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We study nonlinearities of inertial waves in rotating turbulence. At small Rossby numbers
the kinetic energy in the system is contained in helical inertial waves with time dependence
amplitudes. In this regime the amplitude variations time scales are slow compared to
wave periods, and the spectrum is concentrated along the dispersion relation of the waves.
A nonlinear time scale was extracted from the width of the spectrum, which reflects the
intensity of nonlinear wave interactions. This nonlinear time scale is found to be proportional
to (U · k)−1, where k is the wave vector and U is the root-mean-square horizontal velocity,
which is dominated by large scales. This correlation, which indicates the existence of
turbulence in which inertial waves undergo weak nonlinear interactions, persists only for
small Rossby numbers.
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The study of rotating fluids is important to many fields such as engineering, geophysics,
astrophysics, and more. Theoretical [1–4] and numerical studies [5–7] (see also [8], and references
therein), as well as more recent experimental measurements [9], suggest that there is a regime in
which rotating flows are turbulent while dominated by the propagation and interaction of inertial
waves [10–13]. There is an active debate whether this is a valid description of such systems, or if their
nature [14–17] (anisotropy with extreme amount of energy in two-dimensional (2D) modes, inverse
energy cascade, and more) cannot be described in terms of interacting inertial waves [2,18,19]. In this
Rapid Communication we experimentally determine the regime in which inertial waves that undergo
weak nonlinear interactions dominate the three-dimensional (3D) part of the energy spectrum.

Incompressible fluids in rotating systems are described by the rotating Navier-Stokes equation
(NSE) [8,20,21], resulting in two independent dimensionless parameters. In our experiment we
use Reynolds number, Re = UL/ν and Rossby number, Ro = U/(2�L) (U and L are the typical
velocity and length scales, ν is the kinematic viscosity, and � = |�| is the rotation rate of the system).
In the conditions that characterize rotating turbulence Re � 1 indicates dominance of nonlinear
inertial effects over viscous effects, and Ro � 1 indicates dominance of Coriolis acceleration over
nonlinear inertial accelerations.

Under the above conditions the rotating NSE can be linearized, to have solutions in the form
of plane inertial waves [20,21]. These waves, with frequency ω and wave vector k, have a unique
dispersion relation where ω does not depend on the wave number, k = |k|, but only on its angle, θ ,
with the axis of rotation (�):

ω = ±2
� · k

k
= ±2� cos (θ ). (1)

The basic modes of these waves are helical modes [3,21–23]. These modes can be defined with
helicity vectors:
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where s = ±1 is the helicity. The general velocity field can be represented by these modes using

u(k,t) = a+(k,t)h+(k) + a−(k,t)h−(k), (3)

where

a± = u · h∓. (4)

For small but finite Rossby numbers inertial waves exist but the nonlinearity of the rotating
NSE is not negligible. In such conditions the framework of wave turbulence might provide a valid
description of the flow. Wave turbulence was predicted to appear in various physical systems [10–12]
and was found experimentally in internal waves [24,25], surface waves [26–31], and elastic bending
waves [32–35]. Recently, we showed experimentally that at Ro ∼ 0.01 wave turbulence exists
also in rotating turbulence [9]. It is not yet clear if inertial wave turbulence description can fully
explain the unique properties of steady rotating turbulence. Simulation [5,6], theory [1–4,19,36],
and experiments [9,18] (see also Ref. [8], and references within) in rotating systems suggest that
wave turbulence does exist but provides only a limited description. Some works suggest wave
turbulence cannot exist [18,19] or exists within a limited parameter regime [1,2,4,6]. In this Rapid
Communication we identify two qualitatively different flow regimes. For small Ro the energy
spectrum is concentrated around the dispersion relation of inertial waves. In this regime we identify
the dominant nonlinear time scale, which is longer than the wave period. At large Ro, this time scale
becomes short compared to the wave period, and the energy spectrum is no longer consistent with
inertial waves dynamics.

The experimental setup is the one used in [9]. It is composed of a closed Plexiglass cylinder,
80 cm in diameter and 90 cm in height, which rotates up to 2 Hz along the –ẑ axis. The tank contains
water seeded with 50 μm polyamide particles which are used as tracers for flow visualization and
measurement. Energy is injected homogenously at the bottom of the tank through a hexagonal layout
of thin tubes. A closed circulation pump is injecting fluid in and out of the bottom through these
tubes. The system works typically at Re ∼ 103 and Ro ∼ 10−2–10−3. All measurements presented
here begin after waiting several minutes (�5 min) for the system to reach steady state (with constant
rotation rate and energy injection rate). The experiment duration varies from T = 45 s to 150 s
depending on � (covering at least 30 rotation periods).

A corotating camera above the cylinder captures frames at ∼750 frames/s. A vertical scanning
horizontal laser sheet illuminates a specific height for each frame, sweeping over a total of 30 different
heights (55.5 < z < 81.3 cm). The total measured volume is V = 25.1 × 25.1 × 26.5 cm3. The
velocity field is calculated using a standard 2D particle image velocimetry (PIV) technique, which
provides the horizontal velocity components of the 3D measured volume (3D2C) (see Supplemental
Material Movie M1 for an example of the energy density field dynamics [37]).

The main analysis is done by calculating the temporal-spatial Fourier transform of the velocity
field: ui(k, ω) = F[𝒲(r) · ui(r, t)], where𝒲(r) is a spatial windowing function (of type Hamming,
normalized to conserve energy). The geometry of finite-size fluid volume is known to determine
mode selection [1]. Still, Fourier transform analysis is used here since we study scaling laws of
modes that are short compared to the system size.

We start by verifying that the wave field can be decomposed to two independent branches of
positive and negative helicity. As in [9] we compute the energy spectrum in Fourier space as a
functions of θ and ω:

E(θ,ω) = 1

2T V

∫ kmax

kmin

dk

∫ 2π

0
dφ k2 sin (θ )

[
u(k,ω)2

x + u(k,ω)2
y

]
. (5)

kmin = 1.33 rad/cm is the minimal wave number with sufficient θ resolution, and kmax =
3.29 rad/cm is the maximal measured wave number that exists in all directions. We find two distinct
branches of energy [Fig. 1(a)] concentrated along the dispersion relation [Eq. (1)]. Incompressibility
and Eq. (4) are used to decompose the data into positive and negative helical modes. The energy of
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FIG. 1. (a) Horizontal velocity field energy spectrum E(θ,ω) for �/2π = 1.5 Hz and Ro = 8 × 10−3.
The energy in Fourier space is averaged on all φ and k (between kmin = 1.33 and kmax = 3.29 rad/cm), and
plotted (logarithmic scale) as a function of ω/2� and θ . (b) and (c) are the positive and negative helical modes
[Es(θ,ω)]. The gray area around θ ∼ 90◦ is not defined since uz(θ ∼ 90◦) cannot be calculated.

each mode is defined as Es(θ,ω) = 1
2T V

∫kmax
kmin

dk ∫2π
0 dφ k2 sin(θ )as(k,ω)2. As expected, we find that

each branch of E(θ,ω) relates to different helical mode [Figs. 1(b) and 1(c)]. As energy is injected at
the bottom of the tank the waves propagating upward [Fig. 1(b)] are more intense than the downward
propagating waves [Fig. 1(c)] (see Supplemental Material on helical modes group velocity [37]).
Although these are the fundamental modes of the flow, their derivation produces relatively large
numerical noise. Further analysis is therefore performed on the Fourier energy spectrum.

To see the spectrum k dependence we separate the integration over k in Eq. (5) to integration
over small intervals, �k, around k to produce Ek(θ,ω) (see Supplemental Material on energy
calculations for a detailed description [37]). Figure 2 shows Ek(θ,ω) for a specific wave number in
four different experiments (see also Supplemental Material Fig. S1 [37]). For the smallest Rossby
number [Fig. 2(a)] the energy is highly concentrated along the inertial wave dispersion. As Ro
increases [Figs. 2(b) and 2(c)] the spectrum broadens. For the largest Ro [Fig. 2(d)] the spectrum is
widely spread and the dispersion relation is hardly visible.

The broadening of a spectrum indicates changes of wave amplitude and phase. In a system
of interacting waves, amplitude modulations result from nonlinear wave interactions with typical
time scale, τNL. For wave turbulence framework to be valid τNL must be long enough (i.e., small
nonlinearity) compared to the wave period: τNL � τω (where τω = 2π/ω is the wave period).

To identify τNL we examine the time dependence of a single Fourier mode. The velocity field is
transformed in space, and we plot (the real part of) one wave vector, k′ = (k′,θ ′,φ′), as a function
of time, Re[ux(k′,t)] [Fig. 3(a)]. Indeed, the mode oscillates in the wave frequency according to
Eq. (1) (see inset), while large amplitude variations are clearly visible. In this example the typical
modulation time scale (∼5 s) is significantly longer than the wave period. Figure 3(b) is the temporal
spectrum of the signal in Fig. 3(a) [showing u2

x(k′,ω)]. For a linear system a delta function at ω = ωk

is expected. The continuous changes in amplitude result in widening of the spectrum, where the
width, �ω, is related to the time scale of the amplitude modulation, τNL ∼ �ω−1. It is important to
note that the spectrum is broadened nearly symmetrically around ωk, with no significant frequency
shift (in contrast to other experiments [18]). This indicates that the deviation from the dispersion
relation is indeed due to the relatively isotropic (in the horizontal plane) dynamics, and not due to
strong mean flow, or other symmetry-breaking mechanisms.
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FIG. 2. Fourier energy spectra, Ek(θ,ω) (logarithmic scale), for k = 1.76 rad/cm and different Ro (Ro =
0.004, 0.008, 0.02, 0.06). For small Ro, energy is concentrated around the inertial wave dispersion relation.
As Ro increases, the energy spectrum spreads, until for very large Ro the dispersion relation is no longer a
significant feature in the spectrum. See Supplemental Material Fig. S1 for more figures in a larger range of Ro
and k [37].

The question of what processes determine and govern τNL is of major importance for the
understanding of rotating turbulence. In such a complex system, many different nonlinear processes
are possible, each with its typical scaling relation. A recent numerical study [6] found a regime in
which τNL ∼ (Uk)−1, where U is the root-mean-square velocity and k is the wave number. This
scaling was suggested to result from the drift, or sweeping, of the fast, short 3D inertial modes by
the large-scale slow 2D part of the flow. Indirect evidence for frequency change due to sweeping
effects was also found in experiments [18].

In order to identify the dominant nonlinearities in our experiments we study the variation of
�ω/ω for each polar angle θ and wave number k, and for a total of 27 experiments with different
Rossby and Reynolds numbers. The data from this broad range of parameters collapse onto a linear
relation, which indicates τNL ∼ (U⊥k⊥)−1 ≡ τU , where U⊥ = √

2 ∫ ∫ ∫ dk dθ dω Ek(θ,ω) and k⊥
is the horizontal component of the wave vector [note that in our system (U⊥k⊥)−1 ≈ (U · k)−1, since
∼90% of the energy is contained in nearly (±20◦) horizontal modes; see Fig. 1(a)]. In this analysis
both τNL and τU are calculated as the statistical means in a steady-state turbulence, using only the
horizontal velocity fields.

The linear scaling holds for (τUω)−1 < 0.3, for which the weak turbulence condition, �ω < ω,
is obeyed. The second regime corresponds to strong interactions with horizontal modes, such that
(τUω)−1 > 0.3. In this regime the nonlinear time scale is so small (τNL < τω) that well-defined
waves do not really exist.

In conclusion, we analyzed the spectral and time evolution of inertial waves within a rotating
turbulence. We have shown experimentally the existence of a regime in which the 3D rotating
turbulent field is well described as an ensemble of inertial waves that undergo weak nonlinear
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FIG. 3. Spatial Fourier of the velocity field for a single wave vector. (a) Real part of the Fourier transform
of the velocity field in the x direction: Re[ux(k′,t)], for k′ = 1.76 rad/cm, θ ′ = 116◦,φ′ = 176◦. Rotation
frequency is �/2π = 2 Hz. There is a main frequency governing the signal with amplitude modulations. The
inset is a close-up, showing the governing oscillations with the expected period of 0.56 s [corresponding to
|ω′| = 2� cos(θ ′)]. (b) Temporal Fourier spectrum of (a), showing |ux(k′,ω)|2. There are two peaks specifying
the positive and negative helical modes. Two vertical lines represent the expected frequency ω′. (c) Energy
spectrum density integrated over φ for both ux and uy fields. Showing Ek′ (θ ′,ω) in blue for the positive mode
only. The red line is the Gaussian fit with width �ω (green line) defined as the standard deviation.

interactions. The dominant nonlinear processes in this regime are weak interactions of inertial
waves with horizontal (or nearly horizontal) modes. The time scale that governs these interactions
is τU = (U⊥k⊥)−1 and a robust linear relation between the broadening of the energy spectrum and
τ−1
U was found for (τUω)−1 < 0.3. The nonlinear interactions in this regime are manifested by slow

amplitude modulations of the 3D inertial modes, an effect which is not necessarily expected for
slow sweeping of 3D modes by large-scale 2D modes. Still, the measured scaling can account for
a variety of processes that are “mean-field-like”. For (τUω)−1 > 0.3, these nonlinear processes are
fast compared to the wave period and the resemblance of the energy spectrum to the linear wave
dispersion relation is lost. It is, therefore, clear that this weak turbulence of waves would not be
detected in experiments (or simulations) that are limited in scale, or rotation rate: In order to be
in the relevant regime, while having Re ∼ 103, there is a need for both rapid rotation (increasing
ω) and a large system (small wave numbers, thus large τU ). These are challenging requirements
that are not easily met. Yet, the results of this work, together with the results of recent simulations
[6] confirm the existence of a regime in which the inertial wave spectrum is dominated by weak
nonlinear interactions, a regime which is most suitable for further theoretical study.

We are thankful to the anonymous referee who suggested that we test the scaling which leads to
the data collapse in Fig. 4. This research was supported by the Israel Science Foundation, Grant No.
866/16.
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FIG. 4. Normalized spectra width as function of normalized interaction time scale for each k and θ [38],
where τ−1

U = Uk sin θ . There is a strong correlation between the measured spectra width and τ−1
U , indicating

nonlinear interactions with mean flow are the main cause of spectrum broadening. The black dashed line
represents y = 3x. The results show a good collapse of the data only for �ω/ω < 1, where a perfect linear
line is observed. For larger values the data is more spread. Thus we see two regimes, where weak nonlinearities
with the horizontal modes exist only for (ωτU )−1 < 0.3.
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