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Bounds on poloidal kinetic energy in plane layer convection
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A numerical method is presented that conveniently computes upper bounds on heat
transport and poloidal energy in plane layer convection for infinite and finite Prandtl
numbers. The bounds obtained for the heat transport coincide with earlier results. These
bounds imply upper bounds for the poloidal energy, which follow directly from the
definitions of dissipation and energy. The same constraints used for computing upper
bounds on the heat transport lead to improved bounds for the poloidal energy.
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I. INTRODUCTION

Transport in turbulent flows, for instance, heat flow across a turbulent convecting layer, cannot be
computed analytically but has to be computed numerically or measured experimentally. However,
rigorous analytical calculations can provide us with upper bounds on the transport. The oldest work
finding upper bounds on turbulent dissipation seems to go back to Hopf [1]. Bounds for turbulent
heat transport (which can also be expressed in terms of dissipation) appeared later in different forms.
A series of papers including Refs. [2–4] leads to one method for obtaining upper bounds, called
MHB method for short in this paper, and Constantin and Doering presented another method closely
related to Hopf’s original work [5,6] denoted as CDH method in the sequel. These two methods yield
identical bounds if the best bounds obtainable within each method are compared. More recently,
Seis [7] came up with another approach which obtains bounds from a very compact derivation.

The quality of the bounds obtained from the CDH method depends on the choice of a certain
function, usually called background field. The optimal background field yielding the lowest upper
bounds has again to be determined numerically. A direct computation from the Euler-Lagrange
equations (as, for instance, in Ref. [8] for infinite Prandtl number convection) is cumbersome,
which has prompted several authors [9–11] to search for alternatives. This paper presents yet
another alternative. It employs the same constraints on the turbulent flow derived from the Navier-
Stokes equation as previous methods but uses a reformulation which allows to numerically find the
optimal background field through the solution of a semidefinite program (SDP), which is simpler to
implement than the SDP directly derived from the CDH method solved in Ref. [11].

Apart from these technical issues, the main purpose of this paper is to explore the possibility of ob-
taining interesting bounds on energies. Previous work on bounds focused on dissipation or transport,
but other properties are of interest as well. A bound on dissipation implies a bound on energy set by
the maximal amount of energy that can exist in the least dissipative flow mode without violating the
bound on dissipation. This argument is only based on the definitions of energy and dissipation and
does not take into account that the flow field has to obey the Navier-Stokes equation. It is therefore
of interest to see whether the constraints used in deriving bounds on dissipation can lead to improved
bounds on energies. Since the expression for energy contains fewer derivatives and is less singular
than the dissipation, one can hope that it is in some way simpler to find tight bounds on energies.

Section II starts with a precise statement of the problem. The general idea of the employed method
is worked out in Sec. III taking as example upper bounds for the heat transport in infinite Prandtl
number convection. The results are extended to general Prandtl number in Sec. IV. Section V finally
presents bounds on the poloidal energy.

II. STATEMENT OF THE PROBLEM

Consider a plane layer of thickness h with bounding planes perpendicular to the z axis, infinitely
extended in the x and y directions, and with gravitational acceleration acting in the direction of
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negative z. The layer is filled with fluid of density ρ, kinematic viscosity ν, thermal diffusivity κ , and
thermal expansion coefficient α. Top and bottom boundaries are held at the fixed temperatures Ttop and
Ttop + �T , respectively. We will consider the equations of evolution immediately in nondimensional
form, choosing for units of length, time, and temperature deviation from Ttop the quantities h, h2/κ ,
and �T . With this choice, the equations within the Boussinesq approximation for the fields of
velocity v(r,t), temperature T (r,t), and pressure p(r,t) become

1

Pr
(∂tv + v · ∇v) = −∇p + Raθ ẑ + ∇2v, (1)

∂tθ + v · ∇θ − vz = ∇2θ, (2)

∇ · v = 0. (3)

In these equations, T = θ + 1 − z, so that θ represents the deviation from the conduction profile.
The Prandtl number Pr and the Rayleigh number Ra are given by

Pr = ν

κ
, Ra = gα�T h3

κν
, (4)

and ẑ denotes the unit vector in z direction. The conditions at the boundaries z = 0 and z = 1 on
the temperature are that θ = 0. Both stress free and no slip conditions will be investigated. At stress
free boundaries, ∂zvx = ∂zvy = vz = 0, whereas v = 0 on no-slip boundaries.

It is convenient to decompose v into poloidal and toroidal scalars φ and ψ so that v = ∇ × ∇ ×
(φ ẑ) + ∇ × (ψ ẑ), which automatically fulfills ∇ · v = 0. The z component of the curl and the z

component of the curl of the curl of Eq. (1) yield the equations of evolution for φ and ψ ,

1

Pr
(∂t∇2�2φ + ẑ · ∇ × ∇ × [(∇ × v) × v]) = ∇2∇2�2φ − Ra�2θ, (5)

1

Pr
(∂t�2ψ − ẑ · ∇ × [(∇ × v) × v]) = ∇2�2ψ, (6)

with �2 = ∂2
x + ∂2

y . For brevity, v is not replaced by its expression in terms of φ and ψ in these
equations. The stress free boundary conditions translate into φ = ∂2

z φ = ∂zψ = 0 and the no slip
boundary conditions become φ = ∂zφ = ψ = 0.

In the following, several types of averages will be important: the average over the entire volume,
denoted by angular brackets without subscript, the average over an arbitrary plane z = const.,
denoted by 〈. . .〉A, the average over a particular plane z = z0, denoted by 〈. . .〉A,z=z0 , and the average
over time, which will be signaled by an overline.

The dot product of v with Eq. (1), followed by a volume average, leads to

∂t

〈
1

2
v2

〉
= −PrRa〈θ�2φ〉 − Pr〈|( ẑ × ∇)∇2φ|2 + |∇∂xψ |2 + |∇∂yψ |2〉. (7)

Note that vz = −�2φ. Multiplication of Eq. (2) with θ and a subsequent volume average yields

∂t

〈
1

2
θ2

〉
= −〈θ�2φ〉 − 〈|∇θ |2〉. (8)

The average of Eq. (2) over planes is noted for later reference:

∂t 〈θ〉A = 〈∂z(θ�2φ)〉A + 〈
∂2
z θ

〉
A
. (9)

We will seek below bounds on the Nusselt number Nu, defined as the time-averaged heat transport
divided by the heat conducted if the fluid is at rest. Nu − 1 can be determined from the vertical deriva-
tive of θ averaged over top or bottom boundaries: Nu − 1 = −〈∂zθ〉A,z=0 = −〈∂zθ〉A,z=1. Integration
of Eq. (9) from z = 0 to any finite z, followed by time averaging, shows that 〈θ�2φ〉A + 〈∂zθ〉A is
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identical at all height z, and in particular equal to 〈∂zθ〉A,z=0 because �2φ = 0 at z = 0. An integration
of 〈θ�2φ〉A + 〈∂zθ〉A = 〈∂zθ〉A,z=0 over all z yields 〈θ�2φ〉 = 〈∂zθ〉A,z=0 = −Nu + 1, which yields
an alternative expression for Nu − 1, and by virtue of Eq. (8) one also has Nu − 1 = 〈|∇θ |2〉.

The second quantity for which we will seek bounds is the energy in the poloidal part of the
velocity field, Epol, given by

Epol = 〈
1
2 |∇ × ∇ × (φ ẑ)|2〉 = 〈

1
2 |( ẑ × ∇) × ∇φ|2〉. (10)

Because of the volume average, Epol is strictly speaking an energy density.
Considerable simplification results in the limit of infinite Prandtl number. The time derivative

and the advection term disappear from Eq. (1) in this limit. Equation (6) then implies that ψ = 0
and the momentum equation becomes a diagnostic equation for φ alone:

∇2∇2�2φ − Ra�2θ = 0. (11)

The temperature equation and the expressions for Nu and Epol as well as the boundary conditions
are not affected by setting Pr to infinity.

III. BOUNDS FOR CONVECTION AT INFINITE PRANDTL NUMBER

A. The method

This section explains the essence of the bounding method. Convection at infinite Prandtl number
serves as a simple example for more general problems. The objective function Z defines the quantity
for whose time average Z we wish to find a bound. For example, the choice Z = 〈|∇θ |2〉 will yield
bounds on Z = Nu − 1.

For infinite Pr, Eq. (11) allows us to eliminate φ in favor of θ and we are left with equations
for θ only. The objective function Z also depends only on θ . Let us choose test functions ϕn(z),
n = 1 . . . N , which depend on z only and project onto them the temperature Eq. (2):

∂t 〈ϕnθ〉 = 〈ϕn∂z(θ�2φ)〉 + 〈ϕn∇2θ〉. (12)

We now build a functional G(λ1 . . . λN ,λR,θ ) as a linear combination of the right hand sides of
Eqs. (12) and (8):

G(λ1 . . . λN ,λR,θ ) =
N∑

n=1

λn[〈ϕn∂z(θ�2φ)〉 + 〈ϕn∇2θ〉] + λR[〈θ�2φ〉 + 〈|∇θ |2〉]. (13)

The variable φ has been left in the expression for G for better readability, but it does not appear as
an argument of G because of Eq. (11) and �2φ = Ra(∇2∇2)−1�2θ , where (∇2∇2)−1 is the inverse
bi-Laplacian equipped with the boundary conditions for φ.

Assume that we know a set of coefficients λ1 . . . λN ,λR and an additional number λ0 such that
for our chosen objective function Z(θ ) and all fields θ (r) obeying the boundary conditions for θ , the
following inequality holds:

−Z + λ0 + G(λ1 . . . λN ,λR,θ ) � 0. (14)

If this inequality is satisfied for every admissible θ , it is in particular satisfied by a solution of the
equation of evolution. For such a solution and a set of λ’s as specified above, we then have

0 = G −
N∑

n=1

λn∂t 〈ϕnθ〉 + λR∂t

〈
1

2
θ2

〉
� Z − λ0 + ∂t

[
−

N∑
n=1

〈ϕnθ〉 + λR

〈
1

2
θ2

〉]
. (15)

Taking the time average of the expression to the right of the inequality sign, we find Z � λ0. We see
that we obtain an upper bound for Z as soon as we know a set of coefficients λ so that Eq. (14) is
satisfied. The terms in G are at most quadratic in θ . If we wish to find upper bounds for dissipation
or energy, Z is quadratic in θ , too. If θ is discretized, say, by spectral decomposition, the left-hand
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side of inequality Eq. (14) is a quadratic form in the expansion coefficients of θ . Finding the sharpest
bound on Z then amounts to minimizing λ0 subject to the condition that the matrix appearing in the
discretized form of inequality Eq. (14) be positive semidefinite. This problem has precisely the form
of a semidefinite program.

To arrive at an implementable formulation, we have to select a discretization for θ and test
functions ϕn. A decomposition into N Chebychev polynomials Tn for the z direction and into plane
waves in x and y is chosen as a representation of θ :

θ =
N∑

n=1

∑
kx

∑
ky

θ̂n,kx ,ky
Tn(2z − 1)ei(kxx+kyy). (16)

The summation limits for kx and ky are not specified because they will turn out to be irrelevant. The
coefficients θ̂n,kx ,ky

for any given kx,ky are not independent of each other because of the boundary
conditions on θ at z = 0 and z = 1. Only Nf of the N coefficients are free. To enforce θ = 0 at z = 0
and z = 1, it is enough to set N = Nf + 2. However, as reported below, it was found numerically
advantageous to also explicitly enforce ∂2

z θ = 0 at z = 0 and z = 1 [a relation which follows from
Eq. (2) and all boundary conditions considered here], in which case N = Nf + 4.

The test functions ϕn are chosen as delta functions centered at the collocation points in common
use in time integration methods based on Chebychev discretization:

zn = 1

2

[
1 + cos

(
π

n − 1

N − 1

)]
, n = 1 . . . N (17)

ϕn(z) = δ(z − zn). (18)

Inserting all this into Eq. (14) leads to an inequality of the form

−
∑
kx ,ky

x∗
kx ,ky

Zk xkx ,ky
+ λ0 +

N∑
n=1

λn

∑
kx ,ky

x∗
kx ,ky

Gnk xkx ,ky
+ x∗

kx ,ky
λR Ek xkx ,ky

� 0. (19)

The superscripted star denotes complex conjugation. The matrices Zk , Ek , and Gnk are real. Their
entries depend on kx and ky only in the combination k2 = k2

x + k2
y and there are no terms coupling

different k. Furthermore, these matrices are symmetric. The vectors xkx ,ky
are constructed as xkx ,ky

=
(1,x̂1,kx ,ky

,x̂2,kx ,ky
, . . . ,x̂Nf ,kx ,ky

), where the x̂n,kx ,ky
are linear combinations of the θ̂n,kx ,ky

in Eq. (16).
They appear in an expansion analogous to Eq. (16) as the coefficients of Nf linear combinations of
the first N Chebychev polynomials satisfying the boundary conditions. The 1 in the first component
of xkx ,ky

is necessary to accommodate the term linear in θ in the k = 0 summand in Eq. (19). It also
allows us to write λ0 as

∑
kx ,ky

x∗
kx ,ky

λ0 Hk xkx ,ky
with Hk = 0 for k �= 0 and all entries of H0 are

zero except that H0,1,1 = 1.
Inequality Eq. (19) therefore has the form

∑
kx ,ky

x∗
kx ,ky

[
−Zk + λ0 Hk +

N∑
n=1

λnGnk + λR Ek

]
xkx ,ky

� 0. (20)

For λ0 to serve as an upper bound, this inequality must be satisfied for all xkx ,ky
, which requires that

[−Zk + λ0 Hk + ∑N
n=1 λnGnk + λR Ek] be positive semidefinite for all k. The SDP to be solved is

in summary:

minimize λ0

subject to − Zk + λ0 Hk +
N∑

n=1

λnGnk + λR Ek � 0 for all k,
(21)

where M � 0 means that the matrix M is positive semidefinite.
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The symmetry about the midplane can be exploited to alleviate the numerical task of solving
the SDP. This symmetry suggests to construct linear combinations of the constraints Eq. (12) in the
form of equations for ∂t (〈ϕiθ〉 ± 〈ϕN+1−iθ〉),i = 1 . . . N/2. It turns out that only the equations with
the minus sign constrain λ0, the other equations are redundant. Symmetry affects also the parity
of the most dangerous functions which most readily violate the inequality constraint of the SDP.
Expanding θ in the functions Tn+2(2z − 1) − Tn(2z − 1), which are by construction zero at z = 0
and z = 1, one only needs to retain odd n for k = 0 and even n for k �= 0. The other combinations
do not affect the best bound.

It may seem like a formidable task to enforce the inequality condition in Eq. (21) for all k. In fact,
it is not. Barring any special symmetry or degeneracy in the matrices involved, the inequality will
hold as a strict inequality for almost all k and as an equality only for a finite set of k, the active set
in the parlance of optimization. The active set tends to be small. As an example, pretend that we are
looking for a bound on dissipation so that Z = 〈|∇θ |2〉. We should be able to prove that dissipation
is zero for Ra below onset. This requires λ0 = 0. We can find a suitable set of coefficients by setting
λ1 = λ2 = · · · = λN = 0 and only λR �= 0. Equation (14) becomes λR〈θ�2φ〉 + (λR − 1)〈|∇θ |2〉 �
0. The last term suggests that we are best off choosing λR positive and large compared with 1, so
that the condition

〈θ�2φ〉 + 〈|∇θ |2〉 � 0 (22)

needs to be satisfied for all admissible θ [φ being determined by Eq. (11)]. The left-hand side of
Eq. (22) is equal to −∂t 〈 1

2θ2〉, so that Eq. (22) is nothing but the condition for energy stability. The θ

which yields the largest possible left hand side is determined from a linear Euler-Lagrange equation
with coefficients independent of k, since the left-hand side itself has no k dependent coefficients. The
optimal θ has therefore a single Fourier component. At the critical Rayleigh number, the inequality
condition in Eq. (21) is fulfilled with the equality sign for one value of k and as a strict inequality
for all other k. At least at this Ra, the active set contains only one element. As Ra is increased, the
active set gradually becomes larger, adding one element after the other.

All results presented in this paper were computed with an automated search for the active set.
As one is usually interested in some bound as a function of Ra, start with a small Ra and a tentative
active set of two elements: k = 0, which is always necessary for any λi �= 0,1 � i � N because
of the last term in Eq. (12), and an additional k �= 0. Then run an optimization over the nonzero k

which maximizes λ0, where λ0 is the result of the SDP problem

minimize λ0

subject to − Zk + λ0 Hk +
N∑

n=1

λnGk + λR Ek � 0 for all k in the active set.
(23)

This maximization selects the wave numbers k, which impose the most stringent constraint on
λ0. Once the maximum is found, it remains to check whether the active set is complete. For
this purpose, the matrix [−Zk + λ0 Hk + ∑N

n=1 λnGnk + λR Ek] is assembled for 1000 values of k

regularly spaced on a logarithmic scale for k between 0.1 an 104, and for each matrix, a Cholesky
decomposition is attempted. If the matrix is positive semidefinite at all tested wave numbers, the
calculation advances to the next higher Ra to compute the next bound. If the Cholesky decomposition
fails, one has found a k which violates the inequality constraint in the SDP. The tentative active
set is then enlarged by one element and the maximization of λ0 over the wave numbers in the
active set is run anew. If the new maximal λ0 is larger by at least 0.1% than the previous result, the
new active set is accepted as such and Ra is increased to compute the next bound. If the fractional
increase is less than 0.1%, the newly added k is rejected as a false alarm and the old active set is
used as the starting point for the computation of the bound at the next Ra. This rejection is a useful
procedure because tolerances in the optimization together with round off errors accumulated during
the Cholesky decomposition may lead the method to spuriously signal a violation of the constraint of
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positive semidefiniteness. The most straightforward way to distinguish a spurious from a warranted
detection of violation is to check whether an enlarged set of wave numbers leads to a more stringent
constraint on λ0. If it does not, the enlargement was unnecessary.

The most time consuming step in this entire method is the solution of the SDP. This was done
with the Python interfaced version of the package cvxopt available from cvxopt.org, using either
the internal solver of cvxopt or dsdp5. These codes implement central path methods which have the
reputation of being the best choice for small to medium size problems. Resolutions of up to N = 512
were used for the results presented in this paper which are limited in Rayleigh number not because
of an overwhelming computational burden, but because the SDP solvers failed to converge at large
Ra. The SDP package was used as a black box which precluded a precise tracking of the problem,
but round-off issues are the most likely culprit. Ierley et al. [8] report that they had to use a 96-digit
floating-point representation to cover their interval of Ra in an implementation of the CDH method.
The package used for the present work did not allow one to vary floating point types, so that the
effect of the data type on convergence was not tested. The internal solver of cvxopt allowed to treat
slightly larger Ra than dsdp5, and if both methods converged, they converged to the same result.

Even though it is enough to enforce θ = 0 at the boundaries, it helped to require ∂2
z θ = 0 as well.

Again, both sets of boundary conditions lead to the same results if the SDP solver converges, but the
extended boundary conditions allow one to reach higher Ra. The use of Chebychev polynomials is
not the root of the convergence problems. For free-slip boundaries, it is also convenient to choose
ϕn = sin(nπz) and an expansion of θ in sin(nπz) instead of Chebychev polynomials. This choice
also leads to convergence problems at very much the same Ra.

Some relief is provided by an obvious modification of the method which consists in integrating
by parts in Eq. (12) to obtain

∂t 〈ϕnθ〉 = −〈(∂zϕn)θ�2φ〉 − 〈(∂zϕn)(∂zθ )〉 + ϕn(1)〈∂zθ〉A,z=1 − ϕn(0)〈∂zθ〉A,z=0 (24)

and to choose the test functions ϕn such that ∂zϕn = δ(z − zn) with the Chebychev collocation points
defined in Eq. (17). To preserve the symmetry about z = 1/2, one can express the test function at
the boundaries as

ϕ(0) = ϕ

(
1

2

)
+

∫ 0

1
2

∂zϕdz = ϕ

(
1

2

)
−

N/2∑
n=1

λn,

ϕ(1) = ϕ

(
1

2

)
+

∫ 1

1
2

∂zϕdz = ϕ

(
1

2

)
+

N∑
n=N/2+1

λn, (25)

for ϕ(z) = ∑N
n=1 λnϕn(z) with N even. We can therefore replace the functional G with G′ defined

as

G′(λ1 . . . λN,λR,θ ) = −
N∑

n=1

λn〈δ(z − zn)[θ�2φ + ∂zθ ]〉 + ϕ

(
1

2

)
(〈∂zθ〉A,z=1 − 〈∂zθ〉A,z=0)

+
N/2∑
n=1

λn〈∂zθ〉A,z=0 +
N∑

n=N/2+1

λn〈∂zθ〉A,z=1 + λR[〈θ�2φ〉 + 〈|∇θ |2〉], (26)

and we must obtain identical results if we replace G with G′ in Eq. (14). Because of the symmetry of
the optimal test function, ϕ(z) = −ϕ(1 − z) so that ϕ( 1

2 ) = 0, and the second term in G′ disappears.
G′ still looks more complicated than G but does not contain second derivatives. As a result, the
implementation using G′ has better convergence properties and is preferred for this reason.

Finally, rescaling λ0 improves convergence. If the optimal λ0 approximately equals cRaγ with
some constants c and γ , it helps to use the variable λ′

0 = λ0/(cRaγ ) instead of λ0 itself as an argument
of the functional G′.
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The central path methods also solve the dual problem. This part of the output allows one to
compute the derivative of the optimal λ0 with respect to problem parameters such as the wave
numbers k (see example 5.13 in Ref. [12]). This opens the possibility of using a gradient based
method for maximizing λ0 over k. This was done with a Newton-BFGS method. However, to run
advantageously, this method needs derivatives with a higher precision than what the SDP solver
sometimes provides. If the progress of Newton-BFGS was too slow, it was replaced by the gradient
free Nelder-Mead optimization.

B. Relation with other methods

The background field or CDH method can be directly mapped onto the method of this section.
It proceeds by using a different variable for the temperature variation, defined by T (r,t) = τ (z) +
θ ′(r,t) where the background field τ is chosen such that τ (0) = 1, τ (1) = 0, and θ ′ = 0 on the
boundaries. It follows from the temperature Eq. (2) that

∂t

〈
1

2
θ ′2

〉
= −〈∂zθ

′∂zτ 〉 − 〈vzθ
′∂zτ 〉 − 〈|∇θ ′|2〉. (27)

The CDH method now consists in finding τ (z), λ0, and λR such that

−Z + λ0 − λR(〈∂zθ
′∂zτ 〉 + 〈vzθ

′∂zτ 〉 + 〈|∇θ ′|2〉) � 0 (28)

for all admissible θ ′ and vz, in which case Z � λ0. This problem is not directly an SDP if τ appears
quadratically in Z. It is then necessary to form a Schur complement to recover an optimization
problem in SDP form [11]. This complicates a direct implementation of the CDH method compared
with the method presented above. However, the bounds obtained from both methods must be identical,
because after the identification ϕ(z) = ∑

λnϕn(z) = λR(τ − 1 + z) one recognizes Eqs. (28) and
(14) to be the same. This also means that the boundary layer structure typical of optimal background
fields will also appear in ϕ(z), and we also see that ϕ obeys ϕ(0) = ϕ(1) = 0.

As a further variation of the bounding problem, and to make contact with ref. [7], consider the
test function ϕS with ϕS = 1 for z � l and ϕS = 0 for l < z � 1 for some l with 0 < l < 1. We then
obtain

∂t 〈ϕSθ〉 = −
∫ l

0
〈θ�2φ + ∂zθ〉Adz − 〈∂zθ〉A,z=0 (29)

whose discretization is a suitable linear combination of Eq. (24). A bound for any time averaged Z

in the form Z � λ0 is then obtained if one finds λ0, l, and λR such that

−Z + λ0 −
∫ l

0
〈θ�2φ + ∂zθ〉Adz − 〈∂zθ〉A,z=0 + λR[〈θ�2φ〉 + 〈|∇θ |2〉] � 0 (30)

for all admissible θ and φ. Seis [7] further restricts the problem to λR = 1 and shows how to solve
it for general Prandtl number.

The functional G contains a linear combination of expressions which are the right-hand sides of
the time evolution equations of terms which are linear or quadratic in the flow variables θ , φ, ψ .
One could add linear combinations of the right hand sides of time evolution equations for higher
moments, which would be equivalent to the auxiliary function approach [13,14]. This leads to an
optimization problem with a constraint of the form that some polynomial must always be positive.
An SDP can then only be formulated after relaxing this constraint to the less restrictive requirement
that this polynomial is a sum of squares [13,14].

C. Heat transport

We will now consider bounds on the heat transport as a validation of the method presented in this
section. These bounds are obtained by setting Z = 〈|∇θ |2〉, or Z = 〈−θ�2φ〉 or Z = 〈−∂zθ〉A,z=0.
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FIG. 1. The optimal upper bound H for the advective heat transport Nu − 1 as a function of Ra for stress free
(circles) and no slip (squares) boundary conditions and infinite Pr. The continuous lines show formulas obtained
from fits in Ref. [8], which are H = 0.101 × Ra0.4 + 0.70965 × Ra0.2 − 7.166 − 1 for free-slip boundaries and
H = 0.139 × Ra1/3 − 1 for no slip boundaries.

With all these three choices, Z = Nu − 1, and the results obtained with the method described above
are indeed the same. Figure 1 shows the optimal bound H on Nu − 1 found for both stress free
and no slip boundaries. The distinction between the two boundary conditions appears only in the
boundary conditions for the inverse bi-Laplacian in Eq. (11).

For both boundary conditions, Ierley et al. [8] have obtained bounds from numerical optimization
within the CDH method. Approximate expressions for those bounds are also included in Fig. 1.
These bounds conform with the analytical result that H � cf Ra5/12 for free-slip boundaries [15]
with some constant cf . Lower bounds are obtained if the number of elements in the active set is
limited. The formula quoted in the caption of Fig. 1 is valid for up to two wave numbers in the
active set, which is appropriate for the range of Ra in Fig. 1, and which is a more accurate fit than
the universally valid bound proportional to Ra5/12. For no slip boundaries, it is known [16] that the
CDH method cannot yield bounds better than proportional to Ra1/3(ln Ra)1/15. This agrees with the
result of Ref. [8] apart from the virtually undetectable factor (ln Ra)1/15.

Bounds obtained from the MHB method can be found in Ref. [17] and in tabulated form in
Vitanov’s doctoral thesis [18]. The numbers in the thesis match the results shown in Fig. 1 to four
digits accuracy.

Figure 2 shows the wave numbers included in the active set for the example of free-slip boundaries.
These are not exactly the same as those given in the analogous Fig. 12(b) of Ref. [8], which shows
an additional wave number at Ra > 109. This difference simply comes from the tolerances set in the
automated search of the wave numbers. The additional wave number for Ra above 109 does increase
the bound H , but by less than 0.1% which is why it was rejected and does not appear in Fig. 2.

IV. BOUNDS ON HEAT TRANSPORT AT GENERAL PRANDTL NUMBER

For finite Pr, one has to return to the general Eqs. (5) and (6). The equations of evolution for 〈θ〉A
and 〈 1

2θ2〉, Eqs. (9) and (8) remain unchanged, but the dot product of the momentum Eq. (1) with v,
averaged over the entire volume, now yields the additional non trivial information in Eq. (7) that

∂t

〈
1

2
v2

〉
= −PrRa〈θ�2�〉 − Pr〈|( ẑ × ∇)∇2φ|2〉 − PrDnp (31)
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FIG. 2. Wave numbers k in the active set for the optimization of the bound H for free-slip boundary
conditions and infinite Pr.

with the toroidal dissipation

Dnp = 〈|∇∂xψ |2 + |∇∂yψ |2〉. (32)

The subscript stands for nonpoloidal, because if periodic boundary conditions are imposed on ψ ,
this term has to include not only the dissipation due to the toroidal field but also the dissipation due
to a horizontal mean flow [19]. Since Dnp � 0, it will be convenient to introduce a new variable d

defined by d2 = Dnp.
We can now follow the same line of thought as in the previous section and construct a functional

F as

F (λ1 . . . λN,λR,λE,θ,φ,d) =
N∑

n=1

λn

〈
ϕn

[
∂z(θ�2φ) + ∂2

z θ
]〉 + λR[〈θ�2φ〉 + 〈|∇θ |2〉]

+ λE[Ra〈θ�2φ〉 + 〈|( ẑ × ∇)∇2φ|2〉] + λEd2 (33)

and conclude that if we know λ0,λ1 . . . λN,λR,λE such that

−Z + λ0 + F (λ1 . . . λN ,λR,λE,θ,φ,d) � 0 (34)

for all admissible θ , φ, and all d, we get the estimate Z � λ0. The functional F has to include both θ

and φ as independent arguments because the relation Eq. (11) no longer holds for finite Pr. There is
also an additional coefficient λE which has to be positive to satisfy the inequality Eq. (34) for all d.

The bounding method was numerically implemented for stress-free boundaries using identical
expansions for θ and φ into Chebychev polynomials and Fourier series, and using the same
test functions ϕn as for infinite Pr in the previous section. The optimizing fields θ and φ again
have symmetry, which was exploited in the calculations with high resolutions. When expanded in
Tn+2(2z − 1) − Tn(2z − 1), the Fourier components of both θ and φ contain only terms with even
n for k > 0. There is no contribution to φ with k = 0, and the zero wavenumber contribution
to θ contains only terms with odd n. Expressed differently, if θ = ∑

kx ,ky
θ̃kx ,ky

ei(kxx+kyy) and

k2 = k2
x + k2

y , then θ̃kx ,ky
(z) = θ̃kx ,ky

(1 − z) and θ̃0,0(z) = −θ̃0,0(1 − z), and likewise for the poloidal
field. The optimal ϕ(z) has the same symmetry as for infinite Pr.

Bounds H for Nu − 1 are obtained by setting Z to either of the following expressions: 〈|∇θ |2〉,
〈−θ�2φ〉, or 〈−∂zθ〉A,z=0. All three options yield identical results and they agree to four digits
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FIG. 3. The optimal upper bound H for the advective heat transport Nu − 1 as a function of Ra for stress
free boundaries and general Pr. The continuous line indicates the power law 0.055 × Ra1/2.

accuracy with values listed in Vitanov’s thesis [18]. The result is shown in Fig. 3. The bounds obey
approximately H = 0.055 × Ra1/2. The active set now contains more wave numbers, as shown in
Fig. 4.

V. BOUNDS ON THE VELOCITY FIELD

The previous sections investigated bounds on heat transport or thermal dissipation, a quantity
obtainable from the temperature field alone. The present section deals with the velocity field, which
is characterized first and foremost by its energy. Rewriting Eq. (7), the dissipation of the velocity
field is given by ∑

ij

〈(∂jvi)2〉 = Ra(Nu − 1), (35)

100

101

102

103

104

102 103 104 105 106 107 108 109 1010

k

Ra

FIG. 4. Wave numbers k in the active set for the optimization of the bound H for free-slip boundary
conditions and general Pr.
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so that a bound on Nu − 1 also bounds the kinetic dissipation. We can now invoke Poincaré’s
inequality, which states that

∫ 1
0 (∂zf )2dz � η

∫ 1
0 f 2dz for any function f (z) defined on the interval

0 � z � 1, where η is the smallest eigenvalue of the Laplace equation −∂2
z g = ηg, if g and f obey

the same boundary conditions. For Dirichlet boundaries, η = π2. Neumann boundary conditions do
not uniquely select a solution. If f obeys

∫ 1
0 f (z)dz = 0 in addition to the Neumann conditions, one

has again η = π2. We now also use the fact that the total dissipation is greater than the dissipation due
to the poloidal velocity field vP alone, and that all components in vp = ∂z∂xφ x̂ + ∂z∂yφ ŷ − �2φ ẑ
either obey Dirichlet conditions in z, or satisfy Neumann conditions and their integral over z is zero:∑

ij

〈(∂jvi)2〉 �
∑
ij

〈(∂jvP,i)2〉

� 〈(∂zvP,x)2 + (∂zvP,y)2 + (∂zvP,z)2〉
� π2

(〈
v2

P,x

〉 + 〈
v2

P,y

〉 + 〈
v2

P,z

〉)
. (36)

If H is an upper bound for Nu − 1, the poloidal energy is thus bounded as

RaH � 2π2Epol. (37)

For infinite Pr, the velocity field is purely poloidal and poloidal and total energies are identical. For
finite Pr, the toroidal field and a possible mean flow also contribute to the kinetic energy, but they do
not appear in the constraints employed in the formulation of the optimization problem in Sec. IV.
We therefore cannot obtain any additional information about the total energy, we can only hope to
find tight bounds on the poloidal energy with the technique described above. The bound Eq. (37)
derives solely from the energy budget Eq. (35) and the definitions of kinetic dissipation and energy.
We expect to find tighter bounds by solving the full optimization problem.

Setting Z = 〈 1
2 |∇ × ∇ × (φ ẑ)|2〉 and repeating the same computations as in the previous section

yields bounds E on the poloidal energy. Figure 5 shows the bounds as a function of Ra for different
cases and Table I summarizes the results by fitting power laws through the points at high Ra. A
power-law fit is not quite satisfactory yet at infinite Pr for free-slip boundaries at the Ra accessed
in these computations. Figure 6 presents for this reason an alternative point of view in which E is
directly compared with RaH .

100
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104

106

108
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1012

1014

102 103 104 105 106 107 108 109 1010 1011

E

Ra

FIG. 5. The optimal upper bound E for the poloidal kinetic energy as a function of Ra at infinite Pr for
stress free (circles) and no slip (squares) boundary conditions as well as for general Pr and free-slip boundaries
(plus signs). The continuous line indicates the power law 0.00147 × Ra4/3.
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TABLE I. Fitted dependencies on Ra of H and E, the optimal upper bounds on Nu − 1 and Epol. The table
also lists RaH/(2π 2) for comparison with E.

H E RaH/(2π 2)

Infinite Pr, free slip 0.033 × RaH 0.05066 × RaH
Infinite Pr, no slip 0.139 × Ra1/3 0.00147 × Ra4/3 0.00704 × Ra4/3

General Pr, free slip 0.055 × Ra1/2 0.00106 × Ra3/2 0.002786 × Ra3/2

In all cases, the full optimization problem improves prefactors compared with the direct estimate
RaH/(2π2), but not the exponent in the power laws or the functional form of the Rayleigh number
dependence. The prefactor improves by a factor ranging from 1.5 to 4.8.

There is an interesting curiosity about the bounds for free-slip boundaries. The bounds for infinite
and general Pr agree to better than within 1% as long as there is only one wave number in the active
set. The difference between the two cases becomes obvious only once the active set contains more
than one wave number.

Some of the fitted power laws in Table I can be compared with data from direct numerical
simulations. The comparison is scarce in the case of infinite Pr and no slip boundaries. Numerical
simulations did not go to high enough Rayleigh numbers to be definitive about asymptotic scalings.
Travis et al. [20] found Nu = 0.406 × Ra0.284, but Sotin and Labrosse [21] argue that this scaling
only holds for time-independent convection and that Nu = 0.517 × Ra0.269 once time dependence
sets in. However, their simulations were restricted to Ra < 107. Theoretical arguments put forward
by Grossmann and Lohse [22] lead to Nu ∝ Ra1/3 and Epol ∝ Ra4/3. These exponents are the same
as those listed in Table I for the bounds.

More results are available for infinite Pr and free-slip boundaries. In that case, Christensen [23]
finds numerically Nu = 0.196 × Ra1/3 and Pandey et al. [24] obtain Nu = 0.23 × Ra0.32. These
relations depend to some extent on the interval of Ra included in the fit (typically 105–108 for
Ref. [24] and up to 1011 for Ref. [23]) and also the aspect ratio of the computational volume (which
was actually 2D in Christensen’s case), but the point is that there is roughly a factor of up to 2
between the bound H and the numerical results for Ra < 1010 with a widening gap if the quoted
exponents persist to higher Ra. Pandey et al. [24] also give the kinetic energy for free-slip boundaries
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FIG. 6. The optimal upper bound E for the poloidal kinetic energy as a function of Ra at infinite Pr and
stress free boundaries. The continuous line shows the function 0.033 × RaH , where H is the upper bound on
the advective heat transport from Fig. 1.

123502-12



BOUNDS ON POLOIDAL KINETIC ENERGY IN PLANE . . .

at infinite Pr in a box of size 2
√

(2) : 2
√

(2) : 1 as 0.02 × Ra6/5 for 105 � Ra � 108. This is nearly
two orders of magnitude below the bound even at Ra = 108, and the discrepancy is worsening
with increasing Ra due to the discrepancy in the exponents. The kinetic energy deduced from the
characteristic surface velocity obtained by Jarvis and Peltier [25] varies as Ra1.29. While closer to
1.4, this exponent is still much smaller than the one appearing in the bound.

At finite Pr, various simulations have found kinetic energy approximately proportional to Ra, so
that in an all cases, the bounds for Epol severely overestimate the kinetic energy.

Another apparent overestimate is the bound for Nu at general Pr. There are arguments [26] in
favor of a scaling in the form Nu ∝ Ra1/2 at large Ra, the so-called ultimate regime. However, there
is as of yet no unequivocal experimental or numerical observation of the ultimate regime and the
exponents γ in Nu ∝ Raγ obtained from fits to observational data are less than 1/2. Their precise
value depends [27] on Pr and Ra, but γ is often found to be around 1/3. The fact that no bound
better than Nu − 1 = cRa1/2 with some constant c is known for 3D convection is sometimes seen
as an indication that the ultimate regime will eventually be observed at high enough Ra.

A simple argument in favor of Nu ∝ Ra1/2 is dimensional analysis. This scaling must hold if the
heat transport is independent of molecular diffusivities. If one applies the same argument to kinetic
energy, one concludes that gα�T h is the only acceptable combination of problem parameters other
than molecular diffusivities with dimensions of velocity squared, which translates into a kinetic
energy proportional to Ra. It is therefore very likely that the scaling in Ra3/2 shown by the bound
will never be observed for the poloidal kinetic energy, not even in a surmised ultimate regime.

A scenario which generates large upper bounds is the existence of a stationary solution with high
kinetic energy which is unstable and therefore never observed in an actual time evolution of the
flow, but which prevents any bound from approaching the observed kinetic energy of the flow. It is
at present not possible to tell whether this scenario is realized. The optimal flow field of the SDP
is not a candidate for this possible stationary flow field. The optimal flow field contains only a few
wave numbers and not their harmonics or other mixtures, as a solution of the Navier-Stokes equation
would necessarily do.

Finally, while it is not possible to bound the energy contained in the nonpoloidal components, it is
possible to bound the dissipation due to them, Dnp. Again, the energy budget immediately provides
us with a bound:

Dnp �
∑
ij

〈(∂jvi)2〉 = Ra(Nu − 1) � RaH. (38)

With the data in Table I, we conclude that Dnp � 0.055 × Ra3/2. Setting Z = Dnp and going through
the whole optimization procedure leads to a better bound, Dnp � 0.021 × Ra3/2, shown in Fig. 7,
but the improvement is once again only in the prefactor, not in the exponent.

In an effort to improve any of these bounds, one may think of having recourse of the maximum
principle, which guarantees that, possibly after transients due to initial conditions, the temperature
anywhere in the fluid must lie in between the temperatures of top and bottom boundaries, 0 � T =
θ + 1 − z � 1. This means that the inequality Eq. (14) does not need to hold for any θ satisfying
the boundary conditions, it is enough if it holds for every θ satisfying the boundary conditions and
the maximum principle.

The inequality Eq. (19) decouples in k. It contains only quadratic terms for k �= 0. To violate
this inequality in one of the matrix blocks with k �= 0, it is necessary that some block possesses at
least one negative eigenvalue. This condition is independent of whether the admitted fields θ obey
the maximum principle or not. For k = 0 on the other hand, the inequality Eq. (19) or (14) also
contains linear terms and there is a non zero θ which minimizes the left hand side of Eq. (14). The
minimizing θ was computed for the optimal λ’s and was found to conform to the maximum principle
in all cases. It would therefore lead to no improvement to explicitly impose this condition during the
optimization process.
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FIG. 7. The optimal upper bound D for the nonpoloidal dissipation Dnp a function of Ra for general Pr and
stress free boundaries. The continuous line indicates the power law 0.021 × Ra3/2.

VI. CONCLUSION

This paper presented a new method to numerically compute upper bounds for heat transport,
dissipation, and poloidal energy in Rayleigh-Bénard convection both for infinite and general Prandtl
number. The center piece of the method is a semidefinite program, which is numerically convenient
to implement, but formally equivalent to the background field method.

The SDP can be solved with existing numerical libraries. While it is convenient to use an SDP
solver as part of the overall procedure, it is not necessarily efficient. The obvious alternative is to solve
Euler-Lagrange equations. The disadvantage of this option is that the Euler-Lagrange equations have
many stationary points, only one of which is the solution of the SDP which is a convex optimization
problem. On the other hand, finding optimal bounds amounts to finding a saddle point, with a
minimization over the coefficients λ and a maximization over the wave numbers in the active set.
These two optimizations have to be run separately and sequentially if an SDP solver based on central
path methods is used, but both can be combined into a single root search if Euler-Lagrange equations
are solved.

Once dissipation is bound, the mere definitions of dissipation and energy lead to a bound on
energy. Including the additional constraints employed in optimum theory as it is used nowadays
leads to tighter bounds, but only through improved prefactors, not through smaller exponents in
power laws or new functional dependencies. It remains to be seen which additional constraints lead
to further improvement of the upper bounds. The maximum principle for the temperature field can
be of no help as it is already obeyed by the optimizing fields in the method presented here.

The exponent found for the bound on poloidal energy for general Prandtl numbers is not plausible
for a tight bound. Either there exist stationary unstable flows which prevent better bounds, or the
exponent can be improved by including additional constraints derived from the Navier-Stokes
equations into the optimization process. If additional constraints have such an effect on the bound
for the poloidal energy, they may also reduce the exponent of the known upper bound for the Nusselt
number. This bound is compatible with the expected, but as of yet unobserved, ultimate regime of
convection. The existence of this regime would be contradicted if the exponent in the bound for the
Nusselt number could be reduced.
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