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Speed of a von Kármán point vortex street in a weakly compressible fluid
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Analytical expressions are obtained for the change in speed of translation of the von
Kármán point vortex streets of given aspect ratios due to the effects of weak compressibility
in subsonic flow of an isentropic fluid. We also clarify the nature of the force-free condition
on a weakly compressible point vortex in equilibrium. For staggered streets, it is found that
the speed of a compressible point vortex street can both increase and decrease relative to its
incompressible counterpart of the same aspect ratio. Compressibility increases the speeds
of streets with aspect ratios less than the critical value of 0.38187, at which no change in
speed occurs to first order in the (squared) Mach number. In particular, the compressible
counterpart to the neutrally stable incompressible point vortex street of aspect ratio 0.28056
is found to propagate with increased speed. Streets with aspect ratios larger than 0.38187
slow down under the effects of compressibility, with the slowdown becoming maximal
at a street aspect ratio of 0.52630. On the other hand, the speed of unstaggered streets
always increases, with the first-order correction in speed relative to its incompressible
value increasing maximally at aspect ratios around κ = 0.36216.
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I. INTRODUCTION

The study of incompressible vortex dynamics is a vital subfield of fluid mechanics, especially
important for the study of wakes [1], and it plays a crucial role in aerodynamics, geophysics,
astrophysics, turbulence theory [2], and biofluids [3–5]. A surprising circumstance, remarked upon
by previous authors [6], is that the study of compressible vortex dynamics has received markedly
less attention even though gaining an understanding of compressible vortex flows is of fundamental
interest for compressible wakes [7,8] and the theory of vortex sound and aeroacoustics [9–11].
There have been a few fundamental studies of compressible vortices [12–15], but many basic
theoretical questions remain to be answered. There is, by now, evidence in the literature [16–20]
of the existence of continuous families of shock-free transonic compressible flows with embedded
vortices. The present paper aims to add to this small list of existing results.

For inviscid flows, a paradigmatic model of vortex wakes is the von Kármán vortex street in
which the centers of vorticity shed in the wake of a bluff body are modeled by point vortices in
an incompressible fluid [1,3,4,21,22]. This model and its various inviscid desingularizations have
been well studied in the incompressible case, in particular with respect to their stability properties
[23–26]. The compressible counterpart of the von Kármán vortex street, in which the same steadily
translating vortex structures comprising two parallel vortex rows now exist in a compressible fluid,
appears to have received little previous attention. A likely reason for this is the well-known theoretical
obstruction to defining a point vortex singularity in a compressible fluid [27–29]: The fluid pressure
becomes infinite as the point vortex location is approached, leading to physically unrealistic increases
in density in a compressible fluid, where (for example, for an isentropic fluid) pressure and density
are directly related. Yet this obstruction can be remedied by introducing a cutoff in a small region
near the singularity in which a different model of the vortex core is introduced; previous authors
have considered a thin core containing stagnant constant-pressure fluid [16], a “hollow vortex” core
[30], or a light cylinder of small radius drifting along with the fluid [17,18].
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In contrast to compressible vortex streets, the simpler situation of a cotraveling compressible
vortex pair has already been investigated. Moore and Pullin [16] carried out a numerical study
of it and also included a perturbation analysis of small-cored vortices for small Mach numbers
(a perturbation expansion in small Mach numbers is called a Rayleigh-Jansen analysis [27–29]).
Leppington [18] returned to the Rayleigh-Jansen analysis of small-cored vortices of Moore and Pullin
[16] to point out an oversight and concluded that there is no change in the speed of a compressible
vortex pair to first order in the (squared) Mach number. Leppington describes an approach via
matched asymptotics to separate an outer far-field region where a wavelike flow might be expected
to dominate, an intermediate region (away from the vortex) where a Rayleigh-Jansen expansion of
the incompressible flow is a good description, and an inner core region where an equation first written
down by Taylor [31] pertains. Leppington’s focus is on finding the Rayleigh-Jansen expansion in
the intermediate region, although he also discusses matching to both the far-field flow and the inner
core region to complete a global asymptotic description of the flow.

A significant fact evident from Leppington’s analysis is that a determination of the change in the
speed of travel of the point vortex pair can be made purely from an analysis of the intermediate
region [18]. All that is required is a Prandtl-Glauert-type assumption that compressibility effects
are weak in the far field, an assumption on the general behavior of the near-field velocity, and a
physical requirement that the compressible vortex remains free of net force. With the expectation
that the same features will hold for a weakly compressible steadily translating vortex street, this
paper addresses the basic theoretical question of how weak compressibility affects the speed of von
Kármán point vortex streets of given aspect ratios. We show that, for staggered streets, if the speed
U of the compressible street is written for small Mach number M = U0/cs , where cs is the speed of
sound in quiescent fluid, as the expansion

U = U0 + M2U1 + o(M2), U0 = �

2L
tanh(πκ), (1)

then

U1

U0
= 1

2
[cosech2(πκ) − 2πκcosech(2πκ)], (2)

where κ is the aspect ratio of the staggered street (defined later). U0 is the speed of propagation
of the incompressible street. The analogous formula for unstaggered streets is also determined, and
recorded in Eq. (61) of Sec. V.

The results (2) and (61) are direct generalizations of Leppington’s analysis for the vortex pair
[18]. Indeed, to elucidate our approach, in Sec. III we first retrieve Leppington’s analysis for the
compressible point vortex pair and, in Sec. IV, extend this analysis to the staggered von Kármán
point vortex street. The analogous results for unstaggered streets are given in Sec. V. We do not
consider here the matter of matching to any far field, or to the inner core region, since the analysis
is expected to closely follow that sketched out by Leppington [18] for the vortex pair.

While precise details of the core structure do not affect the speed of the compressible vortex
pair, that speed is nevertheless determined by a condition that the vortices are force-free. For
two-dimensional point vortices in incompressible fluids, this force-free condition is known to be
equivalent to setting the regular part of the fluid velocity in the vicinity of the vortex (sometimes
referred to as the “non-self-induced velocity”) to zero in the rest frame of the vortex. In his
monograph, Saffman [3] remarks on the fact that this condition is often attributed to being a direct
consequence of the Helmholtz laws of vortex motion—that vortex lines move with the fluid—but he
points out that a more careful derivation is warranted owing to the singular nature of the point vortex
flow. Llewellyn Smith [32] has discussed the matter of determining singularity motion in potential
flow in some detail.

Leppington [18] uses an analogous non-self-induced velocity condition in his compressible flow
analysis, quoting the fact that vortex lines move with the fluid, and he simply sets a uniform
irrotational flow contribution in a local expansion of the first-order velocity potential to zero.
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No justification is offered as to why this remains the relevant condition when the fluid becomes
compressible, a situation rendered even more unsatisfactory by the presence of several singular
local contributions to the first-order correction to the velocity field that are directly associated with
the fluid compressibility and which are ignored without explanation. A closely related matter had
been considered earlier by Barsony-Nagy [33], who was interested in the extension of the Blasius
force theorem [34] for weakly compressible flows and who derived integral expressions for the
first-order correction (in Mach number) to the force on a solid body in steady subsonic flows.
For small-cored vortices (where one can imagine “cutting off” the near-field singularity having
close-to-circular streamlines by replacing the core with a density-matched circular cylinder as
suggested by Leppington [18]), it turns out that the condition derived by Barsony-Nagy [33] gives the
same result as the condition imposed by Leppington [18]. Leppington [18] does not mention the work
of Barsony-Nagy [33] but he does refer to another study by Barsony-Nagy et al. [17] on the
compressible Föppl problem of a point vortex wake behind a cylinder in uniform flow, where the
authors employed the force-free condition derived by Barsony-Nagy in Ref. [33].

Even so, the connection between the force-free conditions imposed by Leppington [18] and by
Barsony-Nagy et al. [17] is far from evident and it is the view of the present authors that the origin of
this condition should not be glossed over, especially since it is this force-free condition that replaces
the need for any analysis of the inner core region. Moreover, Leppington [18] assigns the source of
the error in the earlier Rayleigh-Jansen analysis of Moore and Pullin [16] to their failure to impose
any such force-free condition. Given this checkered history and the delicate nature of the matter,
we include in an appendix our own derivation of this force-free condition for weakly compressible
point vortices in equilibrium.

II. THE IMAI-LAMLA METHOD

To perform a Rayleigh-Jansen perturbation analysis for small Mach numbers about a given
incompressible flow equilibrium, two possible approaches are available [27–29]. One method utilizes
a hodograph formulation and the Chaplygin equation for the velocity potential [18,19]; an alternative
method relies on a complex variable formulation of the equations of motion. The latter method, which
will be employed here, is often called the Imai-Lamla method [28,29,35–37] and appears to be the
lesser known approach.

Let the two-dimensional flow take place in an (x,y) plane and let the fluid velocity field be (u,v).
If the flow is incompressible, inviscid, and irrotational apart from the presence of isolated point
vortices, a stream function ψ(x,y) exists such that

u = ∂ψ

∂y
and v = −∂ψ

∂x
(3)

as well as a velocity potential function φ(x,y) satisfying

u = ∂φ

∂x
and v = ∂φ

∂y
. (4)

The equalities between partial derivatives implied by Eqs. (3) and (4) constitute the Cauchy-Riemann
equations [34] for the harmonic functions φ(x,y) and ψ(x,y), and one proceeds by defining the
complex potential

f (z) = φ + iψ, (5)

which is an analytic function of the complex variable z = x + iy.
One may continue to use complex variables when the flow is compressible, with the important

difference that the complex potential is no longer an analytic function [28,37]. We consider the
isentropic flow of an ideal gas [27], with density ν(x,y) and pressure p(x,y), for which the pressure-
density relationship is

p = kνγ , (6)
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where k is a constant and γ > 1 is the ratio of specific heats of the fluid. A generalized form of
Kelvin’s circulation theorem pertains to such flows [3], from which it can be argued that an initially
irrotational flow remains so. If the flow is irrotational, as we assume here away from isolated point
vortices, a velocity potential φ(x,y) exists and is again related to the velocity field by (4). On the
other hand, for a steady two-dimensional flow, a stream function ψ(x,y) also exists but it is now
related to the velocity field through the density field ν(x,y):

u = ν0

ν

∂ψ

∂y
and v = −ν0

ν

∂ψ

∂x
, (7)

where ν0 is some constant reference density. Clearly, (4) and (7) together no longer constitute the
Cauchy-Riemann equations for harmonic functions φ and ψ . Nevertheless, we continue to define a
complex potential [29]

f (z,z̄) = φ + iψ, (8)

which is now a function of both z and its conjugate variable z̄. On noting that

∂

∂z
= 1

2

[
∂

∂x
− i

∂

∂y

]
,

∂

∂z
= 1

2

[
∂

∂x
+ i

∂

∂y

]
, (9)

it is readily shown on combining (4) and (7) that

2
∂f

∂z
=

(
1 − ν

ν0

)
(u + iv), 2

∂f

∂z
=

(
1 + ν

ν0

)
(u + iv). (10)

On equating expressions for u + iv derived from the two equations in (10), we find

∂f

∂z̄
= B(ν)

∂f̄

∂z̄
, where B(ν) = 1 − ν/ν0

1 + ν/ν0
. (11)

The complex velocity field ξ (z,z̄) ≡ u − iv can be written either in terms of the complex potential
as

ξ (z,z̄) = u − iv = ∂φ

∂x
− i

∂φ

∂y
= ∂

∂z
(f + f ) (12)

or, on use of (11), in terms of the complex potential and density as

ξ (z,z̄) = ∂f

∂z
[1 + B(ν)]. (13)

The dynamics is governed by the Bernoulli equation for steady irrotational compressible flows
which states that

|ξ |2
2

+
∫

dp

ν
= constant. (14)

On use of (6), we can write this as

|ξ |2
2

+ kγ νγ−1

γ − 1
= constant = kγ ν

γ−1
s

γ − 1
, (15)

where νs is the density at a stagnation point where |ξ | = 0. The speed of sound c in the fluid is
defined via

c2 = dp

dν
= γp

ν
= γ kνγ−1. (16)

The speed of sound cs at a stagnation point in the fluid is

c2
s = dp

dν

∣∣∣∣
νs

= γ kνγ−1
s , (17)
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where νs denotes the density of quiescent fluid. We can use this to define the Mach number

M = V0

cs

, (18)

where V0 is some typical velocity associated with the flow. Different choices of V0 will be made for
the various flow scenarios considered later. It follows from the Bernoulli equation (15) that

|ξ |2
2

+ c2
s

γ − 1

(
ν

νs

)γ−1

= c2
s

γ − 1
, (19)

which can be rearranged to give (
ν

νs

)γ−1

= 1 − γ − 1

2
|ξ |2 M2

V 2
0

, (20)

where we have made use of (18).
In this study, we restrict attention to weakly compressible flows for which M � 1 so that the

complex potential and the velocity field can be written as a Rayleigh-Jansen expansion [28] whose
leading-order terms are given by the incompressible solution. Following Leppington [18], we assume
that a subsonic global flow can be found. The Rayleigh-Jansen analysis proceeds by developing
the complex potential and velocity as the regular expansions

f (z,z̄) = f0(z) + M2f1(z,z̄) + o(M2), (21)

ξ (z,z̄) = ξ0(z) + M2ξ1(z,z̄) + o(M2), (22)

where f0(z) and ξ0(z) = df0/dz are determined by the incompressible solution. f1(z,z̄) and ξ1(z,z̄)
are the first-order corrections due to compressibility and are to be computed. The so-called Imai-
Lamla formula provides [28,29,35–37] an expression for the complex potential f1(z,z̄) up to an
unknown analytic function G(z), viz.,

f1(z,z̄) = 1

4V 2
0

ξ0(z)I (z) + G(z), (23)

where I (z) is what we will refer to as the Imai-Lamla integral:

I (z) =
∫ z

ξ0(z)2dz. (24)

Formulas (23) and (24) are derived as follows. If M � 1, we can develop the following expansion
of (20):

ν

νs

= 1 − M2 |ξ |2
2V 2

0

+ o(M2). (25)

This is essentially an expansion of the Bernoulli equation. Without loss of generality, we can choose
the reference density ν0 = νs and it then follows from (11) and (25) that

B(ν) = M2 |ξ |2
4V 2

0

+ o(M2),
∂f

∂z
= M2 |ξ |2

4V 2
0

∂f

∂z
+ o(M2). (26)

On substitution of the Rayleigh-Jansen expansions (21) and (22) into (26), we find

∂f0

∂z
+ M2 ∂f1

∂z
= M2 |ξ0|2

4V 2
0

∂f0

∂z
+ o(M2). (27)
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The leading-order term in this expansion merely confirms that the leading-order flow is irrotational.
On equating the coefficients of M2 in (27), and on integration with respect to z, we arrive at the
Imai-Lamla formula (23).

Once the function G(z) in (23) has been identified, an expression for the velocity ξ1(z,z̄) may then
be obtained by using the Rayleigh-Jansen expansion (21) and the Imai-Lamla formula (23) in (12):

ξ1(z,z̄) = 1

4V 2
0

[(ξ0(z))2ξ0(z) + ξ ′
0 (z)I (z)] + G ′(z). (28)

The prime notation denotes a derivative with respect to z. It is clear that it is the matter of finding
the relevant function G(z) pertinent to a particular flow scenario that becomes the challenge within
this Imai-Lamla approach.

III. THE COMPRESSIBLE VORTEX PAIR

We will apply the method just described to find the first-order correction to the speed of translation
of a weakly compressible cotraveling point vortex pair. First, consider a pair of incompressible point
vortices, of circulations ±�, located at positions ±ia0 in a frame of reference cotravelling with the
speed U0 of steady translation of the vortex pair where

U0 = �

4πa0
. (29)

Deriving this expression for U0, and the associated incompressible complex potential

f0(z) = −U0z − i�

2π
log(z − ia0) + i�

2π
log(z + ia0) (30)

is a standard exercise in inviscid fluid mechanics [34]. The corresponding complex velocity
ξ0 = u − iv = df0/dz is given by

ξ0(z) = −U0 − i�

2π

[
1

z − ia0
− 1

z + ia0

]
. (31)

We now seek a Rayleigh-Jansen expansion about this incompressible solution taking the typical
velocity scale V0 in the definition (18) of the Mach number to be U0. The perturbed speed of the
vortex pair is given by (1) where the objective is to determine U1. From the Imai-Lamla formulation,
the first-order correction to the complex potential is

f1(z,z) = ξ0(z)

4U 2
0

I (z) + G(z), (32)

where I (z) is defined in (24) and the analytic function G(z) has to be found. On use of (31), and
after performing the integration, we find

I (z) = �2

4π2

[
1

z − ia0
+ 1

z + ia0
+ z

4a2
0

]
. (33)

We choose the following form for G(z):

G(z) = −ξ0(z)I (z)

4U 2
0

+ G̃(z), (34)

so that

f1(z,z) = ξ0(z)

4U 2
0

[I (z) − I (z)] + G̃(z). (35)
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With this choice, it is easy to verify from (28) that any change in the far-field velocity due to the
effects of compressibility will derive from the contribution from G̃(z). We therefore write

G̃(z) = −U1z + μ

z − ia0
+ μ

z + ia0
+ λ

(z − ia0)2
− λ

(z + ia0)2
, (36)

where μ,λ ∈ C are constants to be determined and U1 ∈ R is the required correction to the speed
of the vortex pair. This ansatz has been chosen to ensure that the complex potential is odd under the
transformation z �→ −z. Its chosen isolated poles, which appear mysterious at this stage, have been
chosen on the basis of the considerations to follow.

We now let

ε = z − ia0 (37)

and perform a local analysis near z = ia0 so we assume |ε| � 1. After some algebra, we find

ξ0(z) = − i�

2π

[
1

ε
− ε

4a2
0

− iε2

8a3
0

+ o(ε2)

]
, I (z) = �2

4π2

[
1

ε
− i

4a0
+ ε

2a2
0

+ iε2

8a3
0

+ o(ε2)

]
,

G̃(z) = λ

ε2
+ μ

ε
− iU1a0 − iμ

2a0
+ λ

4a2
0

+ ε

[
iλ

4a3
0

+ μ

4a2
0

− U1

]
+ o(ε). (38)

On substitution into (35), we arrive at

f1(z,z) = − i�a2
0

2π

[
1

|ε|2 − 1

ε2
+ i

2a0ε
− 1

4a2
0

+ ε

ε

1

2a2
0

− ε

ε

1

4a2
0

− iε

8a3
0

− iε2

8εa3
0

− iε2

8εa3
0

]

+ λ

ε2
+ μ

ε
− iU1a0 − iμ

2a0
+ λ

4a2
0

+ ε

[
iλ

4a3
0

+ μ

4a2
0

− U1

]
+ o(ε). (39)

We now impose the following three conditions to determine the modified flow correct to first order
in M2: (a) We ensure, for purposes of matching to an inner region associated with a compressible
vortex (as opposed to any higher order singularity type) [18], that the velocity potential φ1 = Re[f1]
grows no more quickly that O(1/ε) as ε → 0; (b) furthermore, if we insist that the centroid of the
compressible vortex coincides with that of the leading-order incompressible vortex, then even any
contribution to φ1 that is of O(1/ε) must vanish (although other choices can be made here if the
compressible vortex position is also perturbed as was necessary, for example, in the compressible
Foppl problem considered by Barsony-Nagy et al. [17]); and (c) that the compressible vortex is
force-free correct to first order in M2. While the first and third conditions are necessary, the second
condition results from our particular choice to keep the centroid of the perturbed vortex fixed and
then to determine the resulting change in the speed of propagation (note that Leppington, in his
analysis, chooses to retain the freedom to alter the centroid location [18]). It should be noted that
the term proportional to 1/|ε|2 in f1 is purely imaginary, and therefore does not contribute to the
velocity potential φ.

For a discussion of the matching criterion, the reader is referred to Leppington’s paper [18] where
he discusses this in detail and gives the equation first derived by Taylor [31] describing the velocity
potential in the inner core region (see also Barsony-Nagy et al. [17]). We omit further discussion of
the matching here since, as we have already emphasized, aside from providing the aforementioned
growth criterion on the outer solution as the inner region is approached, no further details of the
inner core region are needed to determine the speed modification of the vortex pair at first order
in M2.

On the other hand, the matter of how to impose the force-free condition is important. In the
appendix, we establish that the first-order correction to the force on the vortex, where we expand the
total force X − iY on the vortex in an expansion of the form

X − iY = (X0 − iY0) + M2(X1 − iY1) + o(M2), (40)
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FIG. 1. A staggered periodic von Kármán point vortex street of aspect ratio κ = d/L in a frame cotraveling
with speed U . The challenge is to find the first-order change in the speed U1 in (1) due to weak compressibility.

is given by

X1 − iY1 = iνs

4U 2
0

∮
C
d

{
[ξ0(z)]2

2
I (z)

}
+ iνs

∮
C
ξ0(z)G ′(z) dz. (41)

The Appendix demonstrates how setting this first-order force correction to zero is equivalent to
setting to zero the term proportional to ε in the local expansion (39) of f1(z,z). Leppington [18]
did precisely this in his Rayleigh-Jansen analysis of the point vortex pair but, in our view, without
adequate explanation as to why it is equivalent to eliminating the first-order force correction on the
vortex, a matter that becomes quite delicate for a compressible fluid, as evident from the treatment
given in the Appendix.

To eliminate the terms in (39) proportional to 1/ε2 and 1/ε, we must choose

λ = − i�a2
0

2π
, μ = −�a0

4π
; (42)

note that this choice of λ cancels out all the second-order pole contribution to G(z) (i.e., G(z) has a
removable second-order pole). Elimination of the coefficient of ε then leads to

U1 = μ

4a2
0

+ iλ

4a3
0

− �

16πa0
= 0 (43)

if the vortex positions are unchanged. In this way, we retrieve Leppington’s result that, to first order
in M2, there is no change in the speed of a point vortex pair due to compressibility effects.

IV. COMPRESSIBLE STAGGERED POINT VORTEX STREET

We now extend the foregoing analysis to the case of the staggered von Kármán point vortex street,
as shown in Fig. 1. This analysis is new. The periodicity of the flow in this case must be properly
accounted for, but the main steps in the construction are identical to that given in the previous section.

We focus on a period window, of length L, comprising a vortex of circulation � at η and a vortex
of circulation −� at −η where

η = L

4
+ id

2
. (44)
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In a frame of reference cotranslating with the street at velocity U0 where

U0 = i�

2L
cot

(
2πη

L

)
= �

2L
tanhπκ, κ = d

L
, (45)

and where κ is the street aspect ratio, then the complex potential is

f0(z) = −U0z − i�

2π

{
log sin

[
π (z − η)

L

]
− log sin

[
π (z + η)

L

]}
(46)

with corresponding complex velocity ξ0 = u − iv given by

ξ0(z) = −U0 − i�

2L

{
cot

[
π (z − η)

L

]
− cot

[
π (z + η)

L

]}
. (47)

As in Sec. III we consider a Rayleigh-Jansen expansion about this incompressible solution taking
the typical velocity scale V0 in the definition (18) of the Mach number to be U0. It must be noted
that, with this choice, we assume that the aspect ratio of the street κ remains bounded away from
zero since, in that case, U0 → 0 and, hence, M → 0, and a different choice of Mach number would
be appropriate in this case. This can easily be done a posteriori if required by a simple rescaling.

The perturbed speed of the vortex pair is given by (1) where U1 must be determined. From the
Imai-Lamla formulation, the first-order correction to the complex potential is

f1(z,z) = ξ0(z)

4U 2
0

I (z) + G(z), (48)

where I (z) is defined in (24) and the function G(z) has to be found. On use of (47), and after
performing the integration, we find

I (z) = U 2
0 z + �2

4πL

{
cot

[
π (z − η)

L

]
+ cot

[
π (z + η)

L

]}
. (49)

The function G(z) is not required to be L periodic, but it must be chosen to ensure that the associated
velocity field is L periodic. Indeed, for this purpose we must choose

G(z) = −ξ0(z)

4U 2
0

I (z) + G̃(z), (50)

so that

f1(z,z) = ξ0(ζ )

4U 2
0

[I (z) − I (z)] + G̃(z), (51)

since it can now be verified that the first term is invariant as z �→ z + L and where an additional
L-periodic function G̃(z) remains to be found. While it must be periodic, the latter is not necessarily
analytic in the fluid. Indeed, motivated by the analysis in Sec. III, we choose

G̃(z) = −U1z + μ cot

[
π (z − η)

L

]
+ μ cot

[
π (z + η)

L

]

+ λcosec2

[
π (z − η)

L

]
− λcosec2

[
π (z + η)

L

]
, (52)

where μ,λ ∈ C are constants and where the form of this ansatz ensures that the potential is odd
under the transformation z �→ −z (recall that the L-periodic cotangent function cot(πz/L) has a
simple pole at z = 0 while the L-periodic function cosec2(πz/L) has a second-order pole there).
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Then,

f1(z,z) = ξ0(z)

4U 2
0

[I (z) − I (z)] + μ cot

[
π (z − η)

L

]
+ μ cot

[
π (z + η)

L

]

+ λcosec2

[
π (z − η)

L

]
− λcosec2

[
π (z + η)

L

]
− U1z. (53)

To perform a local analysis near η, we now introduce the notation

ε = π

L
(z − η), α = cot

(
2πη

L

)
. (54)

We will need the expansions

cot

[
π (z − η)

L

]
= 1

ε
− ε

3
+ o(ε), cot

[
π (z + η)

L

]
= α − ε(1 + α2) + ε2α(1 + α2) + o(ε2),

cosec2

[
π (z − η)

L

]
= 1

ε2
+ 1

3
+ o(1), cosec2

[
π (z + η)

L

]
= (1 + α2) − 2εα(1 + α2) + o(ε).

(55)

After some manipulations, it can be shown that

I (z) = −U 2
0 L

πα2

[
1

ε
+

(
α − πηα2

L

)
− 2ε

(
α2 + 2

3

)
+ ε2α(1 + α2) + o(ε2)

]
,

ξ0(z) = − i�

2L

[
1

ε
+ ε

(
2

3
+ α2

)
− ε2α(1 + α2) + o(ε2)

]
. (56)

It follows that

f1(z,z) = i�

8πα2

1

|ε|2 + 1

ε2

[
λ − i�

8πα2

]
+ 1

ε

{
μ − i�

8πα2

[
2α − πα2(η − η)

L

]}

+ i�

8πα2

(
2

3
+ α2

)
−U1η + μα−λ(1 + α2) + i�

8πα2

[
−2

(
2

3
+ α2

)
ε

ε
+

(
2

3
+ α2

)
ε

ε

]

+ ε

{
−U1L

π
− μ

(
4

3
+ α2

)
+ 2αλ(1 + α2) − i�

8πα2

(
2

3
+ α2

)[
2α − πα2(η − η)

L

]}

− i�(1 + α2)

8πα

(
ε2

ε
+ ε2

ε

)
+ o(ε). (57)

The purely imaginary term proportional to 1/|ε|2 does not affect the velocity potential, but to
eliminate the second-order pole of f1(z,z) at z = η we let

λ = i�

8πα2
. (58)

This cancels off the 1/ε2 term (notice, again, that this choice makes the second-order pole of G(z)
removable). For a compressible vortex street with the same centroid location at η as the unperturbed
incompressible case, we must also remove the first-order pole in f1 at η, leading to

μ = i�

8πα2

[
2α − πα2(η − η)

L

]
, (59)

which kills off the 1/ε term. Once again, from (47) and (49), we see that the quantity ξ 2
0 (z)I (z) is

single-valued around each vortex so, as shown in the appendix, to enforce the force-free condition
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FIG. 2. The relative first-order correction U1/U0 in the speed of a weakly compressible staggered von
Kármán point vortex street as a function of its aspect ratio. The graph shows that U1/U0 vanishes at κ = 0.38187
and exhibits a local minimum at κ = 0.52630.

we eliminate the term in the expression in (57) for f1(z,z) that is proportional to ε. This leads, after
some algebra, to

U1 = − i�

4L

[
1

α
+ α − π

L
(1 + α2)(η − η)

]
. (60)

The relative change in speed is then found, after further algebra and use of (45), to be given by
formula (2).

Figure 2 shows a graph of U1/U0 as given by (2) as a function of street aspect ratio κ . Several
features are of interest. First, as κ → 0, we notice that U1/U0 → ∞, a singularity that does not
concern us because we recognized earlier that κ must remain bounded away from zero (the situation
of an alternating vortex row) since that case corresponds to our expansion parameter M → 0.
For the physically interesting case of κ = 0.28056 we find U1/U0 = 0.18835, indicating that the
speed of such streets increases as compressibility comes into play. At the critical aspect ratio of
κ = 0.38187, the first-order flow correction vanishes, meaning that compressibility does not affect
the speed of the street at first order in M2, a feature that Leppington [18] found to be true of a weakly
compressible cotraveling vortex pair as confirmed in Sec. III. On the other hand, for larger aspect
ratios κ > 0.38187, we find that U1/U0 is negative, so compressibility slows down large aspect ratio
vortex streets, with a local minimum of U1/U0 = −0.04356 reached at κ = 0.52630. Finally, as the
aspect ratio gets large, so that the effect of the stagger between the two vortex rows decreases, we
find that U1/U0 → 0.

V. COMPRESSIBLE UNSTAGGERED POINT VORTEX STREET

The analysis of the previous section is readily extended to unstaggered streets, having the geometry
depicted in Fig. 3, with the result

U1

U0
= 1

2
[2πκcosech(2πκ) − sech2(πκ)], U0 = �

2L
coth(πκ), (61)

where κ = d/L is the aspect ratio of the unstaggered street. As κ → 0, the effect of periodicity
should become negligible and the result should tend to the value calculated earlier for an isolated
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FIG. 3. A unstaggered periodic von Kármán point vortex street of aspect ratio κ = d/L in a frame
cotraveling with speed U .

point vortex pair in Sec. III. Indeed, on taking a limit of (61) as κ → 0 it is found that U1/U0 → 0,
and this provides a corroborative check on the analysis. Figure 4 shows a graph of (61) as a function
of aspect ratio κ . It is always positive, so weakly compressible unstaggered streets always speed up
relative to their incompressible counterparts. Moreover, a local maximum increase in this relative
first-order correction to the speed is found at κ = 0.36216.

It is interesting that the aspect ratio κ = 0.36216 at which the speed of the unstaggered street
is most affected by weak compressibility is close to the value κ = 0.38187 at which the speed of
the staggered street is unaffected. Although their studies had nothing to do with compressibility and
pertain to finite-area vortices, it is intriguing to note that both Saffman and Schatzmann [38] (streets

0 0.5 1 1.5 2
0
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0.02

0.03

0.04

0.05

0.06

0.07

κ

U
1/
U
0

FIG. 4. The relative first-order correction U1/U0 in the speed of a weakly compressible unstaggered von
Kármán point vortex street as a function of its aspect ratio. The graph shows a local maximum of U1/U0 =
0.06731 at κ = 0.36216.

114701-12



SPEED OF A VON KÁRMÁN POINT VORTEX STREET IN . . .

of vortex patches) and Crowdy and Green [39] (streets of hollow vortices) also find that aspect ratios
around 0.36 have special significance for the class of incompressible finite-area vortex streets found
there.

VI. DISCUSSION

This paper has contributed to the small but growing body of theoretical work on compressible
vortex dynamics and, in particular, to the study of smooth transonic flows with embedded vortices.

An explicit formula (2) has been derived that determines how weak compressibility affects the
speed of the incompressible staggered point vortex streets introduced as a model of vortex wakes
by von Kármán [21,22]. The sign change in the first order relative change in the speed of the street
is of particular interest. This means that whether compressibility speeds up or slows down, a given
incompressible staggered vortex street is a function of its aspect ratio and it is found that both
scenarios are possible. A critical aspect ratio of 0.38187 has been identified at which transition
between these two cases occurs. Small aspect ratio compressible streets travel faster than their
incompressible counterparts.

Symmetric or unstaggered streets, on the other hand, exhibit no such change in sign in the
first-order relative speed correction; they always speed up due to weak compressibility. The effect
is maximal for aspect ratios around κ = 0.36216. The explicit formula (61) gives this relative speed
correction.

As discussed by Leppington [18], if wavelike problems are of interest, the analysis of the
intermediate region presented here can be fed into a full calculation of the global flow by matching
of this Rayleigh-Jansen solution to a far-field solution at large distances—where the wavelike nature
of the compressible flow must be accounted for—and an inner core region near the vortex. This
basic theoretical study may also help in understanding compressible wake structures behind bluff
bodies where it has recently been indicated that planar models can play a role [7]. A consequence
of our analysis is that the aspect ratio 0.28056, which is the isolated value for neutral stability
in the incompressible case, is well below the critical value of 0.38187, meaning that making the
fluid weakly compressible will speed up a street of small vortices with aspect ratio close to this
physically important value. This result is not without interest since it is not clear how one might have
predicted this a priori based on current knowledge: While the geometry is clearly very different, the
propagation speed of a weakly compressible two-dimensional vortex pair is known to be unchanged
to first order in (squared) Mach number [18], while a small-cored axisymmetric vortex ring has been
shown by Moore [15] to be slowed down by weak compressibility (the latter being true for Mach
numbers that are not necessarily small). Based on the evidence of this paper, we infer that, even for
small Mach numbers, the effect of compressibility on global properties of a given vortex equilibrium
is a delicate function of its geometry and there appears to be no simple “rule of thumb” that can be
generally invoked to make deductions.

The methodology developed here can be applied to other point vortex equilibria to assess the
effects of weak compressibility. An important contribution of this paper is to clarify the nature of
the force-free condition that must be imposed on a free compressible point vortex in equilibrium.

Leppington’s treatment of the compressible point vortex pair [18] was prompted by an earlier
numerical study by Moore and Pullin [16], who looked at compressibility effects, at general Mach
numbers, on the analytical solutions for a finite-area incompressible hollow vortex pair found
by Pocklington [30] (see also recent work by Crowdy et al. [40], where Pocklington’s solutions
have been reappraised and their linear stability investigated). Crowdy and Green [39] have found
that analytical solutions also exist for vortex streets, both staggered and unstaggered, made up of
finite-area hollow vortices that constitute a desingularization of von Kármán’s vortex streets in
exactly the same way that Pocklington’s solution provide a desingularization of the point vortex pair.
It is clearly of interest to perform a Rayleigh-Jansen analysis for small Mach numbers about the
hollow vortex street solutions of Crowdy and Green [39] to gain insights into how the finite size and
structure of the vortex cores can affect the speed of such steady compressible streets. The results,
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which require much more detailed consideration of the vortex core structure than needed here for
small vortices, will be presented elsewhere [41].
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APPENDIX: BLASIUS THEOREM FOR WEAKLY COMPRESSIBLE FLOWS

In this Appendix, we review the extension of the Blasius theorem to weakly compressible flows
and derive fresh expressions for the first-order force on an object due to weak compressibility. A
similar calculation was carried out in Barsony-Nagy [33]. We want to manipulate the Bernoulli
equation (14) to derive an expression for the pressure p(z,z̄) in terms of the velocity ξ (z,z̄). The
Rayleigh-Jansen expansion for the pressure p(z,z̄) is taken to be

p(z,z̄) = p0(z,z̄) + M2p1(z,z̄) + o(M2), (A1)

where p0(z,z̄) is the incompressible pressure and p1(z,z̄) is the first-order weakly compressible
correction to be found. Equations (6) and (20) imply that

p = kνγ = kνγ
s

(
ν

νs

)γ

= νsc
2
s

γ

(
1 − γ − 1

2
|ξ |2 M2

U 2
0

)γ /γ−1

. (A2)

This can be expanded for small M as

p = U 2
0 νs

γM2

(
1 − γM2

2U 2
0

(|ξ0|2 + M2(ξ0ξ1 + ξ0ξ1)) + M4 |ξ0|4γ
8U 4

0

+ o(M4)

)
, (A3)

which, on comparison with (A1), yields

p0(z,z) = constant − νs |ξ0|2
2

. (A4)

This is the familiar incompressible Bernoulli equation. At order M2, we find

p1(z,z̄) = νs

8

|ξ0(z)|4
U 2

0

− νs

2
[ξ0(z)ξ1(z,z̄) + ξ0(z)ξ1(z,z̄)]. (A5)

The force, X − iY , due to the pressure field p(z,z̄) on the fluid, or object, contained within a closed
streamline C, is [34]

X − iY = −i

∮
C
p(z,z̄) dz̄ = (X0 − iY0) + M2(X1 − iY1) + o(M2), (A6)

where

X0 − iY0 = −i

∮
C
p0(z,z̄) dz̄, X1 − iY1 = −i

∮
C
p1(z,z̄) dz̄. (A7)

On use of (A4) and the fact that C is a streamline, which implies ξ0(z) dz = ξ0(z) dz̄ on C,

X0 − iY0 = iνs

2

∮
C

[ξ0(z)]2 dz, (A8)
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which is the incompressible Blasius theorem [34]. To find X1 − iY1, we use the expression (A5) for
p1(z,z̄). Since C is a streamline, it follows that ξ (z,z̄) dz = ξ (z,z̄) dz̄ on C, from which one easily
deduces that ξ1(z,z̄) dz = ξ1(z,z̄) dz̄ on C and, in turn,∮

C
[ξ0(z)ξ1(z,z̄) + ξ0(z)ξ1(z,z̄)]dz̄ = 2

∮
C
ξ0(z)ξ1(z,z̄)dz. (A9)

Therefore,

X1 − iY1 = − iνs

8U 2
0

∮
C
|ξ0(z)|4dz̄ + iνs

∮
C
ξ0(z)ξ1(z,z̄)dz. (A10)

An alternative expression is obtained by substituting for the velocity ξ1(z,z̄) from (28) and using the
property ξ0(z) dz = ξ0(z) dz̄ on C:∮

C
ξ0(z)ξ1(z,z̄)dz = 1

4U 2
0

∮
C
|ξ0(z)|4dz̄ +

∮
C
ξ0(z)

[
ξ ′

0 (z)I (z)

4U 2
0

+ G ′(z)

]
dz. (A11)

On substitution into (A10), and using the definition of the Imai-Lamla integral (24) to write dI (z) =
ξ0(z)

2
dz̄, we arrive at the final expression

X1 − iY1 = iνs

4U 2
0

∮
C
d

{
[ξ0(z)]2

2
I (z)

}
+ iνs

∮
C
ξ0(z)G ′(z) dz. (A12)

This can be used to find the condition that a compressible point vortex at z = η is free of force
correct to order M2.

Suppose the incompressible velocity field is ξ0(z) with the first-order correction to the complex
potential f1(z,z̄) given by (23). We shift to a local coordinate system near the vortex and define
ε = z − η. The following local expansions can be derived:

ξ0(z) = a1

ε
+ a2ε + o(ε), I (z) = b1

ε
+ C + b2ε + o(ε), G(z) = c1

ε
+ c2ε + o(ε), (A13)

where a1,a2,b1,b2,c1,c2, and C are constants and where we have used the fact, noted earlier, that the
second-order poles in G(z) at the vortex positions are removable. On isolating the terms in a local
expansion of f1(z,z̄) that are proportional to 1/ε and ε, we find

f1(z,z̄) =
(

a1C

4U 2
0

+ c1

)
1

ε
+

(
a2C

4U 2
0

+ c2

)
ε + other terms. (A14)

The coefficient of 1/ε in this series must be zero if we require the point vortex position to be fixed;
this follows from the fact that

log (z − (a + εâ)) = log(z − a) − εâ

z − a
+ o(ε), (A15)

implying that shifting a by some small amount εâ will induce a simple pole at z = a. Hence,

c1

a1
= − C

4U 2
0

. (A16)

For the point vortex flows of the type we consider here, both ξ0(z) and I (z) turn out to be single-valued
functions so the only contribution to X1 − iY1 in (A12) comes from the residue of ξ0(z)G ′(z), which
is easily found to be proportional to

c2 − a2
c1

a1
= a2C

4U 2
0

+ c2, (A17)
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where, in the second equality, we have used (A16). But the latter quantity is precisely the O(ε) term
in (A14). Thus the force-free condition on the point vortex is equivalent to setting the coefficient of
ε in the series expansion (A14) for f1(z,z̄) to be equal to zero. Note that this form of the force-free
condition requires the coefficient of 1/ε in the local series expansion of f1(z,z̄) about the vortex
position to be zero, as enforced in (A16).
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