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Stability analysis for n-periodic arrays of fluid systems
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A computational framework is proposed for the linear modal and nonmodal analysis
of fluid systems consisting of a periodic array of n identical units. A formulation in
either time or frequency domain is sought and the resulting block-circulant global system
matrix is analyzed using roots-of-unity techniques, which reduce the computational effort
to only one unit while still accounting for the coupling to linked components. Modal
characteristics as well as nonmodal features are treated within the same framework, as are
initial-value problems and direct-adjoint looping. The simple and efficient formalism is
demonstrated on selected applications, ranging from a Ginzburg-Landau equation with an
n-periodic growth function to interacting wakes to incompressible flow through a linear
cascade consisting of 54 blades. The techniques showcased here are readily applicable to
large-scale flow configurations consisting of n-periodic arrays of identical and coupled fluid
components, as can be found, for example, in turbomachinery, ring flame holders, or nozzle
exit corrugations. Only minor corrections to existing solvers have to be implemented to
allow this present type of analysis.

DOI: 10.1103/PhysRevFluids.2.113902

I. INTRODUCTION

Fluid systems consisting of an array of identical subunits are common in many industrial
configurations. Prominent among them are high-performance axial or radial turbines, compressors,
and pumps where a specific number of blades are mounted on a circular hub. Other applications
that fall under the same category are ring flame holders in combustion chambers, injection devices
in afterburners, or the corrugated aircraft-engine nacelles intended to diminish jet-induced noise. In
these configurations the geometry of each individual subunit is identical and so is the flow behavior
in it (see Fig. 1 for an example and a sketch). Consequently, it seems tempting to analyze the flow
through a single unit in isolation and account for the influence of neighboring components via
periodic boundary conditions. While this practice has been widely applied, it is easy to demonstrate
that it cannot capture a range of fluid motion (in particular, multimodal fluid instabilities) that may
be important for the safe and efficient operation of an n-periodic fluid device. More specifically,
modal solutions that are periodic over the entire n units, but nonperiodic over individual or multiple
units, are excluded by a one-unit analysis with periodic boundary conditions.

A global analysis, i.e., treating the entire n-component geometry, would remedy this shortcoming,
but would yield a discretized system of excessive, or even prohibitive, size. Although we will start our
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FIG. 1. (a) Example of an n-periodic fluid system: a gas-stove burner. (b) Sketch of an n-periodic fluid
system consisting of n identical subunits described by the respective state vector qj , j = 0, . . . ,n − 1.
(c) Analysis of a single unit with imposed periodic boundary conditions.

development from a formulation of the full global system, we will exploit its block-circulant structure
to reduce it to a modified single-unit system, thus achieving the computational cost of isolated-unit
periodic analyses while correctly modeling the full interaction with all n − 1 subcomponents. In ad-
dition, the breakdown into a single subunit and its subsequent linear analysis exhibits ideal scalability
on a parallel computer architecture, demonstrating additional benefits for this type of analysis.

The ubiquity of fluid systems characterized by an n-periodic arrangement of identical units or
by multiperiodic geometric features has spawned a great deal of analyses and simulations: Flow
in wavy or grooved channels [1–4] or past arrays of roughness elements and vortex generators
[5], acoustics in periodic wave-guides [6], energy extraction from a buoy array [7], and of course
flow in turbomachines [8–14] and combustors [15–21] are but a few examples that fall under this
category. Not surprisingly, specific analysis and simulation techniques that efficiently address this
periodicity have been developed, in particular for turbomachinery applications, typically describing
blade-to-blade dynamics, aeroelastic properties, and rotor-stator interactions. Among the proposed
and frequently employed techniques are the harmonic-balance method [22,23], which treats time-
periodic flow as a sequence of matched frequencies, the phase-lagged boundary condition method [8],
which employs phase-shifted flow variables on the interface between individual subunits, and, closely
related, the chorochronic boundary condition method [9,10,12,13], which generalizes the former
techniques to multiple (and distinct) periodicity by an appropriate time shift. In particular, the phase-
lagged and chorochronic boundary conditions are commonly used in time-periodic flow, for example,
in the periodic forcing of a turbomachinery blade passage by upstream stators or rotors. In this case,
the implemented phase shifts account for the time delay in the forcing that the boundaries experience.
The above techniques deal with a variety of geometric configurations and flow situations that exhibit
a spatial (commonly azimuthal or discrete-rotational) periodicity, time periodicity, or both.

Closest to the framework used in this article is the analysis of periodic systems using Bloch
waves [24]. In a Bloch wave formalism a relation between the solution in each subunit in the
form of a geometric series is presumed. The geometric factor can be interpreted as a phase shift
between solutions in various units and is related to a cross-unit Bloch wave number. Substituting this
ansatz into the governing equations yields a parametrized sequence of equations for the fundamental
solution in a single unit [6,16]; the parameter is the Bloch wave number.

In this article we alternatively propose and use a linear-algebra approach, taking advantage of
the block-circulant nature of the linearized governing equations, for spectral analysis or initial-value
problems. Among the well-known properties of block-circulant matrices is the analytic nature of
the symbol curve [25], which takes on a particularly compact form for nearest-neighbor couplings
that are often encountered in physical and engineering applications. This symbol curve can be
computed without a priori committing to a specific number of individual subunits. It is then
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discretized along its arc length according to the number n of subunits, which subsequently yields
the spectrum of the n-periodic system. The discretized symbol curve represents the mapping of
roots of unity under the respective block matrices, where the indices of the roots correspond to
the associated Bloch wave number. In addition to spectral (modal) properties, which mirror their
equivalents in Bloch wave theory, appropriate matrix functions, as used in a nonmodal stability or
receptivity analysis, can also be formulated in a very compact manner and the interaction between
any two subunits can be quantified and assessed, giving a measure of perturbation propagation
across subunits. The direct application of the formalism to matrix functions avoids the recasting
into an eigenvalue problem, involving the adjoint operator. Finally, rather than a reformulation of
the governing equations using Bloch wave theory, the proposed formalism can be straightforwardly
implemented in existing simulation codes with little effort and minimal modifications.

The article is organized as follows. Starting from a full global description of an n-periodic fluid
system, Sec. II will introduce practical tools to arrive at a single-unit problem and to recover the
complete global dynamics from solutions of this single unit. A range of analysis tools will be treated
for modal (Sec. II A) and nonmodal stability analyses (Sec. II B), impulse response, frequency
response, and interunit analyses (Sec. II C) and direct-adjoint looping (Sec. II D). Implementation
strategies and access details to software used in this article are given in Sec. II E. Section III
gives demonstrations of the presented tools, starting with simple model equations and advancing to
more complex and realistic configurations: a one-dimensional Ginzburg-Landau equation with an
n-periodic growth potential (Sec. III A), a periodic array of interacting Bickley wakes (Sec. III B),
and incompressible flow through an array of compressor blades (Sec. III C). In each application,
particular attention is directed towards low-frequency organized motion and synchronization across
multiple subunits, which is contrasted to flow behavior periodic over one single unit. Finally, Sec. IV
presents conclusions, extensions, and an outlook for future applications.

II. MATHEMATICAL FRAMEWORK

We consider a general, nonlinear evolution problem of the form

∂Q
∂t

= f(x,y,z,t ; Q), (1)

where Q is a vector field that fully describes the state of our fluid system. We further assume
periodicity over n identical units, which we representatively take in the z coordinate. This periodicity
is mathematically expressed in the form f(x,y,z,t ; Q) = f(x,y,z + n�,t ; Q), with � as the z extent
of a single unit. After spatially discretizing the above equations and linearizing about an equilibrium
point Q̄, with Q = Q̄ + εq, we arrive, for O(ε), at an evolution equation for the small perturbations
q, which reads

d

dt
q = Aq, (2)

with A = ∂f/∂Q|Q̄ associated with (1). The specific n-periodic shape of the governing equations (1)
results in a block-circulant form of the Jacobian A with

d

dt

⎛
⎜⎜⎜⎜⎝

q0

q1
...

qn−2

qn−1

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

A0 A1 · · · An−2 An−1

An−1 A0 · · · An−3 An−2

An−2 An−1 · · · An−4 An−3
...

...
...

...
A1 A2 · · · An−1 A0

⎞
⎟⎟⎟⎟⎠

︸ ︷︷ ︸
A

⎛
⎜⎜⎜⎜⎝

q0

q1
...

qn−2

qn−1

⎞
⎟⎟⎟⎟⎠

︸ ︷︷ ︸
q

. (3)

In this expression, the discretized state vector q is partitioned into n components qj , j = 0, . . . ,n − 1,
each fully describing the flow in the j th unit. By formulating the linearized problem in the form
(3), we have tacitly assumed a coloring scheme for the state vector q that aligns all variables unit
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by unit and identically from unit to unit. Depending on the original formulation of (1) or the chosen
time-stepping scheme, an appropriate permutation of the state-vector variables may be required to
bring the associated linearized system matrix A into block-circulant form; examples will be given
in later sections.

It is important to note that the formulation (3) allows interactions between a given unit j with
any of the remaining units i �= j . The matrix A0 ∈ CN×N , along the diagonal of A, describes the
dynamics within the specific unit and is identical for each unit; the matrices A1,...,n−1 ∈ CN×N , in the
off-diagonal positions of A, represent the interaction with the other units. The number of degrees of
freedom in each subunit is denoted by N (commonly, the number of grid points times the number of
state variables). Owing to the n-periodic configuration, the global matrix A is block circulant. This
specific shape will have consequences on the analysis and simulation of n-periodic fluid systems
and will be further exploited in the following sections.

First and foremost, we are interested in bringing the block-circulant matrix A into block-diagonal
form. Recalling that block-circulant matrices represent special cases of block-Toeplitz matrices
whose spectrum can be described by its associated symbol [25], we form the matrix J ∈ Cn×n defined
as Jj+1,k+1 = ρk

j /
√

n, with j,k = 0,1, . . . ,n − 1, and ρj as the nth roots of unity according to

ρj = exp(ijϑ) with ϑ = 2π

n
, j = 0,1, . . . ,n − 1. (4)

Based on the matrix J, we compose the unitary matrix P ∈ CnN×nN according to

P = J ⊗ IN×N, (5)

where ⊗ denotes the Kronecker product of two matrices and IN×N stands for the N × N identity
matrix. With these definitions, it can easily be shown [26,27] that a similarity transformation based
on P block diagonalizes the block-circulant matrix A according to

PH AP =

⎛
⎜⎜⎜⎝

Â0

Â1

. . .
Ân−1

⎞
⎟⎟⎟⎠ ≡ Â, (6)

with Âj ∈ CN×N denoting the decoupled subsystem matrices and the superscript H representing
the transconjugate (Hermitian) operation. More importantly, this expression can be employed to
efficiently evaluate any matrix function f (A) for a block circulant A. We have

PHf (A)P =

⎛
⎜⎜⎜⎝

f (Â0)
f (Â1)

. . .
f (Ân−1)

⎞
⎟⎟⎟⎠ = f (Â), (7)

which will be helpful in forming various matrix operators arising in the temporal and frequential
analysis of n-periodic fluid systems (see below).

We can already state at this point that the evaluation of matrix functions, a key component in
the analysis of fluid systems, has been reduced to a corresponding and independent analysis of n

smaller subsystem matrices Â0,...,n−1 by exploiting the block-circulant structure of the global system
matrix A. It is interesting to point out that only � n

2 �, rather than n, computations are necessary, if the
coupling matrices Aj �=0 satisfy a symmetry condition of the form

AH
j = An−j , j = 1, . . . ,n − 1. (8)

In this case, the influence of neighboring subunits on each side of the central unit is equal. The
symmetry condition (8) is often encountered in physical systems and is worth exploiting for
computational efficiency.
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In the preceding section and in what follows, we use the following notation for our system
matrices: Matrices associated with the full n-periodic (global) system will be denoted simply by a
symbol, e.g., the matrix A; the various blocks of this block-circulant matrix will be denoted by a
subscript j , such as in Aj ; once brought into block diagonal form via the matrix P, the transformed
matrix will be marked by a caret, such as Â, and its diagonal blocks will be indicated by Âj .

A. Modal solutions of the global matrix

A first step in our analysis is the assessment of the asymptotic (t → ∞) stability of the global
system matrix A, given by its spectrum. The block diagonalization from the preceding section
suggests the spectral analysis of the diagonal blocks Âj , which can be accomplished independently
and in parallel. The unitary similarity transformation (5) based on P is equivalent to the expression

Âj = A0 + ρjA1 + ρ2
j A2 + · · · + ρn−1

j An−1 (9)

for the decoupled subsystem matrices Âj with the root-of-unity factor ρj introduced in (4) [28].
The spectrum of the global stability matrix A is then simply the union of the n spectra of Âj for
j = 0, . . . ,n − 1.

By repeated multiplication by ρj of the eigenvalue problem associated with (3), it is not difficult
to show that the compound vector of the form

q̃ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

vj

ρj vj

ρ2
j vj

...

ρn−1
j vj

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, j = 0, . . . ,n − 1, (10)

constitutes an eigenvector of A ∈ CnN×nN , i.e.,

Aq̃ = λ̃q̃, (11)

provided that the vector vj ∈ CN in (10) satisfies the smaller (N × N ) eigenvalue problem, involving
the subsystem matrices Âj ,

Âj vj = λvj . (12)

The geometric sequence for the eigenvector components, starting with a fundamental solution vj , is
equivalent to the underlying assumption of Bloch wave analysis.

We thus have a procedure to compute the full global spectrum without forming or decomposing
the full global stability matrix A. For a given number n of identical subunits, we start by computing
the nth roots of unity ρj , j = 0, . . . ,n − 1. For each of these roots, we form the matrix Âj following
(9) and solve for its eigenvalues 	j = diag{λ1, . . . ,λN } and eigenvectors Vj = {v1, . . . ,vN }. We
then form the global eigenvectors q̃ from each v1,...,N according to (10); the eigenvalues λ1,...,N for
our specific value of ρj are already part of the global spectrum. As we repeat this procedure for all
remaining roots of unity ρj , we recover the full global spectrum of A. However, only eigenvalue
problems of the size of one individual unit (with N degrees of freedom) have to be solved, albeit
multiple times. For large-scale applications, this latter feature becomes advantageous in a massively
parallel computing environment. The analysis of a single subunit with periodic boundary conditions
amounts to an analysis of the stability matrix Â0 with ρ0 = 1, i.e.,

Â0 =
n∑

i=1

Ai . (13)
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Before proceeding it is important to recall that circulant matrices have orthogonal eigenvectors
and are thus normal [25]. Consequently, the norm of any matrix function is determined by the
least-stable eigenvalue. For block-circulant matrices, as in our case, transient effects can arise
due to non-normality of each individual subunit dynamics, but no additional transient effects arise
from the superposition of different values of ρj as the eigenvectors of block-circulant matrices are
block orthogonal. This latter statement can easily be verified by forming the scalar product of two
eigenvectors of the form (10). We assume that the two eigenvectors stem from two different values
of ρ, which we take as ρj and ρk with j �= k. Denoting by vj an eigenvector of Âj and by vk an
eigenvector of Âk we arrive at

q̃H
j Qq̃k =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

vj

ρj vj

ρ2
j vj

...

ρn−1
j vj

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

H⎛
⎜⎜⎜⎜⎝

Q0

Q0

. . .

Q0

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

vk

ρkvk

ρ2
k vk

...

ρn−1
k vk

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(14a)

= (1 + ξ + ξ 2 + · · · + ξn−1)vH
j Q0vk (14b)

= 1 − ξn

1 − ξ
vH

j Q0vk, (14c)

with ξ = ρ∗
j ρk = exp[2πi(k − j )/n] and Q0 representing a positive-definite weight matrix defined

over one subunit with Q = diag{Q0, . . . ,Q0}. Recalling that ξn = 1 for j �= k, we conclude that two
global eigenvectors corresponding to two different root-of-unity values are mutually Q0 orthogonal.
This eigenvector structure for block-circulant matrices A will be important for the nonmodal analysis
in the next section.

B. Nonmodal solutions of the global matrix

Even though a spectral analysis of the n-periodic system gives insight into long-time stability
properties, we are even more interested in the short- or finite-time dynamics that arises from a
superposition of modal solutions. Two cases emerge: (i) the superposition of modal solutions within
a single subunit, governed by the eigenstructure of Âj , and (ii) the superposition of modal solutions
from all subunits, taking into account the eigenstructures of Âj , j = 0, . . . ,n − 1. The latter case is
of particular interest, as it may describe the cross-unit dynamics, which is absent in the former case.

A nonmodal analysis avoids the assumption of an exponential time dependence exp(λt) and
instead considers the initial-value problem (2) or its driven counterpart [29]. We have

d

dt
q = Aq,

d

dt
q = Aq + f,

q(0) = q0, q(0) = 0.

(15)

We define the maximum amplification G(t) and the optimal frequency response R(ω) as

G(t) = max
q0

‖q(t)‖
‖q0‖ = ‖ exp(tA)‖, R(ω) = max

f̂

‖q̂‖
‖f̂‖ = ‖(iωI − A)−1‖, (16)

with f = f̂ exp(iωt) and analogously for q̂. The matrix exponential norm determines the optimal
amplification (in the chosen norm), starting from an optimal initial condition, over a user-defined time
horizon [0,t]. The resolvent norm, in contrast, measures the optimal response (again, based on the
chosen norm) to a harmonic forcing at a given frequency ω; the spatial shape of the optimal driving
is given by f̂. Either analysis captures effects due to a potential nonorthogonality of the eigenvector
structure or, equivalently, the non-normality of the underlying linearized evolution operator A.
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In general, we have to evaluate the norm of a matrix function ‖f (A)‖ [either f (z) = exp(tz) or
f (z) = (iω − z)−1 in our case] for block-circulant arguments A. An eigenvalue decomposition of A,
using its block-circulant structure, will be used to accomplish this. First, we recall the weight matrix
Q0 ∈ RN×N , defined identically over each subunit, which expresses a particular, and physically
meaningful, measure of state-vector size, as well as the matrix Q = diag{Q0, . . . ,Q0} as the block-
diagonal matrix consisting of the n individual weight matrices Q0. The latter matrix is used to express
the norm of the global state vector according to ‖q‖2

Q = qH Qq. This weighted vector norm induces
the corresponding matrix norm as follows: The positive-definite matrix Q0 is Cholesky decomposed
into Q0 = FH

0 F0 and block-diagonal matrices are formed according to F = diag{F0, . . . ,F0} and
F−1 = diag{F−1

0 , . . . ,F−1
0 }. The global matrix norm, applied to f (A), is then given as ‖f (A)‖Q =

‖Ff (A)F−1‖2, with the subscript 2 indicating the standard 2-norm [30]. We proceed by bringing
the global matrix function of the block-circulant A into block-diagonal form using the unitary
transformation P as introduced in (5). We then deduce for the (weighted) Q-norm of the global
matrix function f (A),

‖f (A)‖Q = ‖FPf (Â)PH F−1‖2 = max
j

∥∥F0Vj f (	j )V−1
j F−1

0

∥∥
2, j = 0, . . . ,n − 1. (17)

The eigenvalues and eigenvectors in (17) satisfy ÂjVj = Vj	j . The rightmost expression in (17)
contains only matrices that are defined on a subunit and Eq. (17) thus states that the Q-weighted
norm of the global matrix function is simply the maximum over all subunit matrix-norm calculations.
This general expression can now be applied to f (A) = exp(tA) to treat initial-value problems or to
f (A) = (iω − A)−1 to investigate harmonically driven systems.

Besides the maximum energy amplification of an initial condition or the maximum energy
response due to harmonic forcing, we are often interested in the shapes of the optimal initial
and terminal conditions or, more importantly, the shapes of the optimal forcing and excited
response. For linear time-invariant problems, this computation is often performed by a singular-value
decomposition of the matrix exponential (evaluated at a given time t∗) or the resolvent norm
(evaluated at a given frequency ω∗). As before, we can take advantage of the block-circulant
structure of the underlying matrix and apply the singular-value decomposition (or, parenthetically,
any other matrix decomposition) of f (A) to each of the n blocks f (Âj ) individually, taking into
account the weighting by the matrices F0 and F−1

0 . Introducing the singular-value decomposition
of the decoupled blocks as Uj�jWH

j = svd[F0f (Âj )F−1
0 ], we can cast the principal left and right

singular vectors u and w of the (global) matrix f (A) in the form

u =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

uj

ρj uj

ρ2
j uj

...

ρn−1
j uj

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, w =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

wj

ρj wj

ρ2
j wj

...

ρn−1
j wj

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (18)

with uj and wj as the principal left and right singular vectors of f (Âj ) and j chosen as j =
arg maxj σj , with σj the largest singular value of �j . In other words, we select j as the index that

yields the largest norm (maximum singular value) of f (Âj ) over all its values j = 0, . . . ,n − 1. The
above expressions then provide a procedure to compute the optimal perturbation and the optimal
frequency response of the global n-periodic system by solving for the principal singular vectors of
the n local subsystems. Moreover, the computations for the n subsystems are independent and can
be readily parallelized.
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C. Input-output analysis and cross-unit dynamics

It is often advantageous and instructive to assess the input-output behavior of a complex system.
To this end, forcing is applied only to a specific subdomain of the flow or to only a particular state
variable; likewise, only limited and user-specified output quantities are measured and assessed. In
this manner, the strength and characteristics of a link between an input and output quantity can be
probed, leading to more physical insight into the fluid system [31]. For example, the influence of
fuel-mixture fluctuations in the feed pipe on the acoustic far-field output of a premixed flame could
be quantified, to name a representative case from combustion dynamics for this type of analysis.

Within our block-circulant analysis framework, we are interested in evaluating the general
expression, formulated for the global system,

K = ‖Cf (A)B‖Q, (19)

where B and C represent masking matrices that select and construct specific input and output
quantities, respectively, from the global state vector. The matrix function f (A) is linked to either an
initial-value problem (via a fundamental solution operator or, for a linear time-invariant system, a
matrix exponential) or a driven problem (see above). Exploiting the block-circulant structure of A,
we can bring the global matrix function into block-diagonal form using (5). We can write

K = ‖FCPf (Â)PH BF−1‖2, (20)

with Â = diag{Â0, . . . ,Ân−1}. At this stage we will be more specific and investigate the perturbation
propagation across subunits by choosing the block-diagonal masking matrices B and C to be nonzero
in a specific subunit and zero elsewhere. More specifically, we study the dynamics between the single
(input) subunit p and the single (output) subunit q. Within these subunits we introduce the local
masking matrices as Bp ∈ CN×N and Cq ∈ CN×N , respectively. The global masking matrices (in
block-diagonal notation) are then given as

B =
⎛
⎝0p−1

Bp

0n−p

⎞
⎠, C =

⎛
⎝0q−1

Cq

0n−q

⎞
⎠, (21)

where 0k denotes a kN × kN matrix of zeros. We further recall the definition (5) of the matrix
P in terms of a Kronecker product, which allows a more explicit formulation of PH B and CP by
considering only nonzero contributions. We introduce the notation M:,p and Mq,: to denote the pth
block column or qth block row of a matrix M consisting of n × n blocks of size N × N . We have

(PH B):,�=p = 01, (PH B):,p = Bp

(
ρ

p−1
k

)∗
/
√

n, k = 0, . . . ,n − 1 (22a)

(CP) �=q,: = 01, (CP)q,: = Cqρ
k
q−1/

√
n, k = 0, . . . ,n − 1. (22b)

Substituting expression (22b) into (20) yields the compact formula for the norm of a function f (z),
describing the transunit dynamics between unit p and q, according to

Kpq = ‖FCPf (Â)PH BF−1‖2 =
∥∥∥∥∥∥F0Cq

⎛
⎝1

n

n−1∑
j=0

ζjf (Âj )

⎞
⎠BpF−1

0

∥∥∥∥∥∥
2

, (23)

with ζj = exp[2πij (q − p)/n]. As before, the final expression contains only components that
describe single-unit characteristics; they can be evaluated efficiently and independently. At the same
time, global effects spanning multiple units are captured by the above formula.

D. Direct-adjoint analysis

The previous algorithms for the computation of optimal initial condition and frequency response,
using the respective matrix function f (A), via a singular-value decomposition holds for linear
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time-invariant systems. Deviating from this restriction requires a more general approach, commonly
involving direct and adjoint equations [29]. In this approach, we state a cost functional J to be
optimized, such as optimal energy amplification, maximal response to forcing or optimal suppression
of instabilities, among many other options. In general, the cost functional depends on the (global)
state vector q and a control variable f (e.g., modeling boundary forcing); mathematically, we have
J = J (q,f). Our optimization problem J → opt is constrained by our governing equation (3),
which we augment on the left by f, which represents the application of control efforts. It can then
be restated as an unconstrained problem by introducing Lagrange multipliers or adjoint variables,
denoted by q+, which will enforce the constraint from our governing equation. We obtain an
augmented Lagrangian L in the form

L(q,q+,f) = J (q,f) −
〈
q+,

d

dt
q − Aq − f

〉
, (24)

with 〈f1,f2〉 = ∫ T

0 fH
1 f2 dt as the chosen inner product. Rendering zero the first variations of L with

respect to q, q+, and f, respectively, results in a system of three equations

d

dt
q = Aq + f, − d

dt
q+ = AH q+ + δJ

δq
,

δJ
δf

= q+. (25)

The first of Eqs. (25) restates our original governing system, while the second represents an evolution
equation for the adjoint variable q+. The third of Eqs. (25) produces an expression for the gradient
of our cost functional J with respect to the control variable f and is referred to as the optimality
condition. These three equations need to be satisfied for an optimal solution. Instead of solving the
system of equations (25) simultaneously, we employ an iterative scheme: Starting with an initial
guess for f, we solve the direct and adjoint equations in (25); the resulting solution is used to evaluate
the optimality condition and, via the gradient expression, determine an improved guess for f for a
subsequent iteration. The iterative scheme terminates after a user-defined convergence criterion is
satisfied. For further details on the algorithmic steps, the reader is referred to [29] or [32].

Again, taking advantage of the block-circulant structure of A and AH , we can decouple the
subunits by using the transformation P from (5). Applying this transformation, we arrive at a system
of three equations, the direct and adjoint evolution equation and the optimality condition, for each
of our subunits. We obtain

d

dt
qj = Âj qj + fj , − d

dt
q+

j = ÂH
j q+

j + δJ
δqj

,
δJ
δfj

= q+
j , (26)

with (f0, . . . ,fn−1) = PH f. As before, these systems are best treated iteratively: The direct and adjoint
evolution equations are solved for a given control fj (a guess for the first iteration), after which the
gradient expression is used to update or improve the control fj for the next iteration. Once more, the
global problem breaks down into n local problems, which can be solved independently.

E. Implementation for large-scale applications

The computational formalism for the analysis of n-periodic fluid systems based on the spectral
properties of block-circulant matrices has been formulated for a first-order temporal evolution
problem. Time discretization by higher-order stepping schemes, however, typically introduces
multiple time levels of state vector. In this case, the corresponding spectral problem is polynomial
in the eigenvalue and the solution algorithm for the eigenvalues and eigenvectors has to be adjusted
accordingly [33,34]. It also has to be kept in mind that, in this case, the state vector has to be
reordered to yield a unit-by-unit composition; the same reordering will bring the global system
matrices into block-circulant form. An example where this modification is necessary is included
below (see Sec. III C).

For large-scale problems, the linearization step resulting in (2) can most conveniently be
accomplished using techniques such as the complex-step derivative [35] combined with a tiling
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eig(Â(eiθj ))
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FIG. 2. Sketch of the spectrum of a block-circulant matrix. (a) and (b) The spectrum is continuously
parametrized by θ and is given by the map of the unit circle under eig(Â); N curves (in our sketch, N = 3)
result, with Â ∈ CN×N . (c) and (d) The spectrum for a 5-periodic configuration, with block matrices A0,1,n−1

as in (a) and (b), follows from a discretization of the continuous curve (only the dominant branch is shown).
(e) and (f) Spectrum for a 6-periodic configuration, with block matrices A0,1,n−1 as in (a) and (b). Notice the
increase in growth rate of the least-stable mode (circled symbol), as one more unit is added to the 5-periodic
configuration. The eigenvalue corresponding to θ = 0 is indicated in blue and is independent of the number n

of subunits.

method based on the decoupling of grid points beyond the maximum stencil width [36]. Automatic
differentiation techniques (see [37]) can also be applied to access linearized or adjoint information,
as can alternative techniques (see, e.g., [38]).

The case of nearest-neighbor coupling is rather common in many applications. In this case, only
a three-unit system needs to be discretized and processed, independent of the final configuration and
periodicity of interest. In other words, only the system matrices A0, A1, and A2 (from the 3-periodic
system) have to be formed and stored. Stability and receptivity properties of different configurations
with a varying number of subunits do not require additional computations beyond the initial three
system matrices A0,1,2. Their superposition and weighting with ρj according to

Âj = A0 + ρjA1 + A2/ρj (27)

determine the block-diagonalized subunit matrices Âj that enter the expressions for the analysis of
n-periodic systems given above. In more mathematical terms, the symbol curve is given as [25]

Â(z) = A0 + zA1 + A2/z (28)

for z = exp(iθ ) and θ ∈ [0,2π ], and θ -parametrized line spectra can be computed as eig[Â(θ )].
The spectra for specific n-periodic configurations consist simply of discretizations of the unit circle
exp(iθ ) into n points, i.e., exp(iθj ) with θj = 2πj/n, and a subsequent mapping onto the line spectra
(see Fig. 2 for a sketch). In this manner, it is straightforward to quantify the sensitivity of spectral
properties to the removal (n → n − 1) or augmentation (n → n + 1) by a subunit. Treating the
change in n as a matrix perturbation problem for Â[exp(iθ )], we can link, to first order, a change in
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x
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U

μ(x)

FIG. 3. Sketch of the 11-periodic potential (growth and decay function) used in the example of the Ginzburg-
Landau equation, modeling the flow over a grooved wall (see the bottom). The remaining parameters are U = 10
and ν = 10−4. Each of the 11 subunits has been discretized by N = 100 mesh points.

θ to a change in an eigenvalue of Â according to

δλk = iwH
k [A1 exp(iθ ) − A2 exp(−iθ )]vkδθ, (29)

where wk and vk denote the left and right eigenvectors, respectively, of Â[exp(iθ )] corresponding
to the eigenvalue λk and satisfying the normalization condition wH

k vk = 1. For the special case of
changing the number of subunits from n to n + �, we obtain, for a user-defined root of unity j , the
expression δθj /θj = −�/(n + �). From the above we can determine, for example, the change in
growth rate of the kth eigenvalue for a specific j by considering the real part of (29).

In an effort to encourage experimentation with the proposed computational framework and to
facilitate the analysis of n-periodic fluid systems, the codes underlying the examples in this article
(see Sec. III) will be made available, together with brief documentation [39].

III. APPLICATIONS

The methodology introduced above is now applied to n-periodic fluid systems of increasing
complexity, starting from a simple model equation to the analysis of a 54-blade passage. In each
subsection, various aspects of the formalism are demonstrated and special emphasis is directed
towards effects stemming from a synchronization across multiple subunits and the description of
lock-in processes.

A. A simple model: The Ginzburg-Landau equation with periodic potential

In this section we will consider the linearized Ginzburg-Landau equation with an n-periodic
potential or growth function. This equation models physical processes commonly encountered in
more complex fluid systems, such as convection, dissipation, dispersion, and localized amplification
of perturbations. We have

∂u

∂t
= −U

∂u

∂x
+ ν

∂2u

∂x2
+ μ(x)u, (30)

with U the advection speed, ν the (potentially complex) viscosity, and μ = − cos(2πx) the growth
and decay function. We consider the interval x ∈ [0,1] for each subunit, but align n such units before
periodic boundary conditions link the nth unit back to the first one. The global problem thus spans
the spatial interval x ∈ [0,n]. The continuous equation is discretized in space using finite differences,
with N = 100 points per subunit interval. For the case presented below, we have chosen 11 identical
subunits, i.e., n = 11 (see Fig. 3 for a sketch of the global growth and decay function). The remaining
governing parameters are U = 10 and ν = 10−4. This configuration models, for example, shear flow
over a grooved wall, where each shallow cavity acts as an amplifier of local instabilities. Of interest in
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FIG. 4. Block-circulant complex Ginzburg-Landau system with N = 100 (discretization points per period),
ν = 10−4, U = 10, and μ(x) = − cos(2πx) with x ∈ [0,1]. Eleven periods have been considered (n = 11).
(a) Spectrum of the Ginzburg-Landau operator. The blue and black symbols indicate the global spectrum,
computed globally (blue circles) and using the root-of-unity formalism (black dots). The red symbols correspond
to the 1-periodic system (ρ0 = 1), where periodic boundary conditions are enforced over one single subunit.
(b) Resolvent norm R versus the forcing frequency ω. The black curves stem from the analysis of the subsystems
for different ρj . The maximum over all curves corresponds to the global 11-periodic solution. The red curve
corresponds to the choice ρ0 = 1.

this case is the global behavior of flow over an array of grooves, in particular the rise of synchronized
motion linking multiple cavity units.

First, we compute the spectrum, illustrated in Fig. 4(a). It shows an eigenvalue distribution typical
of an advection-diffusion equation. Marked in Fig. 4(a) are the eigenvalues of the global problem, i.e.,
the eigenvalues of A, in blue symbols; they have been included to validate the collective eigenvalues
of the submatrices Âj , j = 0, . . . ,10 (see the small black symbols). In addition, the eigenvalues
of the matrix Â0 are included as red symbols. The latter eigenvalues represent the dynamics of the
1-periodic system: These eigenvalues result from considering a single subunit with periodic boundary
conditions. We observe that the Â0 eigenvalues are more damped; the most-unstable modes of the
system, however, do not belong to the spectrum of the 1-periodic system.

An even more striking picture emerges from considering the response of the global and 1-periodic
system to external harmonic forcing [see Fig. 4(b)]. We observe strong pseudoresonance behavior
for lower frequencies (e.g., −20 � ω � 20), where the 1-periodic solution (in red) predicts an only
modest response. We conclude that the inclusion of additional eigenvalues in the global spectrum is
responsible for a slow-motion dynamics that spans and couples multiple subunits and thus is absent
in the 1-periodic system.

B. An n-periodic array of wakes

Whereas the periodicity of the previous example has been in the coordinate direction that is
aligned with the mean advection, we will next consider the effect of a transverse periodicity on the
collective behavior of n identical subunits. Configurations with this type of multiple, but identical,
unit are common in many fluid devices: Spray nozzles, fuel injection systems, heat exchangers, and
screens are examples of this kind. Also, many geometric modifications to standard configurations,
such as the chevron-type corrugations of engine nacelles in commercial airliners to reduce noise,
introduce a transverse periodicity of the mean-flow profiles.

In an attempt to model transverse periodic arrays of fluid systems we consider the linear stability
of a row of wakes, where each individual unit is modeled as a Bickley wake with a base profiles
given by

U (y) = 1 − A sech2
[
a
(
y − 1

2

)]
, (31)
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FIG. 5. Sketch of a 7-periodic configuration of Bickley wakes.

with 0 � y � 1. The parameter a controls the width of the wake; the parameter A determines the
velocity deficit. Both parameters can be used to model the streamwise evolution of the wake profile
behind bluff bodies. In the examples below, we select a = 10 and A = 0.75. A global configuration
consisting of n linked subunits will be considered; a sketch of the configuration (for n = 7) is given
in Fig. 5.

The temporal evolution of two-dimensional perturbations superimposed on this base flow is
governed by the Orr-Sommerfeld equation given by

λ

(
d2

dy2
− α2

)
v = −iαU

(
d2

dy2
− α2

)
v + iαU ′′v + 1

Re

(
d2

dy2
− α2

)2

v, (32)

with v the normal velocity, α the streamwise wave number, Re the Reynolds number based on the
freestream velocity and the distance between the individual wakes, and λ the eigenvalue whose
real part constitutes the exponential growth or decay rate. The perturbation is assumed in the
form v(y) exp(iαx) exp(λt). Formulating the stability problem for a global problem consisting of n

subunits, a block-circulant global stability matrix results. As before, we are interested in contrasting
the dynamics of perturbations over one subunit against the disturbance dynamics over multiple
units. To this end, we deduce the entries in the block-circulant global matrix with nearest-neighbor
coupling, i.e., A0, A1, and An−1, where A0 describes the dynamics of the individual subunit, while
A1 and An−1 account for the coupling to adjacent units. We use fourth-order compact difference
schemes to discretize Eq. (32) in the cross-stream coordinate direction.

First, we choose a Reynolds number of Re = 400 and a streamwise wave number of α = 1
and consider a configuration with three identical units. The spectrum is shown in Fig. 6(a) and
indicates an asymptotic instability at these parameter values, with the least-stable eigenvalue at
λ = 0.0993 + 0.9012i. The eigenvalues are colored by the index j with j = 0 (representing a fully
periodic state ρ0 = 1) in gray and j = 1 [representing a cross-unit periodicity ρ1 = exp(2πi/3)]
in blue. We observe that the strongest instability is of the fully periodic type; a nearly neutral,
multi-unit-periodic mode, at a higher phase velocity λi/α, is the second most-amplified mode. For
higher modes the spectrum displays the typical Y shape of viscous shear flows: mean modes aligned
with the average base-flow velocity (Ū ≈ 0.82), which divide the spectrum into slower and faster
modes. Modes with different periodicity interlace.

Depicting the modal shapes of the first six least-stable modes gives more insight into the
perturbation dynamics of the coupled three-wake configuration. This dynamic becomes more lucid
by integrating streak lines based on the six separate normal-velocity fields to indicate the cross-stream
displacement of the perturbations. To this effect, an equispaced (in the y direction) array of particles
is released and tracked through the respective modal velocity field. The results are displayed in Fig. 7.
For the least-stable mode [Fig. 7(a)], we observe a synchronized oscillatory motion of the wake,
depicted over a full period given by the respective eigenvalue (and ignoring the small imaginary
part). The next most-unstable mode [Fig. 7(b)], however, displays a nonsynchronized behavior
where the three wakes repeatedly diverge from and converge towards the adjacent units. This break
in cross-stream symmetry continues for the next mode [Fig. 7(c)], but returns to symmetry for the
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FIG. 6. (a) Spectrum of a three-unit configuration of Bickley wakes (a = 10 and A = 0.75) with α = 1 and
Re = 400: gray, ρ0 = 1; blue, ρ1 = exp(2πi/3). (b) Norm of the matrix exponential (maximal amplification)
for the three-unit configuration. (c) Norm of the matrix exponential for a 13-unit configuration for α = 1 and
Re = 400 for ρj , j = 0, . . . ,6.

fourth and fifth modes [Figs. 7(d) and 7(e)]. The sixth mode in this sequence [Fig. 7(f)] again shows
unsynchronized subunits.

While our analysis of the modal structures identifies the strongest instability for a synchronized
motion (i.e., a mode with ρ0 = 1), the finite-time analysis based on the matrix exponential
norm shows [Fig. 6(b)] that, for short times (t � 4.5), maximum amplification is achieved by
an unsynchronized perturbation dynamics; for larger times (t � 4.5), however, the synchronized
motion prevails. The same graph demonstrates that unsynchronized transient amplification over two
convective time units reaches energy levels that synchronized motion reaches only after more than
six convective time units. Whether this disparity in amplification is sufficient for a selection principle
and the observation of preferred (unsynchronized) structures requires additional consideration.

To further demonstrate the rise and importance of cross-unit motion, we extend the above analysis
to a configuration with 13 units. This type of geometry may describe fluid motion past cylinder
bundles or mesh screens. A modal analysis still confirms the least-stable mode as a synchronized
mode [with ρ0 = 1; see Fig. 8(a)]; the two subsequent modes, however, show the locking of adjacent
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FIG. 7. Modal shapes of the first six least-stable modes of the three-wake configuration, visualized by streak
lines integrated in the cross-stream velocity field: gray, synchronized motion for ρ0 = 1; blue, unsynchronized
motion for ρ1 = exp(2πi/3). In all cases, a full period T , given by the respective phase velocity, is shown; the
real part of the eigenvalue has been ignored in the computation of the streak lines.
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FIG. 8. Modal shapes of the first three least-stable modes of a 13-wake configuration, visualized by streak
lines integrated in the cross-stream velocity field: gray, synchronized motion for ρ0 = 1; blue, unsynchronized
motion for ρ1 = exp(2πi/13) and ρ2 = exp(4πi/13). In all cases, a full period T , given by the respective phase
velocity, is shown; the real part of the eigenvalue has been ignored in the computation of the streak lines.

units in groups [as displayed in Figs. 8(b) and 8(c) by streak lines]. The nonmodal analysis of the
13-wake configuration [Fig. 6(c)] based on the matrix exponential norm even more strongly asserts
the fact that unsynchronized motion dominates the short-time dynamics of the 13-periodic array of
Bickley wakes. For our parameter values, the perturbation energy amplification from synchronized
motion dominates only after more than 15 convective time units.

In closing, we stress that, besides considering the above temporal stability problem for the periodic
array of Bickley wakes, the corresponding spatial stability problem can be treated within the same
framework. In this case, a fourth-degree polynomial eigenvalue problem for the complex streamwise
wave number α can be formulated that, after an appropriate reordering of the global state vector q,
can be recast in block-circulant form.

C. Flow through a 54-periodic blade row

As a final example, we demonstrate the analysis of n-periodic fluid systems presented in this paper
on a more complicated flow configuration of interest in turbomachinery applications. To this end,
we consider the stability characteristics of incompressible flow through a periodic linear cascade.

Throughout this example we use a numerical solver for the two-dimensional Navier-Stokes
equations that implements the projection-based immersed boundary method [40]. Based on
this technique, the governing equations in nondimensional form formulated for a domain D
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read [41]

∂u
∂t

+ u · ∇u = −∇p + 1

Re
∇2u +

∫
C

f(s)δ(x − ξ (s)) ds, (33)

∇ · u = 0, (34)

u[ξ (s)] =
∫
D

u(x)δ(ξ (s) − x) dx = uB(s), s ∈ C, (35)

where the pressure p and the distributed momentum sources f(s) along the boundary of the obstacle
C act as a set of Lagrange multipliers that enforce, respectively, the incompressibility constraint and
the no-slip boundary condition. Equations (33)–(35) are discretized using a staggered-mesh finite-
volume formulation; the viscous terms are discretized using the implicit Crank-Nicolson method,
the advection terms are discretized using the explicit second-order Adams-Bashforth scheme, and
the integrals involving the δ functions are discretized using a mollified δ function [42]. At this point,
the flow field at a given time step Qk+1 and the value of the Lagrange multiplier λ are obtained
from the flow fields at the two previous time steps, denoted by Qk and Qk−1. Flow field boundary
conditions bc1 and bc2 are imposed and the following system of equations is solved:(

A Q
QT 0

)(
Qk+1

λ

)
=

(
BQk − 3

2N (Qk) + 1
2N (Qk−1) + bc1

r2

)
. (36)

The reader is referred to [40] for the various definitions of the matrices A, B, and Q, the nonlinear
function N (·) and the vectors bc1, bc2, and r2.

We now consider a two-dimensional periodic linear cascade consisting of 54 NACA E3 Rotor
B airfoils (see [43,44] for a description of the blade geometry) with a pitch-to-chord ratio of
σ = H/C = 0.929 36 and a stagger angle of 56.6◦. The governing equations are then solved in the
reference frame of the cascade; the velocity of the unperturbed incoming flow and the blade chord
are taken, respectively, as the reference speed and reference length scale. The angle of attack, defined
as the angle between the unperturbed incoming flow direction and the blade chord, is taken as 11.1◦
and the Reynolds number Re, based on chord, is 700. The computational domain for one blade
passage is defined for −6.56 � x � 6.56 and −0.465 � y � 0.465. Upstream of the blade passages
we impose a Dirichlet boundary condition for the velocity components, while a convective outflow
boundary condition is implemented downstream. In the horizontal direction, the numerical grid is
uniform for −0.55 � x � 0.55, with �x = 0.0036, and is stretched upstream and downstream until
the maximum spacing is �x = 0.03; in the vertical direction the numerical grid has a constant
spacing equal to �y = 0.0036. The time step has been taken as �t = 0.0018 and the resulting
numerical grid has 766 cells in the horizontal direction and 258 cells per blade passage in the vertical
direction.

Following the remark in Sec. II E about the efficient composition of the necessary matrices for
nearest-neighbor configurations, we consider a three-blade passage to extract the subunit matrices
required in our analysis.

First, the flow configuration presented above is found to be globally stable and the base flow Q̄,
depicted in Fig. 9 by the vertical velocity component, has been computed simply by marching in
time the governing equations from a given initial condition. Note that the base flow is periodic over
one blade passage.

The above nonlinear equations are linearized about the base flow presented above, yielding the
following system of linear equations for the temporal advancement of a small perturbation q over
one time step: (

A Q
QT 0

)(
qk+1

λ

)
=

((
B − 3

2 N
)
qk + 1

2 Nqk−1

0

)
, (37)
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FIG. 9. Base flow for a linear cascade consisting of NACA E3 Rotor B blade profiles with a pitch-to-chord
ratio of σ = H/C = 0.929 36 and a stagger angle of 56.6◦. The angle of attack is 11.1◦ and the chord-based
Reynolds number is Re = 700. The flow is visualized by the vertical velocity component. See the text for details
on the numerical grid.

where N = [∂N (Q)/∂Q]|Q̄ represents the linearized advection terms about the base flow Q̄. By
introducing the definition

x̃k =
(

q
λ

)k

, M̃ =
(

A Q
QT 0

)
, C̃ =

(−B + 3
2 N 0

0 0

)
, K̃ =

(
− 1

2 N 0

0 0

)
, (38)

the temporal advancement over one time step reads

M̃x̃k+1 + C̃x̃k + K̃x̃k−1 = 0. (39)

Considering (38), we note that while the matrix entries A, Q, B, and N are individually block circulant,
the matrices M̃, C̃, and K̃ are not. A final row reordering, which we introduce as a permutation G of
a 3N × 3N identity matrix, brings the state vector x̃ into a unit-by-unit configuration, according to
x = Gx̃. Applied to (38), we arrive at

xk = Gx̃k, M = GM̃GT , C = GC̃GT , K = GK̃GT (40)

and the temporal advancement over one time step (now in block-circulant form) reads

Mxk+1 + Cxk + Kxk−1 = 0. (41)

Following Sec. II, we assess the long-time stability of the linearized dynamics by computing
modal solutions of the global matrix. Introducing x = x̂eλt into Eq. (41), we arrive at the quadratic
eigenvalue problem

(σ 2M + σC + K)x̂ = 0, σ = eλ�t . (42)
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FIG. 10. Continuously parametrized spectrum describing the dynamics of perturbations for a linear cascade;
the vertical axis represents the temporal growth rate λr and the horizontal axis indicates the angular frequency
λi . (a) The line spectra are colored by the angle θ ∈ [0, 2π ], parametrizing the unit circle z = exp(iθ ) in
Eq. (28). (b) and (c) Zoom in on the least-damped regions and discretization of the continuously parametrized
symbol curves by selecting n = 54 blade passages (depicted in closed circles).

As stated before, the matrices M, C, and K are block circulant; therefore we introduce the nth roots
of unity ρj and express the eigenvector of the full system x̂ as

x̂ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

x̂j

ρj x̂j

...

ρn−2
j x̂j

ρn−1
j x̂j

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (43)

where x̂j satisfies a quadratic eigenvalue problem for a modified unit given by

(σ 2M̂j + σ Ĉj + K̂j )x̂j = 0, j = 0, . . . ,n − 1 (44)

and

M̂j = M0 + ρjM1 + M2/ρj , (45a)

Ĉj = C0 + ρjC1 + C2/ρj , (45b)

K̂j = K0 + ρjK1 + K2/ρj , (45c)

with M0,1,2, C0,1,2, and K0,1,2 extracted from the 3-periodic system (40).
The above eigenvalue problems have been solved using the software package SLEPc [45] together

with the sparse direct solver MUMPS [46] and the shift-invert technique. The spectrum of the operator
has been computed for different shift values and is shown in Figs. 10(a)–10(c). More specifically, we
display the continuously parametrized symbol curves, as defined by Eq. (28). These curves describe
the spectrum in the limit of an infinite system, without any a priori decision on a specific number
of individual units. The computations are performed on a three-blade passage system. Figure 10(a)
clearly displays line spectra, parametrized by an angle θ ∈ [0,2π ], which represent the mapping of
the unit circle z = exp(iθ ) under the nearest-neighbor coupled system. The largest modal growth is
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achieved for frequencies of λi ∼ 4.8, but a preference of very-low-frequency modes (λi ∼ 0.1) is also
expected due to a weak damping of these structures. Figures 10(b) and 10(c) highlight these important
parts of the spectrum and show a “discretization” of these continuously parametrized spectral lines,
given by selecting n = 54 units. Based on the line spectra, we can assess the sensitivity of the system
to the number of individual units, estimate the number of units for weakest modal damping (or
largest modal amplification), and predict the Bloch wavelength (root of unity) of this least-damped,
most-amplified structure.

As an example of a nonmodal analysis in n-periodic fluid systems we consider the input-output
analysis described in Sec. II C. First, we introduce a harmonic forcing in the momentum equation
f = f̂eiωt ; the asymptotic response x = x̂eiωt is then given by x̂ = R(ω)Bf̂, with

R(ω) = (Meiω�t + C + Ke−iω�t )−1 eiω�t − 1

iω
. (46)

The matrix R(ω) is the resolvent operator and the matrix B is defined such that the forcing terms are
only introduced in the momentum equation. For a given angular frequency ω we then maximize the
gain by optimizing over all harmonic forcings f̂; this optimal gain can be expressed in terms of the
singular-value decomposition of R(ω)B according to

G∗(ω) = max
f̂

‖R(ω)Bf̂‖
‖f̂‖ = ‖R(ω)B‖ = σ1[R(ω)B], (47)

with σ1 denoting the leading singular value. As before, the computational cost associated with
the above calculation can be simplified by exploiting the block-circulant structure of the resolvent
operator. We thus compute optimal gain G∗ as

G∗(ω) = max
j

‖R̂j (ω)B̂0‖, (48)

where

R̂j (ω) = (M̂j e
iω�t + Ĉj + K̂j e

−iω�t )−1 eiω�t − 1

iω
, B̂0 =

(
I
0

)
. (49)
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FIG. 11. Optimal gains for varying angular frequency. The curves have been colored according to their
corresponding root of unity. The optimal gain for j = 0 is displayed in red. A closer view is presented in the
range of (b) amplified wake instabilities and (c) low-frequency dynamics.
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In Fig. 11 we present the singular values of the operator R̂j (ω)B̂0 as a function of the angular
frequency ω. The singular values for the fully periodic case, i.e., j = 0, are indicated in red, whereas
the remaining curves are colored according to their corresponding root of unity: The case j = 1 is
shown in dark blue and the case j = 53 in yellow; starting from these two cases, the color scheme
for higher and lower values of j gradually tends to green. It is apparent from the figure that the
maximum amplification at most frequencies is reached for cases that are not purely periodic; only at
rather narrow frequency windows (ω ≈ 9.5, ω ≈ 4.9, ω ≈ 0.85, and ω ≈ 0.55) does the response

(j,
ω)

(1, 0.09) (1, 0.35) (53, 0.51) (46, 0.15) (38, 0.27)
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FIG. 12. Optimal forcing and response flow fields from a nonmodal resolvent analysis of a 54-periodic
linear blade cascade for selected (low) frequencies. The periodicity j , at which the maximal gain has been
obtained, is indicated on top of the subplots, together with the chosen forcing frequency.
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behavior with single-subunit periodicity (i.e., with j = 0) constitute the optimal gain to harmonic
forcing.

Exploring the lower frequencies more closely, we recover the optimal forcing f̂ and resulting
optimal response x̂ in the 54-blade linear cascade for a given frequency. This is accomplished using
the singular-value decomposition of the subunit matrices R̂j (ω)B̂j : The principal singular vectors,
evaluated for the value of j that constitutes the maximal gain G∗(ω), represent the spatial fields of

(j,
ω)
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FIG. 13. Optimal forcing and response flow fields from a nonmodal resolvent analysis of a 54-periodic
linear blade cascade for selected (higher) frequencies. The periodicity j , at which the maximal gain has been
obtained, is indicated on top of the subplots, together with the chosen forcing frequency.
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the optimal harmonic input and output structures, once they have been restored to the global domain
using (18). For selected low frequencies they are displayed in Fig. 12.

As the maximal gain for a given frequency is achieved for different values of j , the associated
spatial structures reflect the respective periodicity along the linear 54-blade cascade. For a very low
forcing frequency of ω = 0.09 the (j = 1) subproblem constitutes the maximum response of the
54-periodic system and both the forcing and the response are characterized by a modulation along
the transverse direction that links and synchronizes the motion across many blades. This modulation,
on top of a blade-geometry-induced periodicity, is clearly visible in Fig. 12 for (j,ω) = (1,0.09),
(1,0.35), and (53,0.51), in particular in the response fields. This multiperiodic trend is continued for
higher frequencies, as shown in Fig. 12 for (j,ω) = (46,0.15) and (38,0.27), where synchronized
groups of four and two blades, respectively, dominate the optimal forcing and response flow fields. In
this case, the 1-periodic structures induced by the blade geometry are far less discernible. From this
analysis, it can be concluded that forcing at low frequencies favors and induces large-scale motion
that yields a locked dynamics across multiple blade passages, resulting in traveling structures with
transverse wavelengths that exceed the periodicity imposed by the blade geometry.

As we progress to higher forcing frequencies, the appearance of periodicity other than the one
associated with j = 0 is still noticeable, although to a lesser extent. Figure 13 depicts a selection
of optimal forcing and response structures for frequencies above ω ≈ 0.5. For the frequencies
ω = 0.52, 1.75, and 2.59 (with associated optimal root-of-unity values of j = 30, 46, and again 30)
we observe a clear lower-frequency modulation imposed on the periodic structures forced by the
blade geometry. For a forcing frequency of ω = 4.91 we obtain a fully periodic (j = 0) structure;
however, the range of frequencies where this structure is dominant is rather narrow, as can be seen
in Fig. 11. For slightly larger (or smaller) frequencies, periodicities other than the j = 0 case are
favored, even though their contribution to the forcing and response flow field is smaller [see the
rightmost panel in Fig. 13 for (j,ω) = (46,5.32)].

IV. CONCLUSION

A computational framework for the analysis of fluid systems that consist of n identical units with
nearest-neighbor or global coupling has been presented and demonstrated on a range of problems.
This framework is based on the fact that the block-circulant nature of the global system matrices
yields simplified expressions and associated algorithms that only contain matrices that describe the
dynamics of a single unit and its coupling to other (identical) units. The analysis of n-periodic fluid
systems can thus be formulated and performed efficiently at the cost of single-unit computations and
executed in parallel, while still capturing the global dynamics and fluid structures that span multiple
subunits.

While the framework is closely linked to Floquet theory, Bloch wave methodology, and related
techniques for modified boundary conditions, it provides simple and efficient techniques that require
minimally invasive modifications of computer codes to enable the type of investigations presented
in this study. Compact expressions for the analysis of modal and nonmodal flow characteristics, for
the response to impulses or to harmonic forcing, for the quantification of input-output behavior and
cross-unit dynamics, and for direct-adjoint techniques have been given. They furnish tools for the
investigation of fluid systems that contain periodicity in the form of geometric features or as an
assembly of identical units.

The framework has been showcased on various problems of increasing complexity, from a simple
model problem describing flow along a grooved wall to interacting arrays of wakes (as for example
encountered in heat exchangers) to the incompressible flow through a linear blade cascade. The
full set of tools has been applied and a common feature of the analyses has been the presence, and
often dominance, of large-scale motion that spans more than one subunit and would be missed by
an analysis that imposes periodic boundary conditions over one subunit. For example, the flow over
a spanwise array of roughness elements is often modeled by a fundamental computational box that
contains one roughness element and enforces periodic boundary conditions in the spanwise direction.
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Similarly, instabilities that show a preference for a specific spanwise scale are commonly studied
by concentrating on a fundamental wavelength in the spanwise direction together with periodic
boundary conditions. The examples in this article clearly demonstrate that, in both cases, geometries
that consist of multiple copies of this fundamental computational box could support motion and
instabilities that span several subunits, but that are not captured by a fully periodic assumption
across one subunit.

It is hoped that the computational techniques presented in this article will help in the proper
analysis of n-periodic fluid systems arising in a wide range of applications from science and
engineering.
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