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Recent numerical simulations showed that mean flow is generated in the inhomogeneous
turbulence of an incompressible fluid that is accompanied by helicity and system rotation. In
order to investigate the mechanism of the phenomenon, we perform a numerical simulation
of inhomogeneous turbulence in a rotating system. In the simulation, an external force is
applied to inject inhomogeneous turbulent helicity and the rotation axis is perpendicular
to the inhomogeneous direction. The mean velocity is set to zero in the initial condition
of the simulation. The simulation results show that the mean flow directed to the rotation
axis is generated and sustained only in the case with both the helical forcing and the
system rotation. We investigate the physical origin of this flow-generation phenomenon by
considering the budget of the Reynolds-stress transport equation. The results indicate that
the pressure diffusion term significantly contributes to the Reynolds-stress equation and
supports the generated mean flow. The results also reveal that a model expression for the
pressure diffusion is expressed by the turbulent helicity gradient coupled with the angular
velocity of the system rotation. This implies that inhomogeneous helicity plays a significant
role in the generation of the large-scale velocity distribution in incompressible turbulent
flows.

DOI: 10.1103/PhysRevFluids.2.114605

I. INTRODUCTION

Helicity density (hereafter simply referred to as helicity) is defined as the inner product of
velocity and vorticity and is known to play a crucial role called the α effect in the dynamo action in
magnetohydrodynamics [1]. In contrast, the role of helicity in neutral hydrodynamic turbulence is
not clearly understood to date. Studies on helicity can be divided into two categories, namely, studies
on the emergence of helicity and studies on the effects of helicity on the dynamics of turbulence. In
the former, the rise of a statistically significant helicity spectrum of homogeneous turbulence is never
found in the absence of ad hoc initialization or forcing [2]. Conversely, helicity is known to emerge in
rotating inhomogeneous turbulence such as a convection zone in a rotating sphere [3,4] or a rotating
inhomogeneous turbulence in which the rotation axis is parallel to the inhomogeneous direction
[5–7]. Therefore, the key in the emergence of helicity corresponds to the inhomogeneity of rotating
turbulence. In the latter, most studies focus on homogeneous turbulence and the effects on the energy
cascade. A few studies revealed that helicity does not crucially influence hydrodynamic flows in
the context of the energy cascade. For example, with the aid of the eddy-damped quasinormalized
Markovian approximation, André and Lesieur [8] showed that helicity does not affect the energy
cascade once the inertial range is established. Rogers and Moin [9] numerically showed that the
correlation between helicity and the dissipation rate of the turbulent kinetic energy is tenuous
in homogeneous isotropic turbulence, homogeneous shear turbulence, and turbulent channel flow.
Wallace et al. [10] experimentally confirmed the correlation between helicity and the dissipation rate
in a turbulent boundary layer, a two-stream mixing layer, and grid-flow turbulence. They concluded
that there is a tenuous relationship between the small dissipation rate and large helicity except in the
shear flows.
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In contrast, helicity is expected to be important in the dynamics of mean flow generation in
inhomogeneous turbulence. This point was discussed by Yokoi and Yoshizawa [11] in terms of
the closure scheme for the Reynolds-averaged Navier-Stokes formulation. They suggested that the
spatial gradient of helicity coupled with the vortical motion of fluid affects the Reynolds stress
(velocity-velocity correlation) and diminishes the turbulent momentum transfer. Recently, Yokoi
and Brandenburg [12] numerically revealed that the mean flow is generated in a system with both
inhomogeneous helicity and system rotation. This phenomenon can be explained with a model
expression for the Reynolds stress obtained by Yokoi and Yoshizawa [11]. Flow generation in the
context of the large-scale flow instability was also discussed by Frisch et al. [13] and it is called
the anisotropic kinetic α (AKA) effect. However, Yokoi and Brandenbrug [12] noted that the flow
generation due to the inhomogeneous helicity is suitable for treating flows at high Reynolds number,
such as astrophysical or geophysical flows, while the AKA effect is valid only for flows at low
Reynolds number. Thus the model proposed by Yokoi and Yoshizawa [11] involves general physics
of fully developed inhomogeneous turbulence. However, the origin of the helicity effect on the
Reynolds stress was not demonstrated based on the Reynolds-stress transport equation. In this sense,
the manner in which helicity affects the Reynolds-stress evolution continues to be unclear.

The Reynolds stress is typically modeled by the eddy-viscosity representation, which is one of
the simplest models for the Reynolds stress. The eddy-viscosity model represents the momentum
transfer enhanced by turbulence and the effective viscosity is augmented by turbulent motions. Pope
[14] obtained a nonlinear eddy-viscosity model for the Reynolds stress from the Reynolds-stress
transport equation model of Launder et al. [15] by neglecting the diffusion effect. The aforementioned
nonlinear eddy-viscosity models represented a considerable improvement relative to the conventional
models. However, in some flows, the models continue to exhibit difficulties in terms of performance.
A representative case in which the models do not work well is a swirling flow in a straight pipe
[16,17]. In the flow, the mean axial velocity exhibits a dent profile in the center axis region of the pipe
and the dent profile is significantly more persistent in the downstream region than those predicted
by the eddy-viscosity-type models.

Yokoi and Yoshizawa [11] applied the turbulence model with inhomogeneous helicity effect on the
Reynolds stress to a swirling pipe flow and successfully reproduced the sustainment of the dent mean
velocity. Another description of the effect of helicity on turbulence was constructed by Yoshizawa
et al. [18]. They introduced a time scale of helical motion into the model and obtained good results in
a swirling pipe flow. The results suggest the importance of helicity effect in describing the properties
of swirling flows. This helicity effect is also discussed in the context of the subgrid scale (SGS)
modeling in relation to the overestimation of dissipation rate in the use of eddy-viscosity-type SGS
stress models [19]. However, the terms obtained in Yokoi and Yoshizawa [11] or Yoshizawa et al.
[18] were not directly linked to the systematic modeling of Pope [14]. This is because the mechanism
by which helicity affects the Reynolds stress is not fully known and thus the helicity effect in the
Reynolds-stress evolution is not explicitly considered. In order to reveal the helicity effect on the
Reynolds stress, we investigate the physical origin of the effect at the level of the Reynolds-stress
transport equation.

In this study we perform a numerical simulation of a rotating inhomogeneous turbulence driven
by a helical external forcing. Although the mechanism of the helicity generation is important, this is
not examined here. We impose the helicity by external forcing in the present study and focus on the
effect of inhomogeneous helicity on the mean flow. The flow configuration is similar to that used by
Yokoi and Brandenburg [12]. It has two homogeneous directions and one inhomogeneous direction
and the rotation axis is perpendicular to the inhomogeneous direction. In the configuration the mean
flow is expected to emerge in the rotation-axis direction. This flow configuration is similar to the
low-latitude region of rotating sphere in which turbulence is radially inhomogeneous and its rotation
axis is mostly perpendicular to the inhomogeneous direction [3,4]. We also conduct simulations in
nonrotating and/or nonhelical forcing cases to identify the condition for the mean flow generation.
The helicity effect is tested in relation to the Reynolds-stress transport equation and the origin of the
mean flow generation is explored.
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The rest of this study is organized as follows. Section II summarizes the relationship between
the eddy-viscosity-type turbulence model and the transport equation for the Reynolds stress. The
model for the Reynolds stress including the helicity effect derived by Yokoi and Yoshizawa [11] is
also presented. Section III presents the numerical setup and the simulation results. We also discuss
the origin of the helicity effect on the Reynolds stress. A comparison between our results and the
model expression of the Reynolds stress with helicity is given in Sec. IV. A summary is given and
conclusions are discussed in Sec. V.

II. MODEL REPRESENTATIONS OF THE REYNOLDS STRESS AND HELICITY EFFECT

The Navier-Stokes equation and the continuity equation for an incompressible fluid in a rotating
system are given, respectively, as

∂ui

∂t
= − ∂

∂xj

uiuj − ∂p

∂xi

+ ν
∂2ui

∂xj ∂xj

+ 2εij�uj�
F
� + fi, (2.1)

∂ui

∂xi

= 0, (2.2)

where ui denotes the ith component of the velocity, p the pressure divided by the fluid density with
centrifugal force included, ν the kinematic viscosity, �F

i the angular velocity of the system, fi the
external force, and εij� the alternating tensor. We decompose a physical quantity q [= (ui,p,fi)]
into mean and fluctuation parts as

q = Q + q ′, Q = 〈q〉, (2.3)

where 〈·〉 denotes an ensemble average. Substituting Eq. (2.3) into Eqs. (2.1) and (2.2), we obtain
the mean-field equations

∂Ui

∂t
= − ∂

∂xj

(UiUj + Rij ) − ∂P

∂xi

+ ν
∂2Ui

∂xj∂xj

+ 2εij�Uj�
F
� + Fi, (2.4)

∂Ui

∂xi

= 0, (2.5)

where Rij (= 〈u′
iu

′
j 〉) denotes the Reynolds stress. The only difference between Eqs. (2.1) and

(2.4) corresponds to the Reynolds stress. Thus, the Reynolds stress solely represents the effects of
turbulent motion on the mean velocity. In order to close the system of Eqs. (2.4) and (2.5), a model
expression for the Reynolds stress is required.

A. Relationship between model and transport equation for the Reynolds stress

The simplest model for the Reynolds stress is the eddy-viscosity model that is expressed as

Rij = 2
3Kδij − 2νT Sij , (2.6)

where K (= 〈u′
iu

′
i〉/2) denotes the turbulent kinetic energy, νT the eddy viscosity, Sij [= (∂Ui/∂xj +

∂Uj/∂xi)/2] the strain rate of the mean velocity, and δij the Kronecker delta. The eddy-viscosity
model is not just an empirical model but can be obtained from the fundamental equation, i.e., the
Navier-Stokes equation. Specifically, the model expression for the Reynolds stress is closely related
to the transport mechanism of the Reynolds stress. A systematic way to obtain the eddy-viscosity-type
model from the Reynolds-stress transport equation may be summarized as follows [14,20]. The exact
transport equation for the Reynolds stress is expressed as

DRij

Dt
= Pij − εij + 
ij + �ij + Tij + Dij + Cij + Fij , (2.7)
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where D/Dt = ∂/∂t + U�∂/∂x� defines the Lagrange derivative. Here Pij denotes the production
rate, εij the destruction rate, 
ij the pressure-strain correlation, �ij the pressure diffusion, Tij the
turbulent diffusion, Dij the viscous diffusion, Cij the Coriolis effect, and Fij the external work. They
are respectively defined as

Pij = −Ri�

∂Uj

∂x�

− Rj�

∂Ui

∂x�

, (2.8a)

εij =
〈
2νsi�

∂u′
j

∂x�

+ 2νsj�

∂u′
i

∂x�

〉
, (2.8b)


ij = 2〈p′sij 〉, (2.8c)

�ij = − ∂

∂xj

〈p′u′
i〉 − ∂

∂xi

〈p′u′
j 〉, (2.8d)

Tij = − ∂

∂x�

〈u′
iu

′
ju

′
�〉, (2.8e)

Dij = ∂

∂x�

〈2νsi�u
′
j + 2νsj�u

′
i〉, (2.8f)

Cij = 2(εim�Rjm + εjm�Rim)�F
� , (2.8g)

Fij = 〈u′
ifj + u′

j fi〉, (2.8h)

where sij [= (∂ui/∂xj + ∂uj/∂xi)/2] denotes the strain rate of the velocity. Pope [14] obtained a
general expression of the Reynolds stress based on the following two assumptions. First, for the
right-hand side of Eq. (2.7), the model by Launder et al. [15] is adopted; εij and 
ij are modeled as

εij = 2

3
εδij , (2.9)


ij = −CS1
ε

K
Bij + CR1KSij + CR2[Bi�S�j + Bj�S�i]D + CR3(Bi���j + Bj���i), (2.10)

where ε (= εii/2) denotes the dissipation rate of the turbulent energy K , Bij [= Rij − (2/3)Kδij ] is
the deviatoric part of the Reynolds stress, �ij = (∂Uj/∂xi − ∂Ui/∂xj )/2, [Aij ]D = Aij − A��δij /3,
and CS1, CR1, CR2, and CR3 denote the model constants. The term with CS1 describes the return to
isotropy model, while the terms with CR1, CR2, and CR3 correspond to the isotropization of production
model [15]. Although there are more elaborate models for the pressure-strain correlation, such as that
by Craft and Launder [21], we focus on simple models proportional to Bij . Second, quasihomogeneity
of the flow field is assumed and the diffusion terms are neglected as �ij = Tij = Dij = 0. In addition
to the two assumptions, it is necessary to handle the time derivative term DRij/Dt . In the algebraic
stress models, the weak-equilibrium assumption D(Rij/K)/Dt = 0 is applied. Here this assumption
is not used; we introduce an appropriate time derivative instead of the Lagrange derivative in order
to satisfy the frame invariance of the turbulence equation in a rotating system [22,23]. When the
upper convected time derivative DAij/Dt = DAij/Dt − Ai�∂Uj/∂x� − Aj�∂Ui/∂x� is adopted,
Eq. (2.7) is expressed as

DBij

Dt
= −CS1

ε

K
Bij −

(
4

3
− CR1

)
KSij − (1 − CR2)[Bi�S�j + Bj�S�i]D

− (1 − CR3)(Bi��
∗
�j + Bj��

∗
�i), (2.11)

where �∗
ij (= �ij + εij��

F
� ) denotes the mean absolute vorticity tensor. Here it is assumed that the

external work does not affect the Reynolds stress directly. The model for 
ij is extended to a rotating
system. Thus, we replace �ij in Eq. (2.10) by �∗

ij . This frame invariant formulation is performed
to ensure the consistency of the equations in a rotating frame. The effect of rotation may affect the
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transport equation for ε [24] and this type of a modification is needed to predict turbulent flows under
the solid body rotation with the Reynolds-stress models. However, this point is beyond the scope of
the present study, which focuses on the effects on the mean flow. The first term on the right-hand
side of Eq. (2.11) represents the destruction of Bij or the relaxation to an isotropic state. The second
term denotes the production of Bij by the isotropic part of turbulence, while the third and fourth
terms denote the production by the anisotropic part of turbulence. Equation (2.11) is reexpressed as
follows:

Bij = −2
4 − 3CR1

6CS1

K2

ε
Sij − 1 − CR2

CS1

K

ε
[Bi�S�j + Bj�S�i]D

− 1 − CR3

CS1

K

ε
(Bi��

∗
�j + Bj��

∗
�i) − 1

CS1

K

ε

DBij

Dt
. (2.12)

Substituting this expression iteratively into Bij on the right-hand side, we obtain

Bij = −2Cν

K2

ε
Sij + Cq1

K3

ε2
[Si�S�j + Sj�S�i]D + Cq2

K3

ε2
(Si��

∗
�j + Sj��

∗
�i)

+Cd

K

ε

D

Dt

(
K2

ε
Sij

)
+ · · · , (2.13)

where Cν = (4 − 3CR1)/6CS1, Cq1 = 2Cν(1 − CR2)/CS1, Cq2 = 2Cν(1 − CR3)/CS1, Cd =
2Cν/CS1, and the ellipsis denotes higher-order terms. In contrast to the formulation obtained by
Pope [14], the time derivative term is retained on the right-hand side of Eq. (2.13) as shown in
Yoshizawa [20]. This corresponds to a more general formulation when compared with that obtained
by Pope [14] since the time derivative term does not always disappear. The first term of Eq. (2.13)
represents the eddy-viscosity term, which corresponds to the second term on the right-hand side of
Eq. (2.6), and this term is derived from the isotropic part of the production term. This reflects the
point that the eddy-viscosity model constitutes a good approximation when the turbulence is nearly
isotropic, quasihomogeneous, and steady.

B. The Reynolds-stress expression accompanied with the helicity effect

The eddy-viscosity-type models provide good results for simple flows such as free shear layer
flows and channel flows. However, they perform poorly for more complex flows. An example
in which the usual eddy-viscosity models do not work well is a swirling flow in a straight pipe
[16,17]. In the swirling-flow experiments, it is observed that the mean axial velocity shows a dent
in the center axis region and this inhomogeneous velocity profile is very persistent to the well
downstream region. However, this type of a dent profile that is imposed at the pipe inlet cannot be
sustained and decays rapidly in the usual eddy-viscosity model simulation [16,25]. This is because
the eddy viscosity is so strong that it smears out any large-scale velocity gradient. Jakirlić et al. [26]
pointed out that even with an elaborate explicit Reynolds-stress model such as that of Craft et al.
[27] or Shih et al. [28] as well as the standard eddy-viscosity model, it is difficult to accurately
reproduce the aforementioned rotational flows without performing a few modifications in the model
constants. With the aid of the two-scale direct-interaction approximation (TSDIA) [29], which is
an analytical statistical theory of inhomogeneous turbulence, Yokoi and Yoshizawa [11] suggested
that eddy viscosity may be suppressed by symmetry-breaking swirling motion. They analytically
constructed a turbulence model in which the helicity effect is incorporated. In the formulation,
homogeneous isotropic non-mirror-symmetric turbulence is assumed as the basic field and the effects
of inhomogeneity, anisotropy, and system rotation are incorporated in a perturbational manner based
on the Navier-Stokes equation. Brief descriptions of the formulation are given in Appendix A.
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According to the formulation, the deviatoric or traceless part of the Reynolds stress is expressed as

Bij = −2νT Sij + η

[
∂H

∂xj

�∗
i + ∂H

∂xi

�∗
j

]
D

, (2.14)

where η denotes the transport coefficient, H (= 〈u′
iω

′
i〉) the turbulent helicity, and �∗

i

(= εij�∂U�/∂xj + 2�F
i ) the mean absolute vorticity. In this study, we refer to the model of Eq. (2.14)

as the helicity model. This model allowed the successful reproduction of the sustainment of the dent
mean axial velocity in a swirling flow. The helicity model is similar to the AKA model [13] in
the sense that the AKA describes the effect of the lack of parity invariance on the mean flow.
The helicity model is developed for high-Reynolds-number flows since the TSDIA corresponds to
perturbational expansion from fully developed homogeneous turbulence, while the AKA is valid
for low-Reynolds number flows [12]. Hence, it is expected that the helicity model can be applied to
realistic high-Reynolds-number turbulent flows.

It is interesting to note that as pointed out in [11,12], the present model accounts for the mean
flow generation from the no-mean-velocity initial condition. Even if the system does not have the
mean velocity gradient, Eq. (2.14) may include a nonzero value when both the helicity gradient and
the system rotation exist. In such cases, the deviatoric part of the Reynolds stress is expressed as
follows:

Bij = 2η

[
∂H

∂xj

�F
i + ∂H

∂xi

�F
j

]
D

�= 0. (2.15)

This suggests that the mean flow is generated by this helicity effect when the inhomogeneous helicity
is coupled with the rotation since the mean velocity equation is expressed as

∂Ui

∂t
= − ∂

∂xj

[
η

(
∂H

∂xj

2�F
i + ∂H

∂xi

2�F
j − ∂H

∂x�

2�F
�

2

3
δij

)]
− ∂P

∂xi

�= 0. (2.16)

Yokoi and Brandenburg [12] performed direct numerical simulations (DNSs) of a rotating
inhomogeneous turbulence with an imposed turbulent helicity. They commenced with a no-mean-
velocity configuration and observed a mean flow generation in a rotating turbulence. Additionally,
they confirmed that in the early stage of the simulation in which the mean-velocity gradient is not
significantly developed, the Reynolds stress is well correlated with the middle part of Eq. (2.15). It
is not possible to predict this type of a flow-generation phenomenon by using a conventional model
of the Reynolds stress as given by Eq. (2.13) since each term contains the mean shear rate.

The results indicate that inhomogeneous helicity coupled with the vortical motion of fluid affects
the Reynolds stress and reduces turbulent momentum transport represented by the eddy viscosity.
The following points should be noted. The model representation of Eq. (2.14) was analytically
obtained from the Navier-Stokes equation with the aid of the TSDIA. However, the second term on
the right-hand side of Eq. (2.14) is not obtained in a direct manner from the systematic construction
of the model shown in Sec. II A. This is because the turbulent helicity is not explicitly included in
the Reynolds-stress transport equation given in Eq. (2.11) on which the model constitution is based.
Yokoi and Brandenburg [12] compared the profile of the Reynolds stress with that of Eq. (2.14)
to determine a very good correlation between them. However, the origin of the helicity effect on
the Reynolds-stress equation was not shown. As shown in Sec. II A, the model expression of the
Reynolds stress is related to its transport mechanism. The effect of helicity corresponding to the
second term on the right-hand side of Eq. (2.14) should exist on the right-hand side of Eq. (2.7) as
well as the production term corresponding to the eddy-viscosity term. Hence, the physical origin of
the second term of Eq. (2.14) is not clarified in the sense of the Reynolds-stress evolution.

III. NUMERICAL SIMULATIONS

In order to investigate the mechanism of the mean flow generation and its relationship to the
turbulent helicity, we perform a series of numerical simulations of a rotating inhomogeneous
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FIG. 1. Computational domain and schematic profiles of turbulent energy and helicity. Here KGS

(=〈u′
iu

′
i〉/2) and HGS (= 〈u′

iω
′
i〉) denote the turbulent energy and helicity of the grid scale motions, respectively.

An external forcing is applied only around the y = 0 plane.

turbulence driven by a helical external force. We examine the transport equation for the Reynolds
stress to explore the manner in which the turbulent helicity affects the Reynolds-stress transport.

A. Governing equations and numerical setup

In order to simulate a high-Reynolds-number turbulent flow, the large-eddy simulation (LES) is
adopted instead of the DNS. The governing equations of the LES in a rotating system are expressed
as

∂ui

∂t
= − ∂

∂xj

uiuj − ∂p

∂xi

+ ∂

∂xj

2νsgssij + 2εij�uj�
F
� + f i, (3.1)

∂ui

∂xi

= 0, (3.2)

where the kinematic viscosity is neglected and q denotes the grid-scale (resolved) component of q.
It should be noted that q is different from the ensemble average 〈q〉, which was already introduced
in Eq. (2.3). With respect to the model of the subgrid-scale (SGS) viscosity νsgs , the Smagorinsky
model [30]

νsgs = (CS�)2
√

2sij sij (3.3)

is applied with the Smagorinsky constant CS = 0.19, which is the optimized value for homogeneous
isotropic turbulence [20], and � = (�x�y�z)1/3, where �xi denotes the grid size of the ith
direction.

In the simulation, the computational domain is a rectangular parallelepiped region as shown in
Fig. 1. An external force applied around the center plane at y = 0 injects turbulent energy and
helicity. In the calculation, the rotation axis is set perpendicular to the inhomogeneous direction of
the turbulence to assess the helicity model (2.14). This setup is similar to that used by Yokoi and
Brandenburg [12]. The configuration corresponds to the low-latitude region of a rotating spherical
convection in which the inhomogeneous direction of helicity is mainly perpendicular to the rotation
axis in a low-latitude region [3,4]. The objective involves elucidating the effect of inhomogeneous
helicity on the mean flow in rotating turbulence and not clarifying the mechanism of helicity
generation and thus helicity is injected by an external forcing to achieve simplicity in contrast to
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TABLE I. Calculation parameters.

Run α �F
x LGS

0 RoGS
0

1 0 0 0.506 ∞
2 0.5 0 0.547 ∞
3 0 5 0.542 0.185
4 0.2 5 0.550 0.182
5 0.5 2 0.544 0.459
6 0.5 5 0.602 0.166

the simulation in which helicity emerges spontaneously [5–7]. The external force is defined by the
vector potential ψi as

f i = Cεij�

∂

∂xj

[g(y)ψ�], (3.4)

where g(y) denotes a weighting function introduced to confine the external force around the y = 0
plane. The coefficient C is determined to satisfy 〈u′

iu
′
i〉S(y = 0)/2 = 1 at each time step, where 〈·〉S

denotes the x-z plane average and q ′ denotes the fluctuation of q around 〈q〉S ,

q = 〈q〉S + q ′. (3.5)

The force is solenoidal, ∂f i/∂xi = 0. With respect to the weighting function, g(y) = exp[−y2/σ 2]
with σ = Ly/32 = 0.393 is applied, and this is a value comparable to the forcing scale π/kf , where
kf is given in the following [Eq. (3.6a)]. The vector potential ψi obeys a stochastic process like
the Ornstein-Uhlenbeck process [31] and is determined from the power and helicity spectra of f i ,
Eex(k) and Eex

H (k), given as

Eex(k) ∝
{
k−5/3 for k = kf , 10 � kf � 14
0 otherwise,

(3.6a)

Eex
H (k) = 2αkEex(k), (3.6b)

where α denotes the parameter that determines the intensity of helicity of the external force. The
spectrum Eex(k) is selected corresponding to the typical inertial-range form of turbulence and Eex

H (k)
corresponds to the statistical property of inertial wave when α = ±1 [32]. The range of α should be
−1 � α � 1 since the helicity spectrum must satisfy |Eex

H (k)| � 2kEex(k) [8]; α = 0 corresponds
to the nonhelical case and α = 1 (−1) is the most positively (negatively) helical case. Details of
forcing are given in Appendix B.

The size of the computational domain is Lx × Ly × Lz = 2π × 4π × 2π and the number of
grid points is Nx × Ny × Nz = 128 × 256 × 128. The periodic boundary conditions are used in all
directions, we use the second-order finite-difference scheme in space, and the Adams-Bashforth
method is used for time integral. A triply periodic box is used and thus the pseudospectral scheme
may be more appropriate for DNS with the linear viscosity term. However, with respect to the LES, a
complex nonlinear form of the SGS viscosity decreases the numerical accuracy of the pseudospectral
scheme. Moreover, we are going to apply the code to homogeneous turbulence with a nonuniform
grid. Thus, we adopt finite-difference scheme. The pressure is directly solved in the wave-number
space by using a fast Fourier transform. Parameters of the simulation are shown in Table I; namely,
run 1 is the nonhelical and nonrotating case, run 2 is helical but nonrotating, run 3 is rotating
but nonhelical, and runs 4–6 are helical and rotating. We observe the effect of helical forcing by
comparing runs 1 and 2 for the nonrotating case and runs 3, 4, and 6 for the rotating case. We also
observe the effect of the system rotation by comparing runs 2, 5, and 6. In all the runs, the external
force is applied in the wave-number band 10 � k � 14. With respect to the helical cases, α = 0.5
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FIG. 2. Time evolution of the axial mean velocity for run 6. The horizontal axis denotes the time, the
vertical axis denotes the inhomogeneous direction y, and the color contour denotes the value of 〈ux〉S .

for runs 2 and 4 and α = 0.2 for run 5, which are not fully helical ones, are adopted since the
relative helicity (uiωi/|ui ||ωi |) in realistic turbulence is modulated from the maximally helical case
of the inertial wave, α = ±1, due to buoyancy and nonlinear interaction of turbulence [33]. Here
LGS

0 denotes the characteristic length scale of the turbulence and RoGS
0 denotes the Rossby number

defined,respectively, by

LGS
0 =

(
KGS

0

)3/2

εSGS
0

, RoGS
0 = KGS

0
1/2

LGS
0 2�F

, (3.7)

where KGS = 〈u′
iu

′
i〉/2, KGS

0 = KGS(y = 0), εSGS = 2〈νsgssij s
′
ij 〉, εSGS

0 = εSGS(y = 0), and 〈·〉
denotes the average over the homogeneous plane and over time. The time average is taken over
20 � t � 30 as mentioned below. In our calculation, the length scale of inhomogeneity of turbulence
is estimated as �∇ = 0.4 for all runs, in which �∇ is defined such that KGS(y = �∇) = e−1KGS

0 . The
validity of turbulence models requires that the length scale of inhomogeneity of turbulence is much
longer than the scale of the energy-containing eddy LGS

0 [34]. These two scales are comparable in
the simulation. However, the aforementioned lack of scale separation is often observed in actual
turbulence such as in an atmospheric boundary layer [35]. It should be emphasized that the mean
velocity is set to zero in the initial condition and the plane average of the external force is also zero,
〈f i〉S = 0, such that the external force does not directly excite the mean velocity.

B. Numerical results

1. Mean flow generation

Figure 2 shows the time evolution of the mean axial velocity 〈ux〉S for run 6. The mean flow is
generated around y = 0 as time elapses and is sustained in subsequent periods. This result is the
same as that obtained by Yokoi and Brandenburg [12] in which the positive mean velocity directed
to the rotation axis was generated around the positively helical region. In the simulation performed
by Yokoi and Brandenburg [12], helicity is distributed as H (y) ∝ sin(πy/y0) (in the original study,
the inhomogeneous direction is z) and thus the positive axial velocity emerges in y > 0 and the
negative axial velocity emerges in y < 0. Conversely, in the present simulation, the positive helicity
is driven only in a limited region around y = 0. Hence, the positive axial mean velocity emerges
only around y = 0. It should be noted again that the mean velocity cannot be directly generated from
the external force since the direct contribution from the external force is excluded in the calculation.
Hereafter, we take the time average over 20 � t � 30 as well as the homogeneous plane average.
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FIG. 3. Mean axial velocity of each run.

The mean axial velocity of each run is given in Fig. 3. Evidently, the positive axial mean velocity
emerges only for the cases with both helicity injection and system rotation, namely, runs 4–6. The
difference between run 3 and runs 4 and 6 only corresponds to the existence of the helicity injection
and thus the external force with α = 0 does not influence the induction of the axial mean velocity.
This indicates that neither inhomogeneous helicity nor system rotation by themselves are sufficient
to obtain the mean flow generation. It is interesting to note that the maximum values of the mean
flows for runs 4 and 5 are the same. This suggests that the product of the helicity and the angular
velocity of system rotation determines the mean flow generation. The mean flow profile is expected
to be symmetric about y = 0. The present result is slightly asymmetric due to the limitations of time
or ensemble average.

When the turbulent field is statistically steady, the equation for the mean axial velocity is
expressed as

∂Ux

∂t
= −∂Rxy

∂y
= 0, (3.8)

where Rij satisfies Rij = RGS
ij − 2〈νsgssij 〉 in the framework of the eddy-viscosity representation of

the SGS stress and RGS
ij = 〈u′

iu
′
j 〉 defines the Reynolds stress of the grid scale. It should be noted

that u′
i denotes the fluctuation of the grid-scale velocity ui and is defined as in Eq. (3.5). Equation

(3.8) gives the Reynolds-stress constant in the y direction. The turbulence is inactive at the upper
and lower boundaries and thus y = ±Ly/2 and Rxy disappears at this point. Therefore, the solution
of the mean velocity equation is Rxy = 0. The green line with squares in Fig. 4 shows the profile of
Rxy for run 6. It is nearly equal to zero, although a slight nonzero value is observed around y = 0
because the time averaging is insufficient for the statistically steady state. Here we consider the
appropriateness of the eddy-viscosity model,

Rxy = −νT

∂Ux

∂y
, νT = Cν

K2

ε
. (3.9)

In Fig. 4, the profile of Rxy estimated by Eq. (3.9) is also plotted as the red line with crosses. It should
be noted that νT is evaluated by using KGS and εSGS instead of K and ε as νT = Cν(KGS)2/εSGS

with Cν = 0.09. This clearly indicates excessively high nonzero values around y = 0. Since νT �=
0 around y = 0, the velocity gradient must vanish in order to satisfy Rxy = 0. Therefore, the
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FIG. 4. Reynolds stress Rxy for run 6. The green line with squares denotes the directly evaluated value
Rxy = RGS

xy − 2〈νsgssxy〉 and the red line with crosses denotes the value estimated by the eddy-viscosity model
that is given by Eq. (3.9) with Cν = 0.09.

eddy-viscosity model is unable to reproduce the present result in which the mean flow is sustained
around y = 0.

In order to rectify the inadequacy of the eddy-viscosity model, let us assume the generic expression
for the model,

Rxy = −νT

∂Ux

∂y
+ Nxy, (3.10)

where Nxy denotes an additional term. As shown in Fig. 4, the eddy-viscosity term −νT ∂Ux/∂y has
a large positive gradient around y = 0. In order to satisfy Rxy = 0, Nxy must involve a large negative
gradient around y = 0 to counterbalance the eddy-viscosity term. We expect that the second term on
the right-hand side of Eq. (2.14) is a good candidate for Nxy because the mean flow is only sustained
when both the helical force and the system rotation are present.

2. Origin of the helicity effect

In order to investigate the origin of the additional term Nxy , we examine the transport equation
for the Reynolds stress. The transport equation for RGS

xy is expressed as

∂RGS
xy

∂t
= P GS

xy + 
GS
xy + �GS

xy + CGS
xy , (3.11)

where only the terms that significantly contribute to the simulation for run 6 are included. Here P GS
xy

denotes the production, 
GS
xy the pressure-strain correlation, �GS

xy the pressure diffusion, and CGS
xy

the Coriolis effect. They are respectively defined as

P GS
xy = −2

3
KGS ∂Ux

∂y
− BGS

yy

∂Ux

∂y
− BGS

xz

∂Uz

∂y
, (3.12a)


GS
xy = 2〈p′s ′

xy〉, (3.12b)

�GS
xy = − ∂

∂y
〈p′u′

x〉, (3.12c)

CGS
xy = 2RGS

xz �F
x , (3.12d)
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FIG. 5. Budget of the transport equation for RGS
xy for run 6. The y coordinate is limited to the region at

−2 � y � 2 where a high mean velocity exists.

where BGS
ij = RGS

ij − (2/3)KGSδij . The budget of the transport equation for RGS
xy for run 6 is shown

in Fig. 5. It should be noted that the balance of the above four terms are mostly the same for runs
4 and 5 especially in the sense that the pressure-strain correlation and the pressure diffusion are
predominant (figures are not shown here). The production term plotted as the red line with crosses
exhibits a positive gradient around y = 0. It should be noted that with respect to the production
term P GS

xy , the first term on the right-hand side of Eq. (3.12a) is dominant [the detailed contribution
from each term in Eq. (3.12a) is not shown here]. Thus, as shown in Sec. II A, the production term
corresponds to the eddy-viscosity term and it also exhibits a positive gradient around y = 0 in Fig. 4.
Based on the discussion in Sec. III B 1, any candidate of the term corresponding to Nxy that accounts
for the sustainment of the mean velocity should exhibit a negative gradient around y = 0. In Fig. 5,
two candidates are observed, namely, the pressure diffusion �GS

xy (the blue line with circles) and
the Coriolis effect CGS

xy (the magenta line with triangles). If the Coriolis effect corresponds to the
origin of Nxy , the mean flow would be sustained for run 3 in which system rotation exists as well as
for runs 4–6. Therefore, we focus on the pressure diffusion term. However, this does not deny the
importance of Coriolis force in the flow-generation phenomenon. As shown in Fig. 5, the Coriolis
effect also contributes to the Reynolds stress in the sense that it sustains the mean flow. Additionally,
the effect of the Coriolis force appears not only in the Coriolis effect but also in the pressure through
the Poisson equation as discussed in the following paragraph.

In order to investigate the pressure diffusion [Eq.(3.12c)], we consider the Poisson equation for
the pressure fluctuation

∇2p′ = −2s ′
abSab + ω′

a�
∗
a − s ′

abs
′
ab + 1

2
ω′

aω
′
a + ∂2

∂xa∂xb

[2(νsgssab − 〈νsgssab〉)]. (3.13)

We approximate the left-hand side as

∇2p′ = −p′

�2
p

, (3.14)
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FIG. 6. Approximate evaluation of �GS
xy for run 6.

where �p denotes the length scale associated with the pressure fluctuation. Thus, the pressure
diffusion �GS

xy is estimated as

�GS
xy /�2

p = ∂

∂y

[
−2〈u′

xs
′
ab〉Sab + 〈u′

xω
′
a〉�∗

a − 〈u′
xs

′
abs

′
ab〉 + 1

2
〈u′

xω
′
aω

′
a〉 + ∂2

∂y2
(2〈u′

xνsgssab〉)
]
,

(3.15)

where �p is approximated as a constant in space for simplicity. Figure 6 shows the pressure diffusion
�GS

xy evaluated from Eq. (3.15) for run 6. As shown in the figure, the second term related to the mean
absolute vorticity is dominant. Thus, �GS

xy is approximated as

�GS
xy /�2

p = ∂

∂y

(
2〈u′

xω
′
x〉�F

x

) = ∂

∂y

(
2

3
HGS�F

x

)
(3.16)

and this includes |�i | 
 |2�F
i | and 〈u′

xω
′
x〉 = 〈u′

yω
′
y〉 = 〈u′

zω
′
z〉 = HGS/3. This indicates that the

helicity gradient and the system rotation may account for the pressure diffusion that contributes
to the mean velocity sustainment. A model expression of the pressure diffusion that is similar to
Eq. (3.16) is also analytically obtained with the aid of the TSDIA [29]. A brief introduction of the
theory and the detailed calculation are given in Appendix A. The result is

�ij = 1

3

[
∂

∂xj

(
L2H2�F

i

) + ∂

∂xi

(
L2H2�F

j

)] + N + O(|u(00)|3), (3.17)

where L denotes the length scale related to the energy-containing eddy, N denotes nonhelical terms,
and u(00) is the lowest-order velocity corresponding to homogeneous isotropic turbulence defined in
Eq. (A4). This model expression for the pressure diffusion is in good agreement with Eq. (3.16).

In Fig. 5, the pressure-strain correlation 
GS
ij (the green line with squares) also significantly

contributes to the Reynolds-stress transport. One might consider that the pressure diffusion and the
pressure-strain correlation cancel each other. However, the sum of these two terms (represented by
the cyan line with diamonds in Fig. 5) contributes to exhibit a negative gradient around y = 0 and
plays the same role as the pressure diffusion itself. This tendency is also theoretically demonstrated
as follows. The model expression of the pressure-strain correlation 
ij is obtained with the aid of the
TSDIA [29] and it is possible to analytically examine the balance of the two terms. The analytical
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result of the pressure-strain correlation is


ij = − 3

10

[
∂

∂xj

(
L2H2�F

i

) + ∂

∂xi

(
L2H2�F

j

)]
D

+ N + O(|u(00)|3). (3.18)

Although the helicity effect of the pressure-strain correlation 
ij has the sign opposite to that of the
pressure diffusion �ij , its magnitude is slightly smaller. Thus the sum of �ij and 
ij ,

�ij + 
ij = 1

30

[
∂

∂xj

(
L2H2�F

i

) + ∂

∂xi

(
L2H2�F

j

)] + N + O(|u(00)|3), (3.19)

contributes in the same manner as the pressure diffusion �ij and sustains the mean flow.

IV. CORRESPONDENCE OF THE PRESSURE DIFFUSION TO THE HELICITY MODEL

The results indicated that the pressure diffusion plays an important role in the sustainment of
the mean velocity in inhomogeneous helical turbulence. This fact contradicts the assumption for the
derivation of the model for the Reynolds stress as given in Sec. II A. In the current construction,
the flow is assumed to be quasihomogeneous for the diffusion to be neglected. However, the effect
of the pressure diffusion is required to improve the Reynolds-stress model for inhomogeneous
helical turbulence. As shown in Sec. III B 2, the effect of helicity is explicitly incorporated in the
pressure diffusion term for the Reynolds-stress transport equation. Here we add the helicity effect
that originates from the pressure diffusion term to the Launder-Reece-Rodi (LRR) model [15] as


ij + [�ij ]D = 
LRR
ij + CPH�ij , (4.1)

where 
LRR
ij denotes the LRR model given by Eq. (2.10), CPH is a positive constant, and

�ij =
[

∂

∂xj

(
K3

ε2
H�∗

i

)
+ ∂

∂xi

(
K3

ε2
H�∗

j

)]
D

. (4.2)

Here the length scale that corresponds to �p in Eq. (3.14) or L in Eq. (3.17) is expressed in terms of
K and ε. Thus, the Reynolds-stress equation is reexpressed as follows:

DBij

Dt
= −CS1

ε

K
Bij −

(
4

3
− CR1

)
KSij + CPH�ij − (1 − CR2)[Bi�S�j + Bj�S�i]D

− (1 − CR3)(Bi��
∗
�j + Bj��

∗
�i). (4.3)

The third term on the right-hand side denotes the only difference between Eqs. (2.11) and (4.3).
Thus, the model expression corresponding to Eq. (2.13) is given as

Bij = −2Cν

K2

ε
Sij + Cγ

K

ε
�ij + · · · , (4.4)

where Cγ = CPH/CS1. The second term is significantly similar to Eq. (2.14) obtained by Yokoi
and Yoshizawa [11]. Hence, the helicity model given by Eq. (2.14) can trace part of its origin to the
pressure diffusion in inhomogeneous helical turbulence in a rotating system.

V. CONCLUSION

The mechanism of the mean flow generation and its relationship to the turbulent helicity were
investigated by using the numerical simulation of a rotating inhomogeneous turbulence. In the
simulation, an external forcing was applied to inject turbulent energy and helicity and the rotation
axis was perpendicular to the inhomogeneous direction. The initial mean velocity and the mean part
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of the external force were set to zero and this implies that it is not possible to directly excite the mean
flow by the external forcing. The results showed that the mean flow is generated and sustained only
when both helical forcing and system rotation exist. The flow-generation phenomenon originates
from both the turbulent helicity and the rotational motion of fluid.

The usual eddy-viscosity model is unable to reproduce the mean flow generation observed in
the simulation and therefore an additional term is needed to explain the phenomenon. In order to
explore candidates for the additional term, the budget of the Reynolds-stress transport equation was
investigated. The results suggested that the pressure diffusion significantly influences the sustainment
of the mean flow. The approximation to the Poisson equation for the pressure fluctuation was used
to obtain an expression for the pressure diffusion in terms of the turbulent helicity and the angular
velocity of the system rotation. The effect of helicity in relation to the pressure diffusion term was
considered to obtain a model for the Reynolds stress and the obtained model is considerably similar
to the one obtained by Yokoi and Yoshizawa [11]. The model implies that the inhomogeneity of
helicity plays a crucial role in rotating turbulence such as the momentum transport due to turbulence
in the low-latitude region of a rotating sphere [3,4].

APPENDIX A: ANALYTICAL MODELING OF THE HELICITY EFFECT
ON PRESSURE-RELATED TERMS

The effect of helicity on the pressure diffusion and the pressure-strain correlation is estimated by
using the TSDIA [29], which corresponds to a closure scheme for inhomogeneous turbulence. In
this formalism, the fast variables (ξ ,τ ) and slow variables (X,T ) are introduced for space and time
variables with a scale parameter δ,

ξ = x, τ = t, X = δx, T = δt. (A1)

We assume that the fluctuation fields depend on both the fast and slow variables while mean fields
depend on only the slow variables and this is expressed as

q = Q(X ; T ) + q ′(ξ ,X ; τ,T ), (A2)

where q = (ui,p). The space and time derivatives are then reexpressed as follows:

∂

∂xi

= ∂

∂ξi

+ δ
∂

∂Xi

,
∂

∂t
= ∂

∂τ
+ δ

∂

∂T
. (A3)

We expand q ′ in powers of δ and the rotation parameter �F as [11]

q ′(ξ ,X ; τ,T ) =
∞∑

n,m=0

δn|�F |mq(nm)(ξ ,X ; τ,T ). (A4)

The O(δ0|�F |0) field corresponds to the homogeneous turbulence. In this formalism, the effects
of inhomogeneity and anisotropy and the effects of rotation are systematically incorporated in
the higher-order fields, O(δn) and/or O(|�F |m) with n � 1 or m � 1, in a perturbational manner.
Subsequently, the Fourier transformation is applied to the fast variables. With respect to the lowest-
order field, we assume the statistical properties〈

ũ
(00)
i (k,X ; τ,T )ũ(00)

j (k′,X ; τ ′,T )
〉

=
[
Dij (k)

E0(k,X ; τ,τ ′,T )

4πk2
+ i

2

k�

k2
εij�

E0
H (k,X ; τ,τ ′,T )

4πk2

]
δ(k + k′), (A5)
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where Dij (k) = δij − kikj /k2 and E0 and E0
H denote the spectral functions of the turbulent energy

and helicity, respectively, which satisfy the following expressions:

1

2

〈
u

(00)
i u

(00)
i

〉 =
∫ ∞

0
dk E0(k,X ; τ,τ,T ), (A6)

〈
u

(00)
i ω

(00)
i

〉 =
∫ ∞

0
dk E0

H (k,X ; τ,τ,T ). (A7)

The higher-order fields are solved by using the Green’s function Gij of the lowest-order velocity
equation that corresponds to a homogeneous turbulent field. The statistical average of the Green’s
function is given as follows:

〈Gij (k,X,τ,τ ′,T )〉 = Dij (k)G(k,X ; τ,τ ′,T ). (A8)

Following the calculation, we replace E0 and E0
H by E and EH , respectively, namely, we renormalize

the lowest-order velocity correlations by the exact correlations. Up to O(δ|�F |), the Reynolds stress,
the pressure diffusion, and the pressure-strain correlation are calculated, respectively, as

Bij = [〈
u

(00)
i u

(00)
j

〉 + 〈
u

(01)
i u

(00)
j

〉 + 〈
u

(10)
i u

(00)
j

〉 + 〈
u

(11)
i u

(00)
j

〉 + (i ↔ j )]D

= −2νT Sij + [
χi2�F

j + χj 2�F
i

]
D
, (A9)

�ij = δ
∂

∂Xj

[〈
u

(00)
i p(00)

〉 + 〈
u

(01)
i p(00)

〉 + 〈
u

(00)
i p(01)

〉] + (i ↔ j )

= 1

3

[
∂

∂xj

(
L2H2�F

i

) + ∂

∂xi

(
L2H2�F

j

)] + N + O(|u(00)|3), (A10)


ij = 2
〈
s

(00)
ij p(00)〉 + 2

〈
s

(01)
ij p(00)〉 + 2

〈
s

(00)
ij p(01)〉 + δ

(
2
〈
s

(10)
ij p(00)〉 + 2

〈
s

(00)
ij p(10)〉 + 2

〈
s

(11)
ij p(00)〉

+ 2
〈
s

(10)
ij p(01)

〉 + 2
〈
s

(01)
ij p(10)

〉 + 2
〈
s

(00)
ij p(11)

〉)
= − 3

10

[
∂

∂xj

(
L2H2�F

i

) + ∂

∂xi

(
L2H2�F

j

)]
D

+ N + O(|u(00)|3), (A11)

where

νT = 7

15

∫ ∞

0
dk

∫ τ

−∞
dτ ′G(k,τ,τ ′)E(k,τ,τ ′), (A12a)

χi = η
∂H

∂xi

= 1

30

∫ ∞

0
dk k−2

∫ τ

−∞
dτ ′G(k,τ,τ ′)

∂EH (k,τ,τ ′)
∂xi

, (A12b)

L2H =
∫ ∞

0
dk k−2EH (k,τ,τ ), (A12c)

s
(0n)
ij = 1

2

(
∂u

(0n)
i

∂ξj

+ ∂u
(0n)
j

∂ξi

)
, (A12d)

s
(1n)
ij = 1

2

(
∂u

(1n)
i

∂ξj

+ ∂u
(1n)
j

∂ξi

)
+ 1

2

(
∂u

(0n)
i

∂Xj

+ ∂u
(0n)
j

∂Xi

)
. (A12e)
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APPENDIX B: DETAILS OF THE EXTERNAL FORCE

The vector potential ψi in Eq. (3.4) is obtained by solving the time evolution equation

ψi(t + �t) =
(

1 − �t

τ

)
ψi(t) + �t

τ
ri, (B1)

where τ = 50�t and the vector ri is generated by using a random variable. This corresponds to the
Ornstein-Uhlenbeck process with the variance of σOU = √

�t/2τ when ri denotes the Gaussian
random variable [36]. If the weighting function g(y) in Eq. (3.4) is constant in space, then the
one-point two-time correlation of the external force is expressed as [31]

〈f i(x,t)f j (x,s)〉 ∝ δij e
−(t−s)/τ . (B2)

The amplitude of the random vector ri is determined by considering the power and helicity spectra
of f i , Eex(k) and Eex

H (k), as follows:

1

2
〈riri〉 =

∫ ∞

0
dk k−2Eex(k), (B3a)

〈
riεij�

∂r�

∂xj

〉
=

∫ ∞

0
dk k−2Eex

H (k). (B3b)
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