exhibit similar behavior in which there is a steady monotonic decrease in Cd with
increasing Re. For the active sample with N = 16, the relationship Cd(Re) is less smooth than
the other samples. Moreover, for lower Reynolds numbers (around 2.5 < Re[×104] < 6), the drag
coefficient for this N = 16 case is higher than the samples with a higher number of grooves.
Reducing the number of grooves further to N = 14, the relationship Cd(Re) becomes even less
smooth and the drag coefficient is higher across the full range of Re. Given this, larger values of N

seem to enhance the performance of the samples up to a point, beyond which increasing N has no
effect.

It is important to remember that the initial state of each sample is an N -sided polygon because
the latex film is stretched over the rigid acrylic skeleton. When N is sufficiently large, the geometry
is closer to a rough cylinder, with a roughness that can be pneumatically tuned. However, when
N is small, such as in the case of N = 14, the geometry becomes far too discrete for the
system to behave as a rough cylinder. We believe that this is the reason why the N = 14 active
sample has a Cd(Re) behavior that is significantly less smooth than the other samples with more
grooves.

V. CONCLUSION

In summary, we have experimentally investigated the aerodynamic performance of morphable
grooved cylinders, whose surface topography can be varied through pneumatic actuation. We focused
on how the aerodynamic drag of samples with different groove depth and numbers varied as a function
of the velocity of the incoming flow (in high-Reynolds-number conditions). The surface topography
of each sample, namely the depth of the grooves, could be systematically and dynamically varied
by applying a pressure differential across the outer latex shell.

A series of mechanical experiments, combined with finite element simulations, demonstrated
that the groove depth varied linearly on the pressure differential. Moreover, nondimensionalizing
the groove depth yield a collapse of the data into a linear master curve, independent of the number
of grooves. This master curve was later used as a design guideline and, part of a control system, to
set the groove depth on demand.

Our morphable cylindrical samples were then systematically tested in wind tunnel experiments.
First, we tested samples with fixed grooves (i.e., setting and then holding �p constant for the full
sweep of Reynolds number, during a single experimental run). These experiments showed that the
drag coefficient, Cd, versus Reynolds number, Re, curves depended strongly on groove depth. These
results are in agreement with classic experiments on rough cylinders [9], albeit with our added
advantage of being able to systematically and precisely vary groove depth with a single sample. For
samples with deeper grooves, the drag crisis occurs at lower values of the critical Reynolds number,
Re∗, and with a higher value of the minimum drag coefficient, C∗

d .
From these experiments with fixed grooves, we determined the optimal groove depth for a given

Reynolds number. With this information at hand, we then introduced an active control system that
sensed the incoming wind speed and set the corresponding optimal groove depth to minimize the
aerodynamic drag. We demonstrated that the actively morphable samples exhibited a drag that was
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consistently and significantly lower than the fixed sample counterparts, decreasing monotonically
from Cd = 0.90 at Re = 2.5 × 104 to Cd = 0.54 at Re = 15 × 104. This monotonic behavior is in
contrast with the strongly nonmonotonic behavior of rough cylinders or samples with fixed groove
depth.

It should be noted that since we use a pneumatic system to control our samples, the pressure
field on the surface of the samples resulting from the flow could potentially affect the geometry of
the latex membrane in the specimens. However, throughout all of our experiments, the stagnation
pressure is at most 710 Pa, and this value is only reached at the extreme upper limit of the Reynolds
numbers explored. Given that the pneumatic loading of the samples involves a pressure differential
that is significantly higher (typically �p > 1 kPa) than the stagnation pressure, we assumed that the
pressure imposed by the flow field has essentially no effect in modifying the resultant geometry of
the sample.

We believe that our active mechanism for aerodynamic drag reduction opens exciting opportunities
for applications in bluff structures were aerodynamic performance under variable flow conditions is
a primary concern for structural resilience or fuel efficiency. In this work, the closest that the samples
could come to a smooth cylinder was a polygonal shape (even if closer to a circular cross section
for increasing values of N ). Future work could explore samples that are able to reach a smooth
cylinder and thus recover the classical results while also having the functional benefits that we
have presented. Additionally, building on our proof-of-concept investigation, future studies should
address more complex geometries beyond the cylinders that we have studied. Moreover, specific
applications may call for modes of actuation beyond pneumatics, such as particle-enhanced soft
composites [26], shape memory polymers [27], or electroactive materials [28].
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