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evolving two-dimensional turbulence
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We report the existence of a self-similar scaling in the vortices of freely evolving two-
dimensional turbulence: The vortex number density n(A,t) compensated by the mean
vortex intensity ω2

v(A,t), where A is vortex area and t is time, follows the self-similar form
n(A,t)/ω2

v(A,t) ∼ t−2/3A−1. This extended scale-invariant behavior holds for different
initial conditions, despite very different scaling of n(A,t) and ω2

v(A,t) taken separately, and
ensures that the number of turnaround times [ω2

v(A,t)]−1/2 taken to cross the characteristic
intervortex distance is independent of scale.
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I. INTRODUCTION

Two-dimensional turbulence is a paradigmatic model for the study of scaling far from equilibrium,
with a broad range of applications to systems as diverse as large-scale geophysical and astrophysical
fluid flows, black brane instabilities within the fluid-gravity correspondence [1], and trapped atomic
gases [2]. Coherent vortices (localized, long-lived, rapidly rotating structures) form generically in
both freely evolving and forced two-dimensional turbulence from extrema of the initial vorticity or
forcing field, merging and generating a population distributed across scales and evolving in time
[3–8]. In the freely evolving system, filaments thin exponentially fast, and at late times coherent
vortices contain almost all the energy and dominate the flow evolution. An account of freely evolving
turbulence in the long time limit therefore amounts to a theory for the vortex population.

Several increasingly complex scaling theories have been proposed to describe vortices in freely
evolving two-dimensional turbulence. Considering only spatial scaling, Refs. [3,4] linked the energy
spectrum to an algebraic distribution of vortex areas n(A) ∼ A−p, where n(A) is the number density
of vortices with area A and p was measured from numerical simulations. Separately, Refs. [5,6]
developed a temporal scaling theory for a dilute gas of N identical vortices with density ρ ∼ t ξ .
Subsequently, a number of theoretical predictions for the scaling exponent ξ were made [9–16], with
values ranging from ξ = 2/3 [13] to ξ = 1 [9,11,12,15].

The first combined spatiotemporal theory for the vortex population was developed in [7]. The
theory assumes that vortices with a range of areas A and uniform intensities contain most of the
energy in the system and that the vortex area distribution is scale invariant n(A,t) = c(t)A−1, where
c(t) is dimensionless. Here the vortex intensity is defined as the mean square vorticity evaluated over
vortices of area A,

ω2
v(A,t) ≡ 1

N

N∑
i=1

1

Ai

∫
Ai

ω2dx dy, (1)

where the overline on ω2
v(A,t) denotes an average over vortex areas Ai in a bin centered on

A, Ai ∈ [A − dA,A + dA], and N is the total number of such vortices. In [7] it was assumed
that the vortex intensity was constant as a function of both vortex area A and time t , i.e., that
ω2

v(A,t) ≡ ω2
v = const. In the present study we will consider the more general case in which ω2

v(A,t)
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varies with both A and t and explore the implications for the scaling properties of the vortex number
density n(A,t).

Under the assumption that vortex self-energies dominate the kinetic energy, Ref. [7] identified
the vortex energy

Ev = 1

2D

∫ Amax

Amin

ω2
vA

2n(A,t)dA ∼ c(t)A2
max (2)

with the total kinetic energy

E = 1

2D

∫
|u|2dx dy (3)

such that E ∼ Ev. Here D is the area of a finite region large enough that the statistics converge and
u is the fluid velocity. The integration limits in (2) are Amax(t), the area of the largest vortex, and
Amin, a minimum allowed vortex area, which is fixed and chosen larger than the smallest resolved
area. Energy E ∼ Ev is conserved in freely evolving turbulence, which implies c(t) ∼ A−2

max, where
we have used Eq. (2).

Requiring the enstrophy to decay at the same rate at all scales, thereby preserving self-similarity,
a differential equation can be derived (see [7]) for the area of the largest vortex, with the solution

Amax ∼ t1/3. (4)

Together with energy conservation, this yields c(t) ∼ t−2/3, so that

n(A,t) ∼ t−2/3A−1. (5)

The vortex enstrophy Zv then decays as

Zv = 1

2D

∫ Amax

Amin

ω2
vAn(A,t)dA ∼ t−1/3. (6)

This global decay rate also holds locally in A space, consistent with the assumption of scale-invariant
enstrophy decay: Specifically, Zv ∼ t−1/3 and Ev is conserved when the integral is over a comoving
interval [μA0(t),A0(t)], where 0 < μ < 1 is a constant and A0(t) ∼ t1/3 grows like the largest vortex
area. Note that μ can take any value in (0,1) as long as μA0(t) and A0(t) both fall within the scaling
range of interest at all times considered. The comoving interval [μA0(t),A0(t)] represents a range
of scales that grows along with the dilatation of flow features as measured by vortex growth through
merger; hence, we are requiring invariance under the scaling transformation associated with the
flow evolution. The notion of conservation in comoving intervals was inspired by the cosmological
concept of a comoving frame, i.e., a reference frame dilating along with the expansion of the universe
[17], and was applied in [8] to vortices in the forced inverse energy cascade to predict three scaling
ranges conserving the first three moments of the number density.

We define a vortex area A as a region of intense vorticity enclosed by a vorticity isoline. This
definition satisfies two widely accepted requirements, namely, that vortices are concentrated regions
of intense vorticity and that they propagate with a high degree of material invariance [18]. The
latter requirement is satisfied by selecting level sets of vorticity as vortex boundaries, since vorticity
isolines are effectively frozen in at high Reynolds number. Our definition of a vortex area A is
motivated by the desire to describe the flow in a way likely to yield new insights into turbulent
dynamics: There are theoretical reasons to expect vorticity isolines and their enclosed areas to be
especially significant in the description of two-dimensional turbulence. For example, the approach
of contour dynamics relies on the fact that the equations of motion for an incompressible Eulerian
fluid can be formulated in terms of vorticity isolines [19]. Furthermore, an action principle exists
for two-dimensional incompressible fluids in which the canonical coordinates are isovorticity lines,
with vorticity densities as the conjugate momenta [20]. The vortex identification method reflecting
these theoretical considerations and our definition of a vortex area A is a threshold on vorticity.
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TABLE I. Simulation parameters: N is the inversion grid resolution, Neff is the effective resolution, s is the
order of viscosity for the PS simulations, ν is the viscosity, E0(k) is the form of the initial energy spectrum,
with H the Heaviside step function, and Re(0) is the initial Reynolds number.

Run N 2 N 2
eff s ν E0(k) Re(0)

mGauss-CA 20482 32 7682 k3e−2(k/256)2
1.85 × 104

Tophat-CA 20482 32 7682 [H (k − 26.5) − H (k − 101.5)] 2.62 × 105

Gauss-PS 81922 30722 4 1.26 × 10−27 e−2(k−512)2/502
36

Tophat-PS 81922 30722 4 1.26 × 10−27 [H (k − 212) − H (k − 812)] 36

A key assumption in [7,8] is that the vortex intensity ω2
v is constant in time and independent of

vortex area A. Here we find that the distribution of ω2
v(A,t) across scales is sensitive to the initial

conditions in both contour advection and standard pseudospectral simulations of freely evolving
two-dimensional turbulence. We consider two kinds of initial conditions: top-hat energy spectra
constant over a range of wave numbers and initial spectra that are moments of Gaussian distributions
in k space. The latter initial conditions yield vortex intensities ω2

v(A,t) that are nonuniform in A and
evolving in time. In these cases we show that an extended scale invariance in which

n(A,t)/ω2
v(A,t) ∼ t−2/3A−1 (7)

holds. More specifically, ω2
v(A,t) and n(A,t) evolve to distributions that ensure that vortices cross the

characteristic intervortex distance in the same number of turnaround times Tv(A,t) ≡ [ω2
v(A,t)]−1/2

independent of scale, which is a basic requirement for self-similar dynamics. As we will see, the
scaling n(A,t) ∼ t−2/3A−1 originally proposed in [7] is recovered for top-hat initial energy spectra,
in which case ω2

v(A,t) varies more weakly with A and t .

II. METHODS

We use two numerical methods to study the scaling properties of the vortex intensity and number
density. The first is contour advection (CA) performed by the combined Lagrangian advection method
[21] on a 20482 basic inversion grid, with effective resolution N2

eff = (16 × 2048)2 = 32 7682.
Contour surgery removes exceedingly thin filaments (here at 1/32 768 the domain width), but
preserves sharp vorticity gradients indefinitely. The simulation labeled mGauss-CA starts from
an initial energy spectrum E0(k) ∼ k3e−2(k/k0)2

with k0 = 256 on a 20482 inversion grid, while
simulation Tophat-CA starts from a top-hat energy spectrum E0(k) ∼ H (k − 26.5) − H (k − 101.5),
where H is the Heaviside step function, centered on k0 = 64 with E0(k) constant for k ∈ [26.5,101.5]
on a 20482 inversion grid.

Our second numerical approach is a standard pseudospectral (PS) method at resolution 81922 with
fourth-order hyperviscosity. The pseudospectral simulation labeled Gauss-PS starts from a Gaussian
initial energy spectrum E(k) ∼ e−(k−k0)2/σ 2

, with k0 = 512 and σ = 50, while the simulation labeled
Tophat-PS starts from a top-hat energy spectrum E0(k) ∼ H (k − 212) − H (k − 812) centered on
k0 = 512 and constant for k ∈ [212,812].

The simulation parameters are listed in Table I. In column 7 we give an effective initial Reynolds
number Re(0) = [Neff/kE(0)]2, where kE(0) is the initial energy centroid wave number. For the PS
simulations Neff = kmax, where kmax = 3072 is the maximum resolved wave number, since dealiasing
is achieved with a spectral filter [22].

To allow comparison between simulations, we define a dimensionless time

τ = t/Tω, (8)

114702-3



B. H. BURGESS, D. G. DRITSCHEL, AND R. K. SCOTT

100

101

102

103

104

105

106

107

108

109

10-7 10-6 10-5 10-4 10-3 10-2 10-1

F
(A

)
A

mGauss-CA

0.125ωrms

5ωrms τ = 917 

τ = 3667

A −1

A −0.92

(a) (b)

FIG. 1. (a) Coherent vortices on a 40962 subdomain from simulation mGauss-CA at τ = 3667 as selected
by ωthr = 0.125ωrms and (b) F (A) as defined in Eq. (9) for two thresholds at the indicated times, with best fit
line for ωthr = 0.125ωrms and A−1 scaling for comparison.

where Tω = 4π/ωrms(0) is an eddy turnover time and ωrms(0) is the rms vorticity of the initial
vorticity field.

III. VORTEX IDENTIFICATION

For most analyses, vortices are identified by finding all structures that exceed a given vorticity
magnitude threshold and have an eccentricity e = √

1 − λ2/λ1 below a specified value, chosen to be
e = 0.85 after carefully examining the resulting coherent fields. Here λ1 and λ2 are the eigenvalues
of the covariance matrix formed from the second-order moments of ω, and Dv is a subdomain
restricted to the vortex in question. The eccentricity criterion has the greatest effect at early times,
when mergers are more frequent and vortices tend to be more distorted. In addition, the peak vorticity
magnitude within the region is required to exceed a tertiary threshold ωext

thr . This ensures that the
vortices are in fact concentrated regions of intense vorticity. Unless otherwise stated, the extraction
parameters are ωthr = 0.125ωrms (mGauss-CA) and ωthr = ωrms (Gauss-PS, Tophat-CA, Tophat-PS),
ωext

thr = 2ωrms, and e = 0.85. Figure 1(a) shows coherent vortices from simulation mGauss-CA at
τ = 3667 on a 40962 subdomain for ωthr = 0.125ωrms, e = 0.85, and ωext

thr = 2ωrms.
To check whether the vortex profiles are self-similar we follow [3] and postulate a similarity form

ωv = ωvf (r/Rv), where ωv is the vorticity averaged over the specific vortex of radius Rv and f is a
universal dimensionless function. If the vortex profile is independent of spatial scale, then

F (A) ≡
(∫ Rv

0
ω dx dy

)−2 ∫ Rv

0
ω2dx dy (9)

should scale like A−1 ∼ R−2
v [3]. In fact, this holds to a very good degree, provided ωthr is taken

large enough, as shown in Fig. 1(b) for simulation mGauss-CA. There is a weak dependence of the
best fit line on ωthr, with F (A) ∼ A−0.92 for ωthr = 0.125ωrms, F (A) ∼ A−0.97 for ωthr = ωrms (not
shown), and F (A) ∼ A−0.98 for ωthr = 5ωrms.

The point scatter decreases as ωthr increases; this is because higher thresholds select the vortex
cores and omit the undulating skirts acquired through merger, which depend on the history of the
particular vortex and are less universal. The findings are similar for all other simulations independent
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of initial condition and support universal A-independent profiles for the vortex cores, but less so the
skirts, which are found preferentially on stronger and larger vortices.

IV. SCALING

We consider raw and compensated number densities in the forms

n(A,t) = c(t)A−r ∼ t−αA−r , (10)

n(A,t)/ω2
v(A,t) = c̃(t)A−r̃ ∼ t−α̃A−r̃ , (11)

where tildes distinguish the exponents of the extended scaling form (11) from the exponents of the
raw density (10). We will measure the exponents over appropriate ranges in the simulations listed in
Table I. In Sec. IV A we examine the scaling in area (r and r̃) and in Sec. IV B the scaling in time
(α and α̃).

A. Scaling in area A

Vortex number densities n(A,t), intensities ω2
v(A,t), and vortex peak vorticities ωext are shown

in Fig. 2 for the simulations mGauss-CA (top row) and Gauss-PS (bottom row) initialized with
Gaussian energy spectra. In all panels cyan and pink symbols correspond to instantaneous values,
while open black symbols represent time averages. The number densities are normalized by the total
number of vortices Nv(t): This collapses the densities, which can then be time averaged without
knowing their decay rate, separating the A dependence from time evolution and allowing the scaling
exponents α̃ and r̃ to be measured independently.

The vortex intensity ω2
v(A,t) is displayed in Figs. 2(a) and 2(c), where the black open triangles

correspond to a time average and the pink diamonds to instantaneous values. As is evident, ω2
v(A,t)

varies significantly with A and the number density noticeably departs from A−1 scaling, with a break
in the scaling located at the vortex area Ap where the vortex intensity distribution ω2

v(A,t) reaches
its maximum. This is true in both simulations, though the shape of the number density differs at
A < Ap: In mGauss-CA n(A,t) is roughly flat at these scales, while in Gauss-PS it increases steeply
with A.

In simulation mGauss-CA there is a systematic depletion in time of ω2
v(A,t) in the smaller-scale

range left of Ap in Fig. 2(a); this is consistent with a corresponding falloff in the average amplitude
ωext of the vortex peaks at smaller scales and its relative constancy at larger scales in Fig. 2(b)
(open black triangles and pink diamonds). The nonuniform distribution and evolution of ωext most
likely reflect the spectrum of peaks in the initial vorticity field combined with a tendency for
stronger vortices to survive merger more frequently. Weaker vortices are more likely to be strained
out and destroyed or wrapped around larger vortices. The smaller-scale range left of Ap may be
preferentially depleted through vortex destruction during interactions with larger vortices, which in
contrast undergo lossless mergers, preserving ω2

v(A,t), as shown in the range to the right of Ap.
In Figs. 2(b) and 2(d) we show that the combination N−1

v n(A,t)/ω2
v(A,t) yields a range with

approximate A−1 scaling in both simulations. A least-squares fit gives slopes of −1.02 ± 0.04 and
−0.98 ± 0.03, respectively, where the error is the standard deviation from the mean slope. The
ranges over which the fits are obtained are indicated by the lines in Figs. 2(b) and 2(d). Note that
the spread in the compensated density N−1

v n(A,t)/ω2
v(A,t) in simulation mGauss-CA [Fig. 2(b)],

especially at small scales, is random in time: There is no systematic decay or growth, which justifies
the extension of the fit line to these small scales.

We next consider the simulations initialized with top-hat energy spectra: Number densities n(A,t),
vortex intensities ω2

v(A,t), and vortex peak vorticities ωext are shown in Fig. 3 for simulation
Tophat-CA (top row) and Tophat-PS (bottom row). Again, open black symbols represent time
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FIG. 2. (a) mGauss-CA and (c) Gauss-PS intensities ω2
v and normalized number densities N−1

v n(A,t),
where Nv(t) is the total number of vortices, for ωthr = 0.125ωrms (mGauss-CA) and ωthr = ωrms (Gauss-PS).
(b) mGauss-CA and (d) Gauss-PS vortex peak vorticities ωext and compensated number densities N−1

v n(A)/ω2
v,

with best fit lines A−1.02 and A−0.98; here r̃ = 1.02 ± 0.04 (mGauss-CA) and r̃ = 0.98 ± 0.03 (Gauss-PS),
where the error is the standard deviation. Cyan and pink symbols are instantaneous and open black symbols are
time-averaged values.

averages, while pink and cyan symbols are instantaneous values. The vortex intensity ω2
v(A,t) varies

much more weakly with A in these simulations, as shown in Figs. 3(a) and 3(c) (open black triangles
and pink diamonds). In both simulations there is an approximate A−1 scaling range in the number
density n(A,t) coinciding with a range of scales over which ω2

v(A,t) is approximately constant.
In simulation Tophat-CA the scaling exponent in the range [−3.54, − 2.39] is r = 1.03 ± 0.05, as
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FIG. 3. (a) Tophat-CA and (c) Tophat-PS intensities ω2
v(A,t) and normalized number densities N−1

v n(A,t),
where Nv(t) is the total number of vortices, for ωthr = ωrms. (b) Tophat-CA and (d) Tophat-PS compensated
number densities N−1

v n(A,t)/ω2
v(A,t) and vortex peak vorticities ωext. Cyan and pink symbols are instantaneous

values, while open black symbols are time-averaged values. The error bars on the scaling exponents r and r̃

can be found in Table III.

shown in Fig. 3(a) (solid black line). In simulation Tophat-PS a fit over the range [−4.72, − 4.02]
yields r = 1.02 ± 0.02, as shown in Fig. 3(c) (solid line). Compensating the density by ω2

v(A,t) yields
an extended A−1 scaling range at A > Ap in simulation Tophat-CA, as indicated by the solid black
fit line over the range [−3.54, − 2.11] where the exponent is r̃ = 1.02 ± 0.05. The compensated
density in simulation Tophat-PS has an exponent r̃ = 0.96 ± 0.06 in the range [−4.72, − 4.02]
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FIG. 4. Fit range used to compute the best-collapse temporal scaling exponent α̃ for simulations mGauss-CA
(left) and Gauss-PS (right), illustrated for extractions with ωthr = 0.125ωrms (mGauss-CA) and ωthr = ωrms

(Gauss-PS), e = 0.85, and ωext
thr = 2ωrms. Points between the vertical dash-dotted lines are used in computing

the values α̃ = 0.64 ± 0.07 (mGauss-CA, left) and α̃ = 0.65 ± 0.06 (Gauss-PS, right), which best collapse the
number densities over these ranges.

indicated by the black fit line, so it also follows an A−1 scaling to within the error bars. We thus
have the general result that compensating the number density by ω2

v(A,t) yields an A−1 range.

B. Temporal scaling

We now turn to measuring the overall temporal scaling exponents. To determine what factor
of t best collapses the number densities, we consider pairs of densities at well separated times,
compensating these by tα or t α̃ , where the scaling exponent is varied from 0.5 to 0.8 in increments
of 0.01. To determine the best-collapse exponent, we calculate the area in log-log space between the
number density curves for each value of α or α̃ considered. The value that minimizes the enclosed
area is taken as the best-collapse temporal scaling exponent for that pair of times. To estimate an error
in the exponents, this procedure is repeated for multiple pairs of times, the average best-collapse
exponent is computed, and the error is the standard deviation about the mean. In selecting the
range of scales over which to compute the area used to determine the degree of collapse, we must
omit bins at small scales, where the occupation numbers fluctuate a great deal, as well as bins
at large scales, which fill up in time. The selection of the fit range is illustrated in Fig. 4 for
simulations mGauss-CA (left) and Gauss-PS (right): The bins between the vertical dashed lines
are used to calculate the average best-collapse exponents of α̃ = 0.64 ± 0.07 (mGauss-CA, left)
and α̃ = 0.65 ± 0.04 (Gauss-PS, right). As long as the noisy small scales and nonequilibrated large
scales are avoided, there is some leeway in selecting the bins: For example, if the bins on either side
of the lines are included, or conversely if the fit range is shortened, the exponent is still α̃ = 0.66 to
within the error. Further, this result is insensitive to the vorticity threshold ωthr, as demonstrated in
the Appendix.

C. Scale invariance

We expect the extended self-similar form n(A,t)/ω2
v(A,t) ∼ t−2/3A−1 to ensure some form of

scale invariance in the vortex population. A natural vortex time scale is the turnover time Tv ≡
[ω2

v(A,t)]−1/2. We associate with this a dynamical length scale Lv defined as the distance over which
a vortex of area A traveling at the mean speed u ≡ √

2E, where E is the energy defined in Eq. (3),
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FIG. 5. (a) Tophat-PS number density n(A,t) and vortex translational speed Uv as functions of A at three
times. Also shown are (b) Nv (dotted line), Zv (dash-dotted line), and Ev (solid line) for the A−1 range. The
scaling exponents are −0.65 ± 0.01, −0.34 ± 0.01, and −0.03 ± 0.01. (c) End points of the corresponding
comoving interval [μA0(τ ),A0(τ )] and area Amax of the largest vortex. The scaling exponent for Amax is
0.36 ± 0.03.

completes one turnover,

Lv(A,t) ≡ u
[
ω2

v(A,t)
]−1/2

. (12)

We assume that all vortices travel at the same mean speed u, which holds very well, as shown for
simulation Tophat-PS in Fig. 5(a), where the lower set of curves are the vortex translational speed Uv

as a function of A at three times. The characteristic intervortex distance Lr (A,t) between vortices
of a given scale A is

Lr(A,t) ≡
[

1

D

∫ A

μA

n(A′,t)dA′
]−1/2

∼
√
Dt2/3ω2

max

ω2
v(A,t)

, (13)

where 0 � μ < 1 is a constant, and we have inserted n(A,t) ∼ t−2/3ω2
v(A,t)ω−2

maxA
−1, where ωmax

is the conserved global vorticity maximum. Using this with (12) and assuming energy conservation,
we obtain

Lr(A,t)

Lv(A,t)
∼ t1/3, (14)

showing that the ratio of the characteristic intervortex distance to the distance traveled in one turnover
time is independent of scale.

Figure 5(b) shows the evolution of the vortex number Nv = ∫
n(A,t)dA, vortex energy Ev,

and vortex enstrophy Zv in the Tophat-PS vortex population averaged over an ensemble of three
simulations. Here and in the discussion of Fig. 6 we use the nondimensional time τ in order
to characterize the stage of flow evolution. The quantities Nv, Zv, and Ev are integrated over a
comoving interval [μA0(τ ),A0(τ )], where A0(τ ) ∼ τ 1/3, whose end points are shown in Fig. 5(c).
For reference we also show the area Amax of the largest vortex, again averaged over a three-member
ensemble; Amax ∼ τ 0.36±0.03, as determined by a least-squares best fit, where the error is the standard
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FIG. 6. Plot of Nv (dotted line), Zv (dash-dotted line), and Ev (solid line) for (a) a comoving interval
[μAtyp(τ ),Atyp(τ )] and (b) a comoving interval [Atyp(τ ),Amax(τ )]. The measured scaling exponents are (a)
−0.67 ± 0.01, −0.35 ± 0.03, and −0.07 ± 0.05 and (b) −0.83 ± 0.02, −0.47 ± 0.01, and −0.09 ± 0.01. (c)
Interval end points μAtyp, Atyp, and Amax, with Ap for reference and a fit line for comparison. The scaling
exponent for Atyp is 0.329 ± 0.005.

deviation from the ensemble mean. A comparison of Figs. 5(a) and 5(c) shows that the end points
fall within the range where n(A,t) ∼ A−1. The vortex number and enstrophy follow the scaling laws
Nv ∼ τ−2/3 and Zv ∼ τ−1/3 to within the estimated error, consistent with the number density (5)
and vortex area growth law A(τ ) ∼ τ 1/3 following from the scale-invariant theory of [7]; there is a
slight decay in Ev. The measured decay laws, as shown in magenta in Fig. 5(b), are Nv ∼ τ−0.65±0.01,
Zv ∼ τ−0.34±0.01, and Ev ∼ τ−0.03±0.01.

The conservation properties of the mGauss-CA number density are shown in Fig. 6. In Fig. 6(a)
Nv, Zv, and Ev are shown integrated over a comoving interval [μAtyp(τ ),Atyp(τ )], where

Atyp(τ ) ≡ 1

2

∫ Amax

Amin
ω2

v(A,t)A2n(A,t)dA∫ Amax

Amin
ω2

v(A,t)An(A,t)dA
(15)

is an intensity-weighted typical vortex area. As shown in Fig. 6(c), Atyp ∼ τ 0.329±0.005, where the
error is the asymptotic standard error of the least-squares fit. Identifying the total energy with the
vortex energy E ∼ Ev, we note that Atyp corresponds to the vortex area l2

ω ∼ E/Z defined by Eq.
(2.3) of [8]. The corresponding characteristic wave number kω ∼ √

Z/E has appeared previously in
[23], where its relationship to the minimum and maximum wave numbers in the system determines
the equilibrium regime of the flow.

Despite the lack of scale invariance in the raw number density, the subpopulation of vortices
contained in [μAtyp(τ ),Atyp(τ )] approximately follows the decay laws Nv ∼ τ−2/3, Zv ∼ τ−1/3,
and Ev ∼ τ 0 predicted by the scale-invariant theory of [7]; the measured decay laws are Nv ∼
τ−0.67±0.01, Zv ∼ τ−0.35±0.03, and Ev ∼ τ−0.07±0.05, as shown in magenta in Fig. 6(a). In contrast,
as shown in Fig. 6(b), the vortex enstrophy decay rate in the comoving interval [Atyp(τ ),Amax(τ )]
is Zv ∼ τ−0.47±0.01, which is approximately the decay rate of the total enstrophy, suggesting that
vortex interactions in this range of scales are predominantly responsible for the overall enstrophy
decay.
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V. CONCLUSION

The scaling of vortices in decaying two-dimensional turbulence is found to be sensitive to initial
conditions. Flows initialized with Gaussian energy spectra develop vortex intensity distributions
ω2

v(A,t) that are nonuniform in A and time evolving. Top-hat initial spectra, in contrast, yield vortex
intensities that depend more weakly on vortex area and time.

When ω2
v(A,t) varies significantly with A and t , scale invariance in the vortex area distribution

is lost, but is recovered when the number density is compensated by ω2
v(A,t), giving the self-

similar form n(A,t)/ω2
v(A,t) ∼ t−2/3A−1. This form ensures that the number of turnaround times

[ω2
v(A,t)]−1/2 taken to cross the average intervortex distance is independent of scale, which is

a basic requirement for self-similar vortex dynamics. In this case, two scaling ranges appear in
ω2

v(A,t) and n(A,t): In the small-scale range, which on average contains weaker vortices, ω2
v(A,t) is

depleted in time, while in the large-scale range, where vortices are stronger, ω2
v(A,t) is constant. This

reflects the tendency of larger, stronger vortices to survive mergers, while smaller, weaker vortices
are absorbed or strained out and rendered passive. Hence, vortex interactions tend to enhance an
initially nonuniform vorticity distribution. On the other hand, when the vortex intensity ω2

v(A,t)
does not vary appreciably with A or in time, the predictions of [7] hold in a scale-invariant range in
which n(A,t) ∼ t−2/3A−1. This solution, which is associated with a scale-invariant distribution of
vortex areas, thus appears as a special case for initial conditions having ω2

v(A,t) sufficiently uniform
in A and t .

Finally, we have extended the concept of conservation in comoving intervals introduced in [8] to
study the conservation properties of the scaling ranges. In simulations where ω2

v(A,t) is uniform in
A and constant in time, vortex energy Ev is conserved in a comoving interval [μA(t),A(t)], where
A(t) ∼ t1/3, as long as the end points fall within the range where n(A,t) ∼ A−1. Vortex number and
vortex enstrophy satisfy Nv ∼ t−2/3 and Zv ∼ t−1/3, respectively, consistent with n(A,t) ∼ t−2/3A−1.

TABLE II. Sensitivity of the compensated number density n(A,t)/ω2
v(A,t) ∼ t−α̃A−r̃ to vorticity threshold

ωthr, with e = 0.85 and ωext
thr = 2ωrms, respectively. The ranges in log10(A) used to determine r̃ and α̃ are given in

columns 3 and 5, respectively. The scaling exponent r̃ found by a least-squares fit is given in column 4 and the
best-collapse temporal scaling exponent α̃ is given in column 6. Errors are estimated as the standard deviation.

Simulation ωthr Fit range, r̃ r̃ Fit range, α̃ α̃

mGauss-CA 0.125ωrms [−4.80,−2.62] 1.02 ± 0.04 [−4.07,−2.62] 0.64 ± 0.07
mGauss-CA 0.25ωrms [−4.80,−2.62] 1.02 ± 0.04 [−4.07,−2.62] 0.66 ± 0.07
mGauss-CA ωrms [−5.10,−2.79] 1.00 ± 0.03 [−3.97,−2.89] 0.67 ± 0.07
mGauss-CA 2ωrms [−5.20,−2.81] 0.96 ± 0.03 [−4.16,−3.23] 0.64 ± 0.07

Gauss-PS 0.5ωrms [−4.26,−3.76] 0.97 ± 0.05 [−4.26,−3.76] 0.63 ± 0.07
Gauss-PS ωrms [−4.31,−3.90] 0.98 ± 0.03 [−4.37,−3.90] 0.65 ± 0.06
Gauss-PS 1.5ωrms [−4.76,−4.18] 0.98 ± 0.02 [−4.47,−4.18] 0.65 ± 0.07
Gauss-PS 2ωrms [−4.73,−4.11] 0.99 ± 0.02 [−4.40,−4.20] 0.66 ± 0.07

Tophat-CA 0.5ωrms [−3.29,−1.85] 1.01 ± 0.07 [−4.14,−1.85] 0.65 ± 0.03
Tophat-CA ωrms [−3.54,−2.11] 1.02 ± 0.05 [−4.39,−2.11] 0.67 ± 0.08
Tophat-CA 1.5ωrms [−3.59,−2.15] 1.03 ± 0.03 [−4.44,−2.15] 0.63 ± 0.08
Tophat-CA 2ωrms [−3.69,−2.25] 0.95 ± 0.05 [−4.54,−2.25] 0.65 ± 0.07

Tophat-PS 0.5ωrms [−4.51,−3.98] 0.94 ± 0.07 [−4.51,−3.98] 0.65 ± 0.06
Tophat-PS ωrms [−4.72,−4.02] 0.96 ± 0.07 [−4.72,−4.02] 0.60 ± 0.7
Tophat-PS 1.5ωrms [−4.80,−4.07] 1.01 ± 0.06 [−4.80,−4.07] 0.61 ± 0.07
Tophat-PS 2ωrms [−4.81,−4.11] 0.98 ± 0.03 [−4.81,−4.18] 0.64 ± 0.06
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TABLE III. Sensitivity of the raw number density n(A,t) ∼ t−αA−r to vorticity threshold ωthr in simulations
Tophat-CA and Tophat-PS, with e = 0.85 and ωext

thr = 2ωrms. The ranges in log10(A) used to determine r and
α are given in columns 3 and 5, respectively. The scaling exponent r found by a least-squares fit is given in
column 4 and the best-collapse temporal scaling exponent α is given in column 6. Errors are estimated as the
standard deviation.

Run ωthr Fit range, r r Fit range, α α

Tophat-CA 0.5ωrms [−3.29,−2.14] 1.03 ± 0.07 [−4.14,−1.85] 0.64 ± 0.03
Tophat-CA ωrms [−3.54,−2.39] 1.03 ± 0.05 [−4.39,−2.11] 0.66 ± 0.03
Tophat-CA 1.5ωrms [−3.59,−2.44] 1.03 ± 0.05 [−4.44,−2.15] 0.65 ± 0.03
Tophat-CA 2ωrms [−3.69,−2.54] 1.06 ± 0.05 [−4.54,−2.25] 0.66 ± 0.03

Tophat-PS 0.5ωrms [−4.51,−3.98] 1.03 ± 0.03 [−4.51,−3.98] 0.59 ± 0.08
Tophat-PS ωrms [−4.72,−4.02] 1.02 ± 0.02 [−4.72,−4.02] 0.64 ± 0.06
Tophat-PS 1.5ωrms [−4.80,−4.07] 0.98 ± 0.02 [−4.80,−4.07] 0.67 ± 0.07
Tophat-PS 2ωrms [−4.81,−4.18] 0.98 ± 0.01 [−4.81,−4.18] 0.71 ± 0.08

When ω2
v(A,t) varies significantly with A and t these decay rates still hold, but for a specific comoving

interval [μAtyp(t),Atyp(t)], where Atyp ∼ t1/3 is a typical intensity-weighted vortex area.
In conclusion, our results demonstrate the existence of an extended form of scale invariance in

the vortices of decaying two-dimensional turbulence. This result is yet more evidence that coherent
vortex populations in two-dimensional turbulence exhibit nontrivial scaling properties, which extend
beyond the classical similarity theories of Kraichnan and Batchelor. The discovery of these scaling
properties represents a step toward a more complete description of two-dimensional turbulence.

APPENDIX: VORTICITY THRESHOLD SENSITIVITY

To establish the robustness of the number density to the vorticity threshold ωthr used to identify
vortices, we computed scaling exponents for a range of thresholds in each simulation. Beginning
with the extended scaling form (11), Table II shows the sensitivity of the scaling exponents α̃ and r̃

of the compensated number density n(A,t)/ω2
v(A,t) ∼ t−α̃A−r̃ to ωthr. The name of the simulation

is given in column 1, the value of ωthr in column 2, the fit range in log10(A) in column 3, and value of
r̃ obtained by a least-squares best fit in column 4. The error estimated in r̃ is the standard deviation
about the time-mean value of the exponent. Column 3 shows that r̃ = 1 and α̃ = 2/3 to within the
error bars for almost all values of ωthr considered, demonstrating the insensitivity of the extended
scaling range to the vorticity threshold, as long as it is not taken so high that large numbers of
vortices are excluded from the statistics. As a rule, the range over which the scaling holds moves to
smaller scales as ωthr increases because the vortices become smaller.

Turning now to the uncompensated density equation (10), the sensitivity of the scaling exponents
α and r to the vorticity threshold in simulations Tophat-CA and Tophat-PS is explored in Table III.
Again, for almost all values of ωthr the exponents are α = 2/3 and r = 1 to within the error bars,
demonstrating insensitivity of the number density scaling exponents to the vorticity threshold used
to identify vortices.
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