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Static stability of pendent drops pinned to arbitrary closed curves
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We compare the stability of a static pendent drop under two types of control, volume
control and pressure control. The drops are taken to be pinned to curves of arbitrary shape.
The two types of control introduce integrals into the eigenvalue problems that determine
the points of instability. We show that these integrals are solely responsible for the possible
occurrence of bifurcation points, depending only on the Bond number. We then show that
the points of instability for either type of control can be related to one another and predicted
precisely from the eigenvalues of, yet, a third problem, one that is devoid of any integrals.
If the curves of attachment are symmetric, we can derive a result that predicts the instability
point and associated pattern, all without solving any eigenvalue problem.
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I. INTRODUCTION

A pendent drop is an equilibrium configuration that reaches a point of instability as its volume
or its pressure is increased [1–4]. A pendent drop’s point of instability depends on the opposition of
gravity and curvature. We are going to deal with the stability of static drops pinned at their edges.
We do not ask what happens beyond the point of instability, but we can guess the patterns at breakup,
a pattern that can be observed.

The equilibrium shape or base shape of a drop depends on its volume or its pressure, given the
density difference, the surface tension, and the diameter of its closed curve of attachment. The shape
then determines the point of instability, and hence variational methods seeking the least potential
energy have been used to first determine the shape and then to learn if the shape is stable, i.e., to
learn that drops pinned to circles break in a symmetrical pattern at their greatest volume.

Now, it has been thought since Maxwell’s time that drops at small volumes ought to break in
unsymmetrical patterns. Because drops start their lives as plane surfaces pinned at their edges,
supporting a heavy fluid lying above a light fluid, where gravity is destabilizing and surface tension
is stabilizing, their stability is determined by solving the Rayleigh-Taylor problem, and this problem
has been solved by Maxwell [5], for plane surfaces pinned to circles or to rectangles. In the case of
circles, Maxwell finds that the shape of the surface at the point of instability is not symmetric about
the axis. Hence this is the expectation for drops of small volume even though a symmetric pattern is
expected at large volumes.

The volume or the pressure at the point of instability depends on the Bond number, a dimensionless
group made up of the density difference, the surface tension, and the diameter of the cross section,
and there is a Bond number at which a planar surface becomes unstable. A drop experiment is run
by setting the Bond number less than its critical value for a plane surface and increasing the volume
or the pressure until a point of instability is reached.

The shape of symmetric drops pinned at their edges and their stability have been determined by the
calculations being carried out by variational methods [6–8]. At each volume, the shape corresponds
to the least potential energy, and stability is predicted if the potential energy increases on imposing a
symmetric perturbation. Upon increasing the volume the drop reaches a volume where the potential
energy no longer increases on introducing a symmetric perturbation. A critical point has been reached.
The volume can no longer be increased, and the drop has reached its greatest possible volume.
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It may be that upon imposing an unsymmetrical perturbation, an instability will be found at a
volume less than the greatest volume. If this is the case, the critical point at the lower volume will be
a bifurcation point, due to the fact that a drop shape can be computed even if the volume is increased
through this point. Bifurcation points have found for drops pinned to circles, and it is known that at
bifurcation points contact at the edge is horizontal [9].

At each point along the path of increasing volume or pressure, at a given Bond number, we can
discover whether the drop is stable to small perturbations by first finding its shape and then solving
an eigenvalue problem based on the shape. A critical point is reached when one of the eigenvalues
becomes equal to the Bond number. The pattern seen at breakup then depends on which eigenvalue
reaches the Bond number first.

Integrals appear in these eigenvalue problems due to constraints on the allowed perturbations.
These integrals account for the difference between volume-controlled and pressure-controlled
experiments and for differences seen in either experiment which depend on the Bond number.

There is a limiting, but not uncommon, pressure-controlled experiment, an experiment of physical
interest, in which no integrals appear in the corresponding eigenvalue problem. We refer to this as a
diffusion eigenvalue problem and find that the eigenvalues for all other drop stability problems can
be derived from the diffusion eigenvalues and hence can be connected to one another.

The shape of the cross section is a variable of interest, and we start with a more or less arbitrary
shape. Then we move on to more symmetric shapes. Upon increasing symmetry we come to cross
sections where certain diffusion eigenvalues become critical points of other drop problems, leading,
if there is enough symmetry, to predictions of bifurcation points from the base shape itself.

Thus, say, for a drop pinned to a circle, as the volume increases, from the drop shapes and a plot
of the drop volume versus the pressure, and nothing more, we can find the maximum volume, i.e.,
the turning point, and we can say whether of not there is a bifurcation point appearing before the
turning point, and if there is, at what volume it appears.

Our view is that the problem of finding critical points is hydrostatic. There is no dynamics. This
is explained in Appendices A and B where we prove that if the real part of the growth constant
vanishes, so too the imaginary part, assuming the viscosity is not zero. Hence if we were running an
experiment, we would creep up slowly on the critical point by increasing the volume or the pressure.

Our plan is to introduce models for two thought experiments, one for drops under volume control,
called experiment I, and the other for drops under pressure control, called experiment II. We call
these experiments thought experiments because they are to be used to guide real experiments.
After presenting what we find for drops pinned to arbitrary curves, we write a one-dimensional
model, i.e., a model where the drop shape depends on only one independent variable, where the
drop is pinned to two points and where there is only one curvature. This model predicts all the
qualitative results that are known about drops pinned to circles, including the fact that there is a
discontinuous change in the pattern of the instability at critical as the Bond number decreases, an
abrupt change not seen in the case of a drop pinned to an arbitrary closed curve, notwithstanding
the fact that drops pinned to circles have two curvatures. The odd and even eigenfunctions in the
one-dimensional model correspond to m = 0 and m = 1 eigenfunctions in the case of circular
symmetry.

Our assumptions are (1) the drop is pinned to a closed horizontal curve and (2) the critical points
can be identified by a static perturbation. The second is proved in Appendices A and B and is an
application of the Rayleigh work principle [10]. The first, pinned edges, is supported by Mason [11],
who, in an experiment, obtained a critical bridge length equal to the circumference of the bridge, a
pinned-edge result.

II. ARBITRARY CROSS SECTIONS

A. Volume control

Figure 1 illustrates a static pendent drop, pinned along a curve C bounding a cross section A of
area A. We denote the shape of the drop by z = Z(x,y), and we write our equations for Z in scaled
variables, introducing the Bond number, denoted B, where B = � ρ g

γ
D2, where �ρ = ρ − ρ∗,
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FIG. 1. A sketch of a drop pinned along a curve, C, bounding a cross section, A, under volume control,
experiment I.

where D denotes half the diameter of A and where all lengths are scaled by D. The origin of our
coordinate system lies in the plane of A with z measured upward.

The assumption that we can express the shape z = Z(x,y) [or z = Z(r,θ )] cannot be true if the
Bond number is small. Thus if B is near zero we write z = R(θ,z) for z∗ < z < 0 and z = Z(r,θ )
for z < z∗ and glue the two pieces together at z = z∗. This is explained elsewhere [12].

Our model, derived unscaled in Appendix E, is

P − BZ = ∇ · ∇Z

(1 + ∇Z · ∇Z)1/2 , (1)

Z = 0 along C, (2)

and ∫∫
A

Z dx dy = −V, (3)

where P denotes the scaled value of Ptop + ρgh + ρ∗gh∗ − Pbottom and Ptop = P (z = h), etc.
In our first experiment B and V are input variables where V denotes the volume of the drop.

The outputs are Z(x,y) and P . At V = 0 we have Z = 0 and P = 0. Now B is our primary control
variable, and, setting a value of B, we increase V and we wish to know if the drop is stable to small
perturbations at each V along the way.

Our aim is to write the perturbation problem at zero growth rate and identify conditions where
this problem has solutions other than zero. The static perturbation problem at constant B and V is

P1 − BZ1 = LZ1 = 2H1, (4)

Z1 = 0 on C, (5)

and ∫∫
A

Z1 dx dy = 0, (6)

where

L = ∇ ·
⎧⎨
⎩

−→−→
I (1 + ∇Z · ∇Z) − ∇Z ∇Z

(1 + ∇Z · ∇Z)3/2 · ∇
⎫⎬
⎭ (7)

and where Z denotes the solution to Eqs. (1)–(3) at the B and V of interest.
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FIG. 2. A sketch of a drop under pressure control, experiment II.

The perturbation problem is homogeneous, and we seek steady solutions Z1, not zero. In
Appendix A we prove that if the real part of the growth constant corresponding to a time-dependent
perturbation is zero, so too the imaginary part. In Appendix B we prove that a nonzero static
perturbation causes the potential energy of the drop to decrease.

As we advance V we wish to know whether or not there is a limit, i.e., a greatest value of V . So

at an input B and V , and a drop shape, Z, we wish to know if we can obtain
•
Z = dZ

dV
. The problem

to be solved, obtained by differentiating Eqs. (1)–(3), is

•
P −B

•
Z = L

•
Z , (8)

•
Z = 0 on C, (9)

and ∫∫
A

•
Z dx dy = −1. (10)

B. Pressure control

In experiment I, V is an input. In experiment II (cf. Fig. 2) V is an output, and P is now an input.
Our model in experiment II is

P + B
∗ 1

A

∫∫
A

Z dx dy − BZ = ∇ · ∇Z

(1 + ∇Z · ∇Z)1/2 , (11)

Z = 0 along C, (12)

and ∫∫
A

Z dx dy = −V, (13)

where B
∗ = ρ g D2

γ
> B.

The inputs are P,B
∗, and B, the outputs are Z(x,y) and V . At P = 0 we have Z = 0 and V = 0.

If we need to distinguish variables in experiment I from those in experiment II we will introduce the
labels I and II. In Eq. (11) P denotes the scaled difference P − P0, and the integral 1

A

∫∫
A Z dx dy

accounts for the difference (h − h0), where P0 and h0 correspond to Z = 0. The integral is important.
It accounts for the fact that the total volume of heavy fluid remains constant.

Again B is our primary control variable and, setting a value of B, we increase P , and we wish to
know if the drop is stable to small perturbations at each P along the way. The perturbation problem
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at constant B and P is

B
∗ 1

A

∫∫
A

Z1 dx dy − BZ1 = LZ1 (14)

and

Z1 = 0 on C, (15)

where
∫∫

A Z1 dx dy = −V1, and as we advance P we wish to know if there is a bound, i.e., a
greatest value of P . Therefore, we wish to know if, at an input B and P , and therefore Z, we can

find
•
Z = dZ

dP
where the problem to be solved for

•
Z is

1 + B
∗ 1

A

∫∫
A

•
Z dx dy − B

•
Z = L

•
Z , (16)

and
•
Z = 0 on C, (17)

where
∫∫

A
•
Z dx dy = − •

V

C. Eigenvalue problems for volume and pressure control

Associated with the perturbation problem at constant B and V , viz., Eqs. (4)–(6), we have the
eigenvalue problem

C − λ2ψ = Lψ, (18)

ψ = 0 on C, (19)

and ∫∫
A

ψ dx dy = 0. (20)

We denote its solutions λ2, ψ , and C and observe that the perturbation problem at constant B and V

has a solution Z1 �= 0 if and only if one of the λ2 satisfying Eqs. (18)–(20) is equal to B.
Likewise we associate an eigenvalue problem with the perturbation problem at constant B and

P , viz., Eqs. (14) and (15):

B
∗ 1

A

∫∫
A

ψ dx dy − λ2 ψ = Lψ (21)

and

ψ = 0 on C, (22)

and we denote its solutions λ2, ψ , and again we observe that the perturbation problem at constant B

and P has a solution Z1 �= 0 if and only if one of the λ2 satisfying Eqs. (21) and (22) equals B.
The integrals appearing in Eqs. (20) and (21) account for the way experiments I and II differ

and for the way both experiments differ from the pressure-controlled experiment proposed by Wente
[13]. In that experiment the fundamental eigenfunction is singly signed and the first neutral point
found on increasing the pressure is always a turning point.

D. Increasing V in experiment I

We first set V = 0. Then Z and P are both zero no matter the value of B, and the eigenvalues
satisfying Eqs. (18)–(20) are positive and independent of B.
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The stable values of B lie in the range (0,λ2
1), and the critical value of B, at V = 0, is λ2

1(V = 0).
Then we set B to a value less than Bcrit(V = 0) and observe that at V = 0 all the eigenvalues lie to
the right of B, i.e., λ2

1(B,V = 0) > B. Holding B fixed we increase V whereupon the eigenvalues
decrease and sooner or later the drop shape becomes unstable at a value of V denoted Vcrit(B), viz.,

λ2
1(B,Vcrit) = B. (23)

Now at any B and V , where we have Z and P , we wish to know if we can increase V . We

can if we can solve Eqs. (8)–(10) for
•
Z. The

•
Z problem is not homogeneous, being driven by the

right-hand side of Eq. (10). The corresponding homogeneous problem has only the solution
•
Z = 0

so long as B and V are such that λ2
1(B,V ) �= B. Thus as V increases at a given B we can find

•
Z

until V reaches Vcrit(B). At that point, where λ2
1(B,Vcrit) = B, a solvability condition, viz.,

C

∫∫
A

•
Z dx dy = 0 (24)

must be satisfied, and it is not satisfied because C is not zero. Thus the drop has become unstable at
the greatest value of V , and the increase of V halts at the point of instability. The drop breaks at a
turning point, not at a bifurcation point, and the pattern is determined by ψ1.

E. Increasing P in experiment II

We run experiment II just like experiment I. We first set P = 0 whence Z = 0 and V = 0 for all
values of B. At first the eigenvalues are just as they were in experiment I, again independent of B,
and the critical value of B, corresponding to a nonzero solution, Z1, to the perturbation problem, is

B = λ2
1(P = 0) = λ2

1(V = 0).

Again we set B < Bcrit(P = 0) and increase P . At P = 0 the eigenvalues lie greater than B but
as P increases they move toward B and the drop shape becomes critical, i.e., Eqs. (14) and (15) have
a solution Z1 �= 0, at a value of P such that

λ2
1(B,P ) = B.

This defines the critical value of P , viz.,Pcrit(B).
Having a drop shape, Z, at a value of P along the path of increasing P , we wish to know if we

can increase P . We can if we can find
•
Z, i.e., if we can solve Eqs. (16) and (17) for

•
Z where

•
Z

is driven by the inhomogeneity in Eq. (16). The corresponding homogeneous problem has only the

solution zero, hence the inhomogeneous problem can be solved for
•
Z, so long as λ2

1(B,P ) > B.
This obtains until we reach the critical drop shape where λ2

1(B,P ) = B. At that point a solvability
condition must be satisfied, viz., ∫∫

A
ψ1 dx dy = 0,

and it is not satisfied because
∫∫

A ψ1 dx dy cannot be zero. Thus the drop becomes unstable at the
greatest value of P , and the increase of P halts at the point of instability.

III. THE DIFFUSION EIGENVALUE PROBLEM

To see what we can say about drops suspended from arbitrary cross sections, we introduce an
eigenvalue problem depending only on Z(x,y) no matter how Z is obtained. It is

−μ2 φ = Lφ (25)
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and

φ = 0 on C. (26)

This is the eigenvalue problem corresponding to the way Wente [13] thinks about run-
ning pressure-controlled experiments. But the Z that appears in L corresponds to our
experiments.

If Z is zero, L = ∇2 and Eq. (25) is an ordinary diffusion eigenvalue problem. Otherwise
Eq. (25) is a diffusion eigenvalue problem having a space-dependent diffusivity. The base equations
corresponding to our experiments differ and so too their eigenvalue problems. Each differs from
Eq. (25), yet the solutions to each can be written in terms of the solutions to Eqs. (25) and (26).

Now L is self-adjoint, and we have

∫∫
A

φ Lφ dA = −
∫∫

A
dA∇φ ·

−→−→
I (1 + ∇Z · ∇Z) − ∇Z ∇Z

(1 + ∇Z · ∇Z)3/2 · ∇φ

= −
∫∫

A

| ∇φ|2 + | ∇φ × ∇Z|2
(1 + ∇Z · ∇Z)3/2 dA. (27)

Hence we denote the solutions to Eqs. (25) and (26)

0 < μ2
1 < μ2

2 < μ2
3 · · ·

and

φ1 > 0, φ2,φ3, . . . ,

and we denote the integrals of the φ by I , viz.,

Ii =
∫∫

A
φi dx dy,

where I1 > 0.
Our solutions to Eqs. (25) and (26) depend on the drop shape Z where Z gives us what might be

called the diffusion coefficient, an input to Eq. (25).
On an arbitrary cross section it is likely that none of the Ii are zero, and, assuming this is so, none

of the C in Eq. (18) or the integrals of the eigenfunctions in Eq. (21) can be zero.
We start with experiment I and we solve the eigenvalue problem at constant B and V , viz.,

Eqs. (18)–(20), by expanding ψ in the eigenfunctions φi where we assume that
∫∫

A φ2
i dx dy = 1.

Thus we have

ψ =
∑

ci φi, ci =
∫∫

A
ψ φi dx dy,

and we find

ci = C Ii

λ2 − μ2
i

,

whence ψ is given by

ψ = C
∑ Ii

λ2 − μ2
i

φi .

Thus because C �= 0 and
∫∫

A ψ dx dy = 0, we can obtain the λi by solving

∑ I 2
i

λ2 − μ2
i

= 0. (28)
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FIG. 3. Graph of Eq. (28).

From the graph of the left-hand side of Eq. (28) versus λ2, shown in Fig. 3, we derive the ordering

0 < μ2
1 < λ2

1 < μ2
2 < λ2

2 < · · · ,

which holds for all B and V .
In the case of experiment II we can solve the eigenvalue problem at constant B and P [Eqs. (21)

and (22)] in the same way. But first, because we wish to learn about both experiments, we set the
values of B and V and obtain Z and P (I), solutions to the drop shape problem (I). Then we set B

at the same value and set P (II) such that P (II) − B
∗V

A
= P (I) holds. By doing this the shape Z is the

same in the two experiments and so too V . Thus the solutions to the diffusion eigenvalue problem
[Eqs. (25) and (26)] are common to experiments (I) and (II), and we solve Eqs. (21) and (22) by
again expanding ψ in the set of φi . By doing this we obtain

ci = Ii

λ2 − μ2
i

B
∗ 1

A

∫∫
A

ψ dx dy,

whence our equation for the λ2 is now

∑ I 2
i

λ2 − μ2
i

= 1

B
∗ . (29)

The left-hand-side of Eq. (29) is plotted versus λ2 in Fig. 4, and we conclude

0 < μ2
1 <

(
λ2

1

)(II)
<

(
λ2

1

)(I)
< μ2

2 <
(
λ2

2

)(II)
<

(
λ2

2

)(I)
< μ2

3 < · · · . (30)

At large values of B
∗
, (λ2

i )
(II) −→ (λ2

i )
(I)

, at small values of B
∗
, (λ2

i )
(II) −→ μ2

i . If we set a value
of B, the shapes z = Z(x,y,B,V ) or z = Z(x,y,B,P ) are stable to small perturbations so long as
B is not one of the eigenvalues (λ2)

(I)
(B,V ) or (λ2)

(II)
(B,P ).

We also can see that experiment II is less stable than experiment I. Thus as we increase V in I
and P in II we always have the same Z and V , but we know (λ2

1)
(II)

(B,P ) < (λ2
1)

(I)
(B,V ); cf. Figs. 3

and 4. Hence experiment II becomes unstable at a volume and shape at which experiment I is stable.
Indeed, the greatest volume in I exceeds the greatest volume in II.

Now B
∗ is important. If its effect is omitted [2], experiment II always acts like Wente’s [13]

pressure-controlled experiment, viz., increasing P always ends in a turning point. No bifurcation
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FIG. 4. Graph of Eq. (29).

points can be found. In fact, on omitting B
∗ the diffusion eigenvalue problem tells us everything

about experiment II, and a constant pressure experiment would be predicted to have an instability
before it ought to, viz., μ2

1 < λ2
1, and no bifurcation point can precede the turning point.

Adding symmetry

Now in all of the foregoing we only need I1 �= 0 and I2 �= 0 to keep λ2
1 and λ2

2 apart, i.e., to keep
the fundamental eigenvalue simple, and hence the drop is always unstable to a ψ1 mode having one
internal nodal curve. But if the cross section were a rectangle or an ellipse the symmetry of Z, and
hence the symmetry of φ2 ought to cause I2 to be zero.

Thus if I2 is zero at any B and V , one of the two smallest solutions, λ2,ψ , to Eqs. (18)–(20) will
be

λ2 = μ2
2, ψ = φ2,

∫∫
A

ψ dx dy = 0, C = 0.

On plotting
∑

i=1,3,...

I 2
i

λ2−μ2
i

versus λ2, omitting the term corresponding to i = 2, we find the other

solution will be on (μ2
1,μ

2
3), but we don’t know on which side of μ2

2 it lies. Thus one eigenvalue
is pinned at μ2

2 while the other may lie to its left or right. This is illustrated in Fig. 5. The two
eigenfunctions have different symmetries.

Here then is our conclusion: if the cross section has no symmetry, we can increase V to the point
of instability and we will see only continuous dependence on B. Upon adding enough symmetry, at
some B we will see one pattern at critical, at others another pattern.

IV. SYMMETRIC CROSS SECTIONS

The symmetry of a drop pinned to a curve bounding a symmetric cross section leads to symmetry
conditions on the solutions to the diffusion eigenvalue problem. Thus we expect to find cross sections
for which I2 = ∫∫

A φ2 dx dy = 0 and, hence, for which one of the solutions to the eigenvalue
problems, Eqs. (18)–(20) and Eqs. (21) and (22), will be

λ2 = μ2
2, ψ = φ2, and C = 0 =

∫∫
A

ψ dx dy.
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FIG. 5. Graph of Eq. (28) depicting two cases: (a) μ2
1 < λ2

1 < μ2
2, λ2

2 = μ2
2 and (b) λ2

1 = μ2
2, μ2

2 < λ2
2.

The eigenvalues of interest are the smallest and the next smallest, one being equal to μ2
2, the other

lying on the interval (μ2
1,μ

2
3). The corresponding eigenfunctions have different shapes, and the one

accompanying the smallest eigenvalue will predict the pattern at drop breakup.

A. One-dimensional model, experiments I and II

We ought to begin with the case of a circular cross section, but everything of interest for a
drop pinned to a circle is already present in a simple one-dimensional model. One dimension, two
dimensions, etc., refer to the number of independent variables. In one dimension Z depends only
on x, it is independent of y and hence there is only one curvature. At Z = 0, and V = 0, all of our
drop problems are Rayleigh-Taylor problems. They remain Rayleigh-Taylor-like for small increases
in V , but for how long depends on B.
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Experiment I

We start with the first experiment and with a drop having the shape Z = Z(x,B,V ) where Z

satisfies

P − BZ = d

dx

Zx(
1 + Z2

x

)1/2 , (31)

Z = 0 at x = ±1, (32)

and ∫ 1

−1
Z dx = −V. (33)

The perturbation problem is

P1 − BZ1 = d

dx

Z1x(
1 + Z2

x

)3/2
,

(34)

Z1 = 0 at x = ±1, (35)

and ∫ 1

−1
Z1 dx = 0. (36)

The eigenvalue problem is

C − λ2ψ = d

dx

ψx(
1 + Z2

x

)3/2
,

(37)

ψ = 0 at x = ±1, (38)

and ∫ 1

−1
ψ dx = 0. (39)

And the
•
Z = dZ

dV
problem is

•
P −B

•
Z = d

dx

•
Z x(

1 + Z2
x

)3/2
,

(40)

•
Z = 0 at x = ±1, (41)

and ∫ 1

−1

•
Z dx = −1. (42)

Now, the drop shape, Z, is an even function of x and thus the solutions to the eigenvalue problem
are either odd or even functions of x.

The diffusion eigenvalue problem is

d

dx

φx(
1 + Z2

x

)3/2 + μ2φ = 0 (43)

and

φ = 0 at x = ±1, (44)
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and we denote its solutions by

0 < μ2
1 < μ2

2 < μ2
3

and

φ1(even) > 0, φ2(odd), φ3(even), . . . , I1 > 0, I2 = 0, I3 �= 0, . . . .

We first set V = 0, hence Z = 0, then for any B we have odd and even eigenfunctions, viz.,

ψ = sin λx, λ2 = n2π2, C = 0

and

ψ = cos λx − cos λ,
sin λ

λ
− cos λ = 0, C = −λ2 cos λ,

whence the least value of λ2 is π2, Bcrit = π2, ψ is odd, and at Bcrit the drop is unstable to a
perturbation having odd symmetry.

Now we set B to a value less than π2 and increase V from zero. For B near π2 the fundamental
eigenfunction ought to remain odd upon increasing V , and we ought to arrive at the critical value
of V where λ2(B,Vcrit) = μ2

2(B,Vcrit) = B is satisfied and where the corresponding eigenfunction is
an odd function of x.

We wish to know if Vcrit limits the increase in V , i.e., we wish to know if Eqs. (40)–(42) have a
solution at Vcrit where λ2(B,Vcrit) = B. The solvability condition, viz.,∫ 1

−1

•
P ψ dx −

∫ 1

−1
C

•
Z dx = 0

is satisfied due to
∫ 1
−1 ψ dx = 0 = C.

Thus our critical point is a bifurcation point, and we can continue to increase V beyond Vcrit. At
Vcrit we have λ2

odd(B,Vcrit) = B < λ2
even(B,Vcrit). As we increase V , beyond Vcrit, we have λ2

odd = μ2
2

and λ2
even ∈ (μ2

2,μ
2
3) both moving to the left and sooner or later λ2

even(B,V ) = B. Again Eqs. (40)–(42)
have a nonzero solution. We have arrived at a second critical point, but now ψ is an even function

of x and C is not zero. Hence Eqs. (40)–(42) cannot be solved for
•
Z because solvability fails, viz.,∫ +1

−1

•
P ψ dx −

∫ +1

−1
C

•
Z dx = C �= 0.

Thus we have reached the greatest value of V and the second critical point is not a bifurcation
point but a turning point. The drop is unstable at the first critical point and presumably breaks in the
pattern of an odd eigenfunction, so any advance through this point is hypothetical and we see that
the drop does not break at the greatest volume.

We present what we have found in a series of figures where we denote the first two eigenvalues
λ2

odd and λ2
even because the order λ2

odd < λ2
even is not maintained as B decreases. We plot V versus P

at a sequence of B, and at each B we indicate the eigenvalues μ2
1,μ

2
2,μ

2
3,λ

2
odd and λ2

even at each of a
set of V .

First at B slightly less than π2, we present Fig. 6(a), where we see the eigenvalues moving to the
left as V increases. The bifurcation point and the turning point are marked. Figure 6(b) is drawn at
a lower value of B and shows the bifurcation point moving closer to the turning point. Decreasing
B again we arrive at Fig. 7, where λ2

odd = B = λ2
even. The corresponding value of B is denoted B
.

For all B < B
, λ2
even is less than λ2

odd at critical. Now, no matter the value of B, at V = 0 we have
λ2

odd < λ2
even. At B = B
, the exchange of the order occurs at the critical value of V . For B < B
 the

change in the order occurs at 0 < V < Vcrit and we have Fig. 8.
Thus there is a value of B, denoted B
, at which, at critical, the fundamental eigenvalue is a

double root. For larger values of B the first critical point is a bifurcation point corresponding to an
odd eigenfunction, for smaller values of B the first critical point is a turning point corresponding to
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(a)

(b)

FIG. 6. Graph of V vs P depicting λ2: (a) B = 9.5, (b) B = 8; o = bifurcation point, ∗ = turning point.
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FIG. 7. Graph of V vs P at B = B
 = 5; o = bifurcation point, ∗ = turning point.

an even eigenfunction. The pattern of the instability changes as we decrease B from large values to
small values.

B. Finding a bifurcation point without solving an eigenvalue problem

Ordinarily, critical points are found by solving eigenvalue problems. But, because the drop is
static, we can derive an exceptional result. Thus, given a base curve V versus P , we can find
bifurcation points along the curve by drawing a line which intersects the curve. In this section we
derive and illustrate this result.

FIG. 8. Graph of V vs P at B < B
, B = 4; ∗ = turning point.
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(a)

(b)

FIG. 9. Graphs showing the intersection of 2P + BV = 0 and V vs P : (a) large B, (b) small B; o =
bifurcation point, ∗ = turning point.

Upon integrating Eq. (31) over −1 � x � 1 we have

2P + BV = Zx(
1 + Z2

x

)1/2

∣∣∣∣∣
x=1

x=−1

. (45)

The right-hand side is the vertical force that the pins exert on the drop; see Appendix C.
For input values of B and V we solve Eqs. (31)–(33) for Z and P and plot the curve V versus

P . Now we will see that the right-hand side of Eq. (45) is zero at a bifurcation point. Hence the
line 2P + BV = 0 intersects the curve V versus P at the first critical point, if the critical point is
a bifurcation point. This is illustrated in Figs. 9(a) and 9(b), which present the construction for two
values of B, one above B
, and the other below.

To see that the right-hand side of Eq. (45) is zero at a bifurcation point and thus to see that we
can find a bifurcation point using only the base shape, we need the equation for Zx . Differentiating
Eq. (31) we have

−BZx = d

dx

(Zx)x(
1 + Z2

x

)3/2
,

(46)
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and we also have, due to pinned edges, ∫ +1

−1
Zx dx = 0.

At a critical point corresponding to an odd eigenfunction we have C = 0 in Eq. (37). Multiplying
Eq. (37) by Zx , Eq. (46) by ψ , subtracting, integrating over −1 � x � 1, using λ2 = B,Z even,
and Zx odd we have

0 = 2Zx(x = 1)[
1 + Z2

x(x = 1)
]3/2

due to the fact that ψx , even, cannot be zero at x = ±1. Thus we conclude: Zx is zero at x = ±1
at a bifurcation point, and hence the right-hand side of Eq. (45) is zero. This is due, not only to
symmetry, but also to the fact that the ends are pinned. The upward force exerted by the pins on the
drop vanishes at the bifurcation point [9].

Experiment II

In the case of experiment II where B and P are the inputs and Z and V the outputs, Z satisfies

P + B
∗1

2

∫ 1

−1
Z dx − BZ = d

dx

Zx(
1 + Z2

x

)1/2 , Z = 0 at x = ±1. (47)

This is our one-dimensional model, and we must have B < B
∗.

We solve Eq. (47) by first solving Eqs. (31)–(33) for Z and P (I) given B and V . Then if we set
P (II) in Eq. (47) to P (I) + 1

2B
∗
V , Z and V satisfying Eq. (47) are identical to Z and V satisfying

Eqs. (31)–(33), and hence we can derive the V versus P curve in experiment II from the V versus
P curve in experiment I.

At P = 0, hence Z = 0 and V = 0, the solutions to the eigenvalue problem, Eqs. (21) and (22),
are

ψ = sin λx, λ2 = n2π2,

∫ 1

−1
ψ dx = 0

and

ψ = cos λx + B
∗
/λ2

1 − B
∗

λ2

1

λ
sin λ, 1 − λ2

B
∗ = sin λ

λ cos λ
,

∫ +1

−1
ψ dx = 2 sin λ

λ

1

1 − λ2

B
∗

,

and we have μ2
1 = 1

4π2, μ2
2 = π2, . . . .

We are looking for the smallest λ2 because at P = 0 this is Bcrit.
If B

∗
< π2 then the first eigenfunction is even the second odd and B

∗
< λ2

1 < π2 = λ2
2. But if

B
∗

> π2 the first eigenfunction is odd, the second even, and we have λ2
1 = π2 < λ2

2 < B
∗.

Now we must have B < B
∗, and thus at P = 0, if B

∗ is less than π2, there are no values of λ2

that can be equal to B, and we have stability to all small perturbations.
If B

∗ is greater than π2, the critical value of B at P = 0 is π2. Thus we can set a value of B less
than π2 and increase P . Now the drop shapes and volumes in the second experiment derive from
those in the first experiment, and we obtain the curves shown in Fig. 10.

Experiment II also has a straight line construction predicting the bifurcation point using only the
base shape:

2P (II) − B
∗
V + BV = 0, (48)

and it predicts the bifurcation point shown in the figure.
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FIG. 10. Graphs of V vs P showing that experiment II is less stable than experiment I; B = 7, B
∗ = 11

10 π 2.

The figure also indicates that perturbations at constant V are stable at higher V than perturbations
at constant P . Of course this repeats what we learned for arbitrary cross sections.

There is a value of B, denoted B

(II), such that λ2

odd(B

(II)) = λ2

even(B

(II)). Its significance is the

same as that of B
 in experiment I, viz.,B

(I). Now B


(II) depends on B∗ and as B∗ becomes large
B


(II) → B

(I) because λ2 (II) → λ2 (I); see Fig. 4. In Fig. 10 we have B > B


(II).

C. Square and rectangular cross sections, Experiment I

Both rectangular and square cross sections have enough symmetry for I2 to vanish and hence we
wish to see if our way of locating bifurcation points, using only the shape of the drop, carries over
to these cross sections, one having more symmetry than the other.

Denote the cross section by A. It is bounded by a curve C along which Z = 0 and the normal to
C in the plane of A is

∇Z

(∇Z · ∇Z)1/2.

Thus, integrating Eq. (1) over the cross section we have

PA + BV =
∫
C
ds

(∇Z · ∇Z)1/2

(1 + ∇Z · ∇Z)1/2,
(49)

where the right-hand side is zero if and only if ∇Z is pointwise zero.
If the cross section is the rectangle −a � x � a,−b � y � b, the C = 0 solutions to the

eigenvalue problem, Eqs. (18)–(20), at V = 0 are [5]

sin mπ
x

a
sin nπ

y

b
m, n = 1,2, . . . ,

sin mπ
x

a
cos

(
n + 1

2

)
π

y

b
, m = 1,2, . . . n = 0,1, . . . ,
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and

cos

(
m + 1

2

)
π

x

a
sin nπ

y

a
, m = 0,1, . . . n = 1,2, . . . .

And, if a > b, the least λ2 corresponds to

cos
1

2
π

x

a
sin π

y

b
,

even in x, odd in y. There are solutions where C �= 0 but the corresponding eigenvalues are greater
than 1

4
π2

a2 + π2

b2 .
We assume the symmetry of the eigenfunctions at V > 0 is the same as it is at V = 0, and we set

B and advance V until we arrive at the bifurcation point where λ2
1(B,V ) = B and where λ2

1 and ψ1

satisfy

−λ2
1ψ1 = Lψ1, C1 = 0. (50)

Now, we differentiate Eq. (1) with respect to y obtaining

−BZy = LZy, (51)

whereupon multiplying Eq. (50) by Zy , Eq. (51) by ψ1, subtracting, using λ2
1 = B and integrating

over A we have

0 =
∫
C
ds Zy

−→
n · ∇ψ

(1 + ∇Z · ∇Z)3/2 (52)

due to −→
n = ∇Z

| ∇Z|
Now along x = ±a we have Z = 0, hence Zy = 0. Along y = −b we have ds = dx and −→

n ·
∇ψ = −ψy . Along y = b we have ds = −dx and −→

n · ∇ψ = ψy . Thus Eq. (52) becomes

0 =
∫ a

−a

dx
Zy(−ψy)(
1 + Z2

y

)3/2 −
∫ −a

a

dx
Zy(ψy)(

1 + Z2
y

)3/2
.

(53)

The first integral is along y = −b, the second is along y = b. Now Z is an even function of y

and hence Zy is an odd function of y, viz.,Zy(x,−b) = −Zy(x,b). Because ψ is an odd function
of y we have ψy(x,−b) = +ψy(x,b) and ψy is not zero because ψ(x,−b) = 0 = ψ(x,b). Thus, by
Eq. (53) we have Zy = 0 on C at a bifurcation point.

However, there is nothing we can say about Zx on C, and hence not enough about ∇Z on C in the
case of a rectangular cross section.

But for a square cross section the least eigenvalue at C = 0 corresponds to two eigenfunctions,
one odd in x, even in y, the other even in x, odd in y. Thus we can carry out the above derivation
twice at the same eigenvalue equal to B and conclude that ∇Z vanishes on C at a bifurcation point.

Hence, in the case of a square cross section, we can plot V versus P and its intersection with
PA + BV = 0 will locate the critical point so long as it is a bifurcation point, all without using
more than the base solution. The base solution also identifies the turning point.

D. Circular cross section Experiment I

On a circular cross section, where our inputs are B and V and our outputs are Z(r) and P ,
Eqs. (1)–(9) are, first,

P − BZ = 1

r

d

dr

r(
1 + Z2

r

)1/2

dZ

dr
, (54)

Z = 0 at r = 1, (55)

113605-18



STATIC STABILITY OF PENDENT DROPS PINNED TO . . .

and

−2π

∫ 1

0
Zr dr = V ; (56)

second,

•
P −B

•
Z = 1

r

d

dr

r(
1 + Z2

r

)3/2

d
•
Z

dr
, (57)

•
Z = 0 at r = 1, (58)

and

−2π

∫ 1

0

•
Z r dr = 1; (59)

and, third,

C − λ2ψ = 1

r

∂

∂r

r(
1 + Z2

r

)3/2

∂ψ

∂r
+ 1(

1 + Z2
r

)1/2

1

r2

∂2ψ

∂θ2
, (60)

ψ = 0 at r = 1, (61)

and ∫ 2π

0
dθ

∫ 1

0
ψr dr = 0, (62)

where Z(r) in Eqs. (57)–(62) is the solution of Eqs. (54)–(56). If Z is zero, this is the Rayleigh-Taylor
problem on a circle, solved by Maxwell [5]. Our aim is to show that everything found out here can
be forecast by what we already know about the one-dimensional problem.

We set V = 0 whereupon Z = 0 = P for all B. The solutions to Eqs. (60)–(62) are then
m = 0 :

ψ = J0(λr) − J0(λ), λJ0(λ) + 2J1(λ) = 0, C = λ2J0(λ),

m = 1 :

ψ = J1(λr) cos θ, J1(λ) = 0, C = 0.

The critical value of B at V = 0 is the square of the first positive zero of J1 and the drop is
unstable to a cos θ perturbation.

We set B < Bcrit(V = 0) and advance V from zero until the least λ2(B,V ) attains the value B,
viz.,

λ2(B,Vcrit) = B.

If B is near Bcrit(V = 0), the first critical point corresponds to m = 1. It is a bifurcation point
and Eqs. (57)–(59) have a solution there. Ideally we can pass through this point and increase V

beyond Vcrit(B). Doing this we arrive at a point where the least eigenvalue, corresponding now to
an m = 0 eigenfunction, becomes equal to B. Equations (57)–(59) fail to have a solution, and we
have reached the greatest value of V . The instability occurs before V reaches its greatest value.

At a smaller value of B the picture is just as it was in the one-dimensional model, and we come
to a value of B where at Vcrit(B) the least eigenvalues at m = 0 and m = 1 coincide and we have

λ2(m = 1) = B
 = λ2(m = 0).
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(a)

(b)

FIG. 11. The V vs P curve for a circular cross section showing the straight line construction; B = 13 (a),
B = 9 (b), B
 = 10; o = bifurcation point, ∗ = turning point.

This is the greatest V at that B and it is not preceded by a bifurcation point. For lower values of B

the critical V always corresponds to an m = 0 eigenfunction, the critical point is a turning point and
Vcrit is the greatest value of V .

There is no qualitative difference between the one-dimensional model and the drop pinned to the
edge of a circular cross section. The m = 1 eigenfunctions here correspond to the odd eigenfunctions
there, the m = 0 eigenfunctions to the even eigenfunctions.

Now so long as the drop is critical at an m = 1 eigenvalue we can locate the critical point by
drawing the line, Pπ + BV = 0; see Fig. 11.

To do this we only need to observe that

Zr (r = 1) = 0

at critical. Thus, differentiating Eq. (54) with respect to r we have

−BZr = 1

r

d

dr

r(
1 + Z2

r

)3/2

dZr

dr
− 1(

1 + Z2
r

)1/2

1

r2
Zr,
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and observing that the radial part of the m = 1 eigenfunction satisfies

−λ2ψ = 1

r

d

dr

r(
1 + Z2

r

)3/2

dψ

dr
− 1(

1 + Z2
r

)1/2

1

r2
ψ,

we set λ2 = B and derive

0 = − Zr(
1 + Z2

r

)3/2 r ψr

∣∣∣∣∣
r=1

r=0

, (63)

whereupon we have

Zr (r = 1) = 0 (64)

at critical due to ψr (r = 1) �= 0. Hence if we multiply Eq. (54) by r and integrate over 0 � r � 1
we obtain

Pπ + BV = 0, (65)

and we can predict bifurcation points by our familiar construction.
At large values of B the drop breaks before it reaches its greatest volume, and it breaks in an

antisymmetric pattern, m = 1. At small values of B the drop breaks at its greatest volume, and it
breaks in a symmetric pattern, m = 0. Now the drop has two curvatures, and it might be thought
that the transition from m = 1 breakup to m = 0 breakup must be due to the transverse curvature
asserting itself as it does in a jet or bridge. But that cannot be true because the same transition
occurred in the one-dimensional model wherein there is only one curvature. This is a static result.
Beyond critical, transverse curvature is dominates the dynamics of breakup [14].

If we view circular and elliptical cross sections in the light of what we know about square and
rectangular cross sections we would guess that our straight line construction ought to fail in the case
of an ellipse. But what about a cross section in the shape of a ring, β � r � 1? The calculation
resulting in Eq. (63) now gives us

0 = r
Zr(

1 + Z2
r

)3/2 ψr

∣∣∣∣∣
r=1

r=β

, (66)

where neither ψr (r = 1) nor ψr (r = β) is zero. We might wish to conclude Zr = 0 on C at critical,
but it is not true. Equation (66) has solutions other than Zr = 0. We do not have the symmetry
needed to conclude PA + BV = 0 at critical.

E. A circle displaced to a nearby ellipse of the same cross-sectional area

We are going to set the value of B high enough that a drop pinned to a circle has a bifurcation point
at a volume V0 where the least λ2

0 is equal to B. Then Z0, P0, ψ0, λ
2
0, and C0 satisfy Eqs. (54)–(56)

and (60)–(62) where C0 = 0, where ψ0 is an m = 1 eigenfunction and where

dZ0

dr
= 0 at r = R0 = 1.

Now we displace the circle to an ellipse of the same cross sectional area and write

R(θ ) = R0 + εR1(θ ),

where R1(θ ) = R0 cos 2θ

We set B and V to their circle values and look for the corrections Z1, P1, ψ1, and λ2
1 to Z0, P0, ψ0,

and λ2
0. We find that Z1 and P1 must satisfy

P1 − BZ1 = L(Z0)Z1, Z1 = 0 at r = R0,
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and ∫ 2π

0
dθ

∫ R0

0
Z1r dr = 0

due to dZ0
dr

= 0 at r = R0. Because B = λ2
0 we find Z1 = Aψ0 and P1 = 0.

Now the ellipse has enough symmetry that we can assume its instability at B and V0, like that of
the nearby circle, is a bifurcation point. Thus the equation satisfied by λ2

1 and ψ1 is

C1 − λ2
1ψ0 − λ2

0ψ1 = lim
ε → 0

1

ε
{L(Z0 + εZ1)(ψ0 + εψ1) − L(Z0)ψ0 },

where

L(Z0 + εZ1) = L(Z0) + εL(Z0,Z1)

and where

L(Z0,Z1) = ∇ ·
⎧⎨
⎩

(−→−→
I (1 + ∇Z0 · ∇Z0) − ∇Z0 ∇Z0

)( −3∇Z0 · ∇Z1

(1 + ∇Z0 · ∇Z0)3/2

)

+
−→−→
I 2∇Z0 · ∇Z0 − ∇Z0 ∇Z1 − ∇Z1 ∇Z0

(1 + ∇Z0 · ∇Z0)5/2

⎫⎬
⎭ · ∇,

whereupon we have

C1 − λ2
1ψ0 − λ2

0ψ1 = L(Z0)ψ1 + L(Z0,Z1)ψ0, ψ1 = −R1
∂ψ0

∂r
at r = R0, (67)

and ∫ 2π

0
dθ

∫ R0

0
ψ1r dr = 0.

Multiplying Eq. (67) by ψ0, Eq. (60) by ψ1, subtracting and integrating over 0 � θ � 2π, 0 �
r � R0 we have

−λ2
1

∫∫
A0

ψ2
0 r drdθ =

∫∫
A0

{ψ0L(Z0)ψ1 − ψ1L(Z0)ψ0}r dr dθ +
∫∫
A0

ψ0L(Z0,Z1)ψ0r dr dθ,

where, due to ∇Z0 = −→
0 on C0, the first integral on the right-hand side is

R0

∫ 2π

0
dθ R1

(
∂ψ0

∂r

)2

(r = R0) = R2
0

[
dψ0

dr
(r = R0)

]2 ∫ 2π

0
cos 2θ cos2 θ dθ.

The second integral on the right-hand side is zero because∫ 2π

0
dθ cos θ,

∫ 2π

0
dθ cos3 θ, and

∫ 2π

0
dθ cos θ sin2 θ

all vanish.
Thus λ2

1 is negative, and hence upon advancing V, λ2 (ellipse) becomes equal to B before λ2

(circle) and thus a drop pinned to an ellipse is more unstable than a drop pinned to a circle, the
cross-sectional areas being the same.

Now we would guess that if the term R1(θ ) in the expansion of R(θ ) had terms in cos 3θ, cos 4θ ,
etc., the above would continue to hold true, and hence our straight line construction based on the
circle would tell us that most nearby shapes had already reached their first point of instability.
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FIG. 12. A sketch of experiment I.

This may not be surprising in view of the fact that the m = 0 eigenvalues of ∇2 on a circle
increase if the circle is displaced to a nearby ellipse, the m = 1 eigenvalues decrease.

V. CONCLUSIONS

In our study of the stability of a static pendent drop we draw two major conclusions. Both have
to do with integral constraints in the problem determining the shape of the drop. The first is that
the critical point of the static drop, whether it is formed by volume or pressure control, is bounded
and the bound is determined by an eigenvalue problem free of any integral and therefore of any
constraint. This is so no matter the symmetry of the curve of the attachment as long as the drop
is pinned. The unrestricted eigenvalue problem is termed the diffusion eigenvalue problem, and it
corresponds to an ideal thought experiment on static drop formation. This implies that the stability
limits for one static drop experiment may be used to bound and even predict the stability limits for
drop experiments with other types of control.

The second conclusion applies to experiments where the curve of attachment is made perfectly
symmetric. Here we derive a simple construction, knowing only the base drop shape, to determine
whether the drop is unsymmetrically or symmetrically unstable. This construction then yields the
critical points for either type of instability.
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APPENDIX A: NEED THE PERTURBATION BE OTHER THAN HYDROSTATIC AT CRITICAL?

Figure 12 shows a simplified picture of experiment I. There is no light fluid.
Our aim is to show that at critical we have only a hydrostatic solution to the small perturbation

problem at constant volume.
Denoting the surface of the drop z = Z(x,y,t), our unscaled nonlinear equations on the domain

are

ρ
∂−→v
∂t

+ ρ−→v · ∇−→v = ∇ ·
−→−→
T − ρ∇φ

and

∇ · −→v = 0.
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At all walls we have −→
n · −→v = 0. Along z = Z(x,y,t) we have

−→
n · −→v = Zt

(1 + ∇Z · ∇Z)1/2,

−→
n

−→
n :

−→−→
T + γ 2H = 0,

and

−→
t

−→
n :

−→−→
T = 0, any tangent −→

t ,

where

−→
n =

−→
k − ∇Z

(1 + ∇Z · ∇Z)1/2 ,
−→
k · ∇Z = 0.

Assuming we have a base solution to the nonlinear equations, viz.,

Z = Z0(x,y), −→v0 = −→
0 ,

dp0

dz
= −ρg, p0 = −ρgz + const,

and

−→−→
T = −p0

−→−→
I ,

we introduce a small perturbation. Thus we write

Z = Z0 + εZ1 and −→v = ε−→v 1,

and we have

−→
n = −→

n0 + ε
−→
n1,

where

−→
n0 =

−→
k − ∇Z0

(1 + ∇Z0 · ∇Z0)1/2

and

−→
n1 = −

−→−→
I (1 + ∇Z0 · ∇Z0) + (

−→
k − ∇Z0)∇Z0

(1 + ∇Z0 · ∇Z0)3/2
· ∇Z1.

The perturbation problem must be solved on the base domain, the domain obtained by writing
z = Z0(x,y) in place of z = Z(x,y,t) in Fig. 12.
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Along z = Z0(x,y) we have

−→
n0

−→
n0 :

−→−→
T 1 + ρgZ1 + γ 2H1 = 0, (A1)

−→
t 0

−→
n0 :

−→−→
T 1 = 0, (A2)

and

−→
n0 · −→v1 = Z1t

(1 + ∇Z0 · ∇Z0)1/2 , (A3)

where 2H1 is the perturbation of 2H . On the reference domain we have

ρ
∂−→v1

∂t
= ∇ ·

−→−→
T 1, ∇ · −→v1 = 0 (A4)

and ∫∫
A

Z1 dx dy = 0.

We assume a solution
−→v1(x,y,z,t) = eσ t−→v1(x,y,z), Z1 = eσ tZ1(x,y), etc.,

hence on the domain we have

ρσ−→v1 = ∇ ·
−→−→
T 1, ∇ · −→v1 = 0. (A5)

Then dotting this with −→v1
∗, the complex conjugate of −→v1, and integrating over the domain we obtain

ρσ

∫
V0

−→v1 · −→v1
∗

dV0 = −
∫

S0

dA0
−→
n0 ·

−→−→
T 1 · −→v1

∗ − 2μ

∫
V0

−→−→
D1 :

−→−→
D1

∗
dV0,

where −→
n0 is inward and where S0 denotes the surface of the reference drop.

Along S0,
−→v1 defines its own tangent and we write

−→v1 = −→
n0(

−→
n0 · −→v1) + −→

t 0(
−→
t 0 · −→v1),

whereupon we obtain

ρσ

∫
V0

−→v1 · −→v1
∗

dV0 =
∫

S0

dA0 (γ 2H1 + ρgZ1)
σ∗ Z1

∗
(1 + ∇Z0 · ∇Z0)1/2 − 2μ

∫
V0

−→−→
D1 :

−→−→
D1

∗
dV0.

Likewise we have

ρσ∗
∫

V0

−→v1
∗ · −→v1 dV0 =

∫
S0

dA0 (γ 2H1
∗ + ρgZ1

∗)
σ Z1

(1 + ∇Z0 · ∇Z0)1/2
− 2μ

∫
V0

−→−→
D1

∗ :
−→−→
D1 dV0,

where∫
S0

dA0
1

(1 + ∇Z0 · ∇Z0)1/2
[(γ 2H1 + ρgZ1)σ∗Z1

∗] =
∫
A

dx dy[(γ 2H1 + ρgZ1)σ∗Z1
∗].

What we wish to know is: if Re σ = 0 = Re σ∗, is |−→v1| = 0? Now we have Eq. (4), viz.,

2H1 = LZ1,

whereupon we can write

ρ Re(σ )
∫

V0

∣∣−→v1

∣∣2
dV0 =

∫
A

dx dy(γLZ1 + ρgZ1) Re(σ )Z1
∗ − 2μ

∫
V0

dV0

−→−→
D1 :

−→−→
D1

∗
,

where Z1
∗LZ1 is positive. Hence Re(σ ) = 0 implies −→v1 = −→

0 whereupon σ = 0 due to Eq. (A3).
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APPENDIX B: POTENTIAL ENERGY (NOT SCALED)

Our aim is to derive the equation for a neutral displacement of a drop by taking account of
potential energy changes.

The potential energy of a drop of shape z = Z(x,y), where (x,y) is a point on a domain A in the
x,y plane bounded by a curve C, is

PE(Z) =
∫
A

{
γ (1 + ∇Z · ∇Z)1/2 − 1

2
ρgZ2

}
dx dy, (B1)

and its volume is

V = −
∫
A

Z dx dy.

Now we denote by Z0(x,y) a solution to our drop-shape problem, viz., Eqs. (1)–(3), corresponding
to an input volume V0. And we subject Z0 to a displacement εZ1, holding the volume of the drop
constant, where Z1 = 0 on C and ∫

A
Z1 dx dy = 0.

Hence we find

PE(Z0 + εZ1) − PE(Z0) = ε

∫
A

{
γ

∇Z0

(1 + ∇Z0 · ∇Z0)1/2 · ∇Z1 − ρgZ0Z1

}
dx dy

+ 1

2
ε2

∫
A

{
γ

∇Z1 · ∇Z1(1 + ∇Z0 · ∇Z0) − ∇Z0 · ∇Z1∇Z0 · ∇Z1

(1 + ∇Z0 · ∇Z0)3/2

− ρgZ2
1

}
dx dy + · · · . (B2)

The first term on the right-hand side, due to Z1 = 0 on C, is

ε

∫
A

{
−γ∇ · ∇Z0

(1 + ∇Z0 · ∇Z0)1/2 − ρgZ0

}
Z1 dx dy,

and this is zero in view of Eqs. (1) and (3).
The second term is

1

2
ε2

∫
A

{
γ

∇Z1 · ∇Z1 + ∇Z1 · ∇Z1 ∇Z0 · ∇Z0 − (∇Z1 · ∇Z0)2

(1 + ∇Z0 · ∇Z0)3/2 − ρgZ2
1

}
dx dy,

and it is made up of a stabilizing positive part due to the increase in surface potential energy and a
destabilizing negative part due to the decrease in gravitational potential energy. Thus, if g = 0, Z0

is always stable. If γ = 0, Z0 is always unstable.
Now if Z1 is a neutral displacement of Z0, the second term must be zero and to see what this

requires of Z1, we write the second term

1

2
ε2

∫
A

[
γ

{∇Z1(1 + ∇Z0 · ∇Z0) − ∇Z0 · ∇Z1 ∇Z0

(1 + ∇Z0 · ∇Z0)3/2

}
· ∇Z1 − ρgZ2

1

]
dx dy

= 1

2
ε2

∫
A

[
−γ∇ ·

{∇Z1(1 + ∇Z0 · ∇Z0) − ∇Z0 · ∇Z1∇Z0

(1 + ∇Z0 · ∇Z0)3/2

}
Z1 − ρgZ2

1

]
dx dy
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= 1

2
ε2

∫
A

⎡
⎣−γ ∇ ·

⎧⎨
⎩

−→−→
I (1 + ∇Z0 · ∇Z0) − ∇Z0 ∇Z0

(1 + ∇Z0 · ∇Z0)3/2 · ∇Z1

⎫⎬
⎭ − ρgZ1

⎤
⎦Z1 dx dy

= 1

2
ε2

∫
A

(−γLZ1 − ρgZ1)Z1 dx dy.

And for this to be zero, no matter Z0, we see that Z1 must satisfy Eq. (4).
The potential energy calculation applies to experiment I. It is the starting point for, e.g., Maddocks

[15] and Lowry and Steen [16], and others.
Experiment II is little different. Due to the effect of gravity, it can not be obtained from experiment

I by switching the roles of P and V .

APPENDIX C: UPWARD FORCE

We have a drop pinned along a curve C bounding a region A in the x,y plane. Its surface is
denoted S. The outward normal to C in the x,y plane is ∇Z

(∇Z·∇Z)1/2 . We have a solution Z(x,y,B,V )
to our drop-shape problem and integrating Eq. (1) over A gives us

PA + BV =
∫
C
ds

−→
n · ∇Z

(1 + ∇Z · ∇Z)1/2 =
∫
C
ds

(∇Z · ∇Z)1/2

(1 + ∇Z · ∇Z)1/2.

Along C we have

−→
k − ∇Z

(1 + ∇Z · ∇Z)1/2 : normal to S at C,

∇Z

(∇Z · ∇Z)1/2 : normal to C in the x-y plane,

∇Z × −→
k

∇Z · ∇Z
: tangent to C in the x-y plane,

and we need the tangent to S at C perpendicular to C. It is

∇Z + −→
k (∇Z · ∇Z)

(∇Z · ∇Z)1/2(1 + ∇Z · ∇Z)1/2.

Hence the upward force of C on the surface of the drop is
∫
C
ds

(∇Z · ∇Z)1/2

(1 + ∇Z · ∇Z)1/2,

and we see that the upward force of the curve C, along which the drop is pinned, on the drop vanishes
if and only if ∇Z is pointwise zero.

APPENDIX D: MANY WAYS TO RUN A PRESSURE CONTROLLED DROP EXPERIMENT

Figure 13 is a sketch of a pressure-controlled drop experiment
The tube is assumed always to be full of more dense fluid and the volumes, V1 and V2, are the

volumes above z = 0.
The drop experiment is hydrostatic and P is the input, Z(x,y) is the output.
The pressures P1 and P2, are

P1 = P + Patm + ρ1gh1 − ρ1gZ (D1)
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FIG. 13. Sketch of a pressure-controlled drop experiment.

and

P2 = Patm + ρ2gh2 − ρ2gZ (D2)

whereupon Z, the drop shape, i.e., base shape is obtained by solving

γ 2H (Z) = P1 − P2 = P + ρ1gh1 − ρ2gh2 − (ρ1 − ρ2)gZ. (D3)

Now h1 and h2 depend on the pressure and can be eliminated by observing:
(1) At Z = 0 we have P = P0, h1 = h10, and h2 = h20 where P0 + ρ1gh10 − ρ2gh20 = 0
(2) Thus we have

γ 2H = P − P0 + ρ1g(h1 − h10) − ρ2g(h2 − h20) − (ρ1 − ρ2)gZ (D4)

and
(3)

A1h1 −
∫∫

Z dx dy = A1h10 (D5)

and

A2h2 +
∫∫

Z dx dy = A2h20, (D6)

whereupon Z satisfies

γ 2H (Z) = P + ρ1 g
1

A1

∫∫
Z dx dy + ρ2 g

1

A2

∫∫
Z dx dy − (ρ1 − ρ2)gZ, (D7)

and P is now P − P0.
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If A1 and A2 are very large we have

γ 2H (Z) = P − (ρ1 − ρ2)gZ, (D8)

and the corresponding eigenvalue problem is our diffusion eigenvalue problem. This is Wente’s
statement of the static drop problem wherein critical points are always turning points [13].

Now if A1 = A, i.e., the left-hand tank is simply a pipe, we have

γ 2H (Z) = P + ρ1 g
1

A

∫∫
A

Z dx dy + ρ2 g
1

A2

∫∫
A

Z dx dy − (ρ1 − ρ2)gZ (D9)

And thus if A2 is very large we have

γ 2H (Z) = P + ρ1 g
1

A

∫∫
A

Z dx dy − (ρ1 − ρ2)gZ. (D10)

This is our statement of experiment II in unscaled variables.
Hence the diffusion eigenvalue problem has a definite physical connection to all drop experiments,

but even if it had not, nothing would have been lost. The diffusion eigenvalues are based on drop
shapes found in experiments I and II, not on shapes found in Wente’s thought experiment.

APPENDIX E: DERIVATION OF THE BASE EQUATIONS

1. Experiment I

We have

−→
g = −g

−→
k (E1)

and

dP

dz
= −ρ g, (E2)

whereupon

P = −ρgz + C, (E3)

P∗ = −ρ ∗ gz + C∗, (E4)

P (h) = −ρgh + C, (E5)

and

P (−h∗) = ρgh ∗ +C∗. (E6)

At z = Z we have

P∗ + γ 2H = P, (E7)

whereupon

γ 2H = −(ρ − ρ∗)gZ + C − C∗, (E8)

where

C − C∗ = P (h) + ρgh − [P (−h∗) − ρgh∗], (E9)

and scaling produces Eq. (1).
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2. Experiment II

Unlike experiment I, it is not the volume of the drop that remains constant on perturbation. This
is important in the presence of gravity. Again we have at z = Z

P + ρgh − ρgZ − (Patm + ρ ∗ gh ∗ −ρ ∗ gZ) = γ 2H. (E10)

Denoting h and P by h0 and P0 when Z = 0, we have

P0 − ρgh0 − (Patm + ρgh∗) = 0, (E11)

whereupon, eliminating Patm + ρgh∗, using

(h0 − h)A = −
∫∫

a
Z dx dy, (E12)

and scaling we have Eq. (11).
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