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of surfactant-laden deformable droplets in linear flows

Shubhadeep Mandal, Sayan Das, and Suman Chakraborty*

Department of Mechanical Engineering, Indian Institute of Technology Kharagpur,
West Bengal-721302, India

(Received 24 May 2017; published 17 November 2017)

In the present study, we analytically investigate the deformation and bulk rheology of a
dilute emulsion of surfactant-laden droplets suspended in linear flows. We use an asymptotic
approach to determine the effect of surfactant distribution on the deformation of an isolated
droplet as well as the effective shear and extensional viscosity for a dilute emulsion. The
nonuniform distribution of surfactants due to the bulk flow results in the generation of a
Marangoni stress, which affects both the deformation as well as the bulk rheology of the
emulsion. The present analysis is done for the limiting case when the surfactant transport
is dominated by the surface diffusion relative to surface convection. As an example, we
have used two commonly encountered bulk flows, namely, uniaxial extensional flow and
simple shear flow. With the assumption of negligible inertial forces present in either of the
phases, we show that both the surfactant concentration on the droplet surface as well as the
ratio of viscosity of the droplet phase with respect to the suspending fluid has a significant
effect on the droplet deformation as well as the bulk rheology. It is seen that increase in the
nonuniformity in surfactant distribution on the droplet surface results in a higher droplet
deformation and a higher effective viscosity for either of the linear flows considered. The
effect of surfactant distribution on effective viscosity is insignificant for highly viscous
droplets. For the case of simple shear flow, surfactant distribution is found to have no
effect on the inclination angle. However, a higher viscosity ratio predicts the droplet to be
more aligned toward the direction of flow. First and second normal stress differences are
present for the case of a simple shear flow, of which the former is found to increase with
nonuniformity in surfactant distribution, whereas the later remains unaffected.
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I. INTRODUCTION

Emulsions, polymer blends, and foams encompass a longstanding leading area of research because
of their wide application in foods, material processing, and pharmaceuticals [1–3]. The droplets of
the dispersed phase suspended in a carrier phase are deformed, oriented, and broken up during these
processes, resulting in changes in their microstructure or morphology. The modified morphology
alters the mechanical, thermal, and chemical properties of the emulsions [1–7]. The dynamics of
suspended droplets also finds its wide application in different microfluidic devices [8–10]. Some
of the common use of droplets in microfluidic devices can be found in cell encapsulation, reagent
mixing, drug delivery, and analytic detection [8,11–14].

Hydrodynamics of clean droplets in linear flows (i.e., extensional and simple shear) has been
studied extensively since the classical work of Taylor [15,16]. When the flow strength is relatively
small as compared to the interfacial tension, a droplet deforms into an ellipsoidal shape. In uniaxial
extensional flow, the ellipsoidal droplet is aligned with the extension axis, while the ellipsoidal droplet
makes an angle with the flow direction in simple shear flow (refer to Stone [17] for detail review).
Presence of droplets perturbs the imposed flow and thereby alters the bulk rheology of the emulsion.
Theoretical studies have predicted increase in both the extensional and shear viscosities of emulsion.
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In the presence of droplet deformation, a dilute emulsion is found to exhibit non-Newtonian behavior,
such as nonzero first and second normal stress differences (refer to Pal [18] for detailed review).

Most of the existing studies have focused on the hydrodynamics of surfactant-free droplet. Toward
investigating the dynamics of surfactant-laden droplet, Flumerfelt has performed a perturbation
analysis to study the effect of the varying interfacial tension as well as shear and dilatational
interfacial viscosity, in the presence of mass transfer, on the deformation of a droplet suspended
in linear flows [19]. These interfacial viscosities at the interface are generated due to the presence
of contaminants or surfactants on the droplet surface. Later, Stone and Leal [20] have performed
analytical and numerical studies and determined the effect of bulk-insoluble surfactants on the
droplet deformation. They have performed a small-deformation analysis, considering the limit of
diffusion-dominated surfactant transport, and obtained the first correction in droplet shape. For
a surfactant-laden droplet, the surface tension varies along the interface of the droplet due to a
nonuniform distribution of surfactants along the droplet surface, with lower surface tension in
regions of high surfactant concentration. Several experimental studies have shown that there is a
close relationship between droplet deformation and local surfactant distribution along the droplet
surface [15–25]. Milliken et al. [26] numerically investigated the effect of surfactant distribution on
the deformation and breakup of a droplet suspended in a uniaxial extensional flow. For the case of
an imposed extensional flow, the droplet elongates and there is a higher concentration of surfactants
and hence a lower surface tension at the two tips of the droplet, which gives rise to an interfacial
Marangoni stress. The rotational component of flow in a simple shear flow, however, redistributes
the surfactant, enhancing the uniformity in surface tension and hence reducing the deformation.
Recently, Vlahovska et al. [27] have investigated the droplet deformation and bulk rheology in linear
flows. They have given a small-deformation theory for the limiting case of convection-dominated
surfactant transport. In a recent study, slender body theory has been used by Booty et al. [34] to
analytically study a highly deformable bubble. Numerical simulations have also been performed to
investigate large as well as transient deformations and also breakup of a surfactant-laden droplet
suspended in a linear flows [17,20,22,28,29].

Some of the recent state-of-the-art problems that clearly demonstrate the efficacies of an
asymptotic approach include studies on droplet migration [30], deformation [31–33], or on the
bulk rheology of droplet suspensions [34–36]. However, a comprehensive analysis for the limiting
case when the surfactant transport is dominated by surface diffusion is missing from the literature.
This limiting case may arise in situations where the surface diffusivity of the surfactants is high.
Experiments with a high value of surface diffusivity and a low imposed shear (or extensional) rate
have been performed previously [37]. It can be noted here that Stone and Leal have investigated
the same problem, but they have restricted their analysis up to first correction in droplet shape.
Determination of higher-order solution is more of a challenge, as all the boundary conditions needs
to be evaluated at the deformed boundary [38]. Here, we analytically study the effect of Marangoni
stress on the dynamics of a surfactant-laden droplet in linear flows. An asymptotic study, although
an approximate one, gives a sound physical insight of the overall problem and a clear understanding
of the different outcomes as compared to any numerical approach. With this analysis, we can easily
predict the nature of droplet deformation and subsequent effect of droplet deformation on the effective
viscosity of the emulsion under different conditions of varying surfactant concentration or strength
of imposed flow. The surfactants in the present problem are bulk-insoluble and get transported only
along the droplet surface. As an example, we have considered two kinds of linear flows: uniaxial
extensional flow and simple shear flow. For each of these linear flows, we have obtained the deformed
shape of the droplet and associated modification in the bulk rheology of a dilute emulsion.

II. THEORETICAL MODEL

A. Physical system

The physical system considered in this problem consists of a neutrally buoyant droplet suspended
in a linear flow. The droplet has a radius of a and is covered with bulk-insoluble surfactants, which
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FIG. 1. Schematic of a surfactant-laden droplet of radius a suspended in a linear flow. As an example, we
have shown the background flow to be a simple shear flow. Both the spherical (r̄ ,θ,ϕ) as well as the Cartesian
coordinates (x̄,ȳ,z̄) are shown.

are transported along the droplet interface due to surface diffusion and convection. The viscosity
of the droplet as well as the suspending phase are μi and μe, respectively. The subscript i is used
to denote the droplet phase quantities, whereas the subscript e refers to the quantities related to the
suspending phase. In the present study, we have considered the droplet to be suspended in a linear
flow, which may be uniaxial extensional flow or simple shear flow. This imposed flow field ū∞ can
be represented mathematically in a general form as

ū∞ = (D̄∞ + �̄∞) · x̄, (1)

where D̄∞ is the rate of strain tensor, x̄ is the position vector, and �̄∞ is the vorticity. For a simple
shear flow we have in the above expression

D̄∞ = γ̇

2

⎡
⎣0 1 0

1 0 0
0 0 0

⎤
⎦, �̄∞ = γ̇

2

⎡
⎣ 0 1 0

−1 0 0
0 0 0

⎤
⎦, (2)

where γ̇ is the shear rate. For a uniaxial extensional flow, on the other hand, we have

D̄∞ = γ̇

2

⎡
⎣−1 0 0

0 −1 0
0 0 2

⎤
⎦, �̄∞ = 0. (3)

A schematic of the system is given in Fig. 1, where we have only shown the case in which a
surfactant-laden droplet is suspended in a simple shear flow. A spherical coordinate system (r̄ ,θ,ϕ)
and a Cartesian coordinate system (x̄,ȳ,z̄) are attached to the centroid of the droplet. In the absence of
any surfactant, that is for a clean droplet, the surface tension of the suspended droplet is constant and
is denoted by σ̄c. On the other hand, a surfactant-laden droplet suspended in a quiescent fluid with no
imposed flow has a uniform surfactant distribution �̄eq with a corresponding constant surface tension
σ̄eq. Presence of an imposed flow, however, renders the surfactant distribution nonuniform, which
results in the variation of surface tension along the droplet surface. This variation in surface tension
is responsible for the generation of Marangoni stress, which not only causes deformation of the
droplet but also drives fluid flow. The aim of the present study is to analyze the effect of surfactants
on the droplet deformation for both types of imposed flows: uniaxial extensional flow and simple
shear flow. We also, in either of these cases, investigate the effect of surfactant concentration on
the emulsion rheology. Toward this, we find out the effective extensional viscosity and the effective
shear viscosity of a dilute emulsion comprising of deformable droplets in uniaxial extensional flow
and simple shear flow, respectively.

113604-3



SHUBHADEEP MANDAL, SAYAN DAS, AND SUMAN CHAKRABORTY

B. Important assumptions

To analytically solve the above problem, some assumptions have to be made to simplify the
governing equations as well as boundary conditions for flow field. These assumptions are as follows:

(i) The pressure, viscous and surface tension forces dominate the flow dynamics in comparison to
the inertia force. In other words, the flow Reynolds number, Re = ργ̇ a2/μe, is assumed to be small
(Re � 1). Here ρ is the density of either of the phases.

(ii) The transport of surfactants is assumed to take place only along the droplet surface, without
any net flux into either of the phases. That is, the surfactant is considered to be bulk-insoluble.

(iii) The surface tension at the droplet interface is assumed to be linearly related to the local
surfactant concentration.

(iv) The droplet dynamics is assumed to be unaffected by any bounding walls, if present. That is,
the droplet radius is assumed to be much smaller as compared to the droplet-wall distance.

(v) The droplet is assumed to be approximately spherical, that is, only small deformations are
considered. For creeping flow, the droplet deformation is governed by the magnitude of the capillary
number (Ca∗ = μeγ̇ a/σ̄c), which is the ratio of viscous force to the surface tension force acting on
the droplet. In this problem we assume small deformation of the droplet only, which restricts us to
small values of capillary number (Ca* � 1).

C. Governing equations and boundary conditions

We first start by stating the governing equations for flow field. The flow field, under the above
assumptions, is governed by the Stokes and continuity equations, whereas the surfactant transport
along the droplet surface is governed by a convection-diffusion equation [27]. The flow field is
subjected to kinematic and stress balance conditions at the droplet interface, which along with the
surfactant transport equation are used to solve the velocity field, the surfactant distribution, and finally
the shape deformation of the droplet. We first state the characteristic scales used to nondimensionalize
the set of governing equations and boundary conditions. All the dimensionless quantities and material
properties in the above equations are denoted without overbar. The nondimensional scheme used is
given by

r = r̄/a, u = ū/γ̇ a, � = �̄/�̄eq, σ = σ̄ /σ̄c,

p = p̄/(μeγ̇ ), τ = τ̄/(μeγ̇ ). (4)

Different dimensionless parameters that will be useful while deriving the dimensionless form
of governing equations and boundary conditions are (i) the viscosity ratio, λ = μi/μe, (ii) the
surface Péclet number, Pes = γ̇ a2/Ds , which signifies the relative importance of convection in the
transport of surfactants along the droplet surface with respect to surface diffusion, Ds being the
surface diffusivity of the surfactant, (iii) the elasticity number, β = �̄refRT̄o/σ̄c = −d(σ̄ /σ̄c)/d�̄,
which indicates the sensitivity of surface tension toward local surfactant concentration, and (iv) the
modified capillary number, Ca = Ca∗/(1 − β). The main reason for the use of the modified capillary
number is that it is defined based on the equilibrium surface tension for a surfactant-laden droplet
(σ̄eq = σ̄c(1 − β)) rather than the surface tension for a clean droplet (σ̄c). Such a choice adds to our
convenience in further calculation [20].

Thus, using the above nondimensional scheme, the following set of nondimensional governing
differential equations for flow field are obtained:

− ∇pi + λ∇2ui = 0, ∇ · ui = 0,

−∇pe + ∇2ue = 0, ∇ · ue = 0, (5)
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where ui,e is the velocity field and pi,e is the pressure field. The relevant boundary conditions are
given by [39]

at r → ∞, (ue,pe) = (u∞,p∞), ui is bounded at r = 0, at r = rs, ui · n = ue · n = 0,

at r = rs, ui = ue, at r = rs, (τ e · n − τ i · n) = β

(1 − β)Ca
∇s� + σ

Ca
(∇ · n). (6)

where u∞ and p∞ are the velocity and pressure at far-field, respectively. The dimensional velocity
at the far-field is provided in Eq. (1). Inside the droplet, the velocity and pressure fields (ui ,pi) are
bounded at the centroid of the droplet, r = 0. The boundary conditions at the interface of the droplet
(r = rs), where rs is the radial position of the droplet interface, consists of the kinematic boundary
condition, the no-slip condition, and finally the balance between hydrodynamic and Marangoni
stresses.

The radial position of the deformed droplet can be represented as rs = 1 + g(θ,ϕ), where g(θ,ϕ)
is the deviation in drop shape from sphericity. In Eq. (6) ∇s = (I − nn) · ∇ is the surface gradient
tensor and n is the unit vector normal to the droplet surface and is given by

n = ∇F

|∇F | , (7)

where F = r − rs is the equation for the droplet surface. τ e and τ i are the external and internal
viscous/hydrodynamic stress tensors, given by [40,41]

τ i = −piI + λ[∇ui + (∇ui)
T ],

τ e = −peI + [∇ue + (∇ue)T ]. (8)

The last of the above set boundary conditions in Eq. (6) is obtained as a result of substitution of
the nondimensional form of the equation of state [42], given by

σ = 1 − β�. (9)

The surface tension based on the modified capillary number can be written in the following form

σ = σ̄

σ̄c(1 − β)
. (10)

From the above equation it can be said that 0 < β < 1. Under the assumption of bulk insolubility,
the surfactant transport at steady state is governed by a convection-diffusion equation which in its
dimensionless form can be written as [43]

Pes∇s · (us�) = ∇2
s �. (11)

The mass conservation constraint to be satisfied by the local surfactant concentration along the
droplet surface can expressed in the following form:∫ 2π

ϕ=0

∫ π

θ=0
�(θ,ϕ)r2

s sin θdθdϕ = 4π. (12)

Before attempting to solve the problem approximately, we discuss the mathematical complexities
associated with the problem which restricts one to obtain an exact solution for arbitrary values of
Ca and Pes . Exact analytical solution is not possible for any value of Ca because the droplet shape is
not known a priori. The deformed shape of the droplet has to be obtained as a part of the solution,
which can be accomplished in the regime of small deformation (i.e., Ca � 1). Even when the droplet
shape is nearly spherical, we cannot solve for the flow field and surfactant distribution due to the
coupled nature of flow and surfactant transport. It is apparent from Eq. (11) that the surfactant
transport equation is coupled to the flow field via the surface convection term on the left-hand
side of the equation. Thus, exact solution cannot be obtained for any value of Pes . Fortunately, an
asymptotic approach just serves the purpose [19,27]. It is convenient to employ a small-deformation
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theory considering Ca � 1. In the limit of small droplet deformation, we can progress in two
different ways to study two important limiting cases: (i) diffusion-dominated surfactant transport
(i.e., Pes � 1), and (ii) convection-dominated surfactant transport (i.e., Pes � 1). In the present
study, we focus on the diffusion-dominated regime. Note that Vlahovska et al. [27] have employed
a similar small-deformation analysis for the convection-dominated regime.

III. ASYMPTOTIC SOLUTION

In the limiting case of Pes � 1, the surfactant transport is dominated by the surface diffusion in
comparison to convection at the droplet interface. The magnitude of Pes is taken to be of the same
order as that of capillary number (Ca), that is Pes ∼ Ca. This can be written in the following form

Pes = kCa, (13)

where k = aσ̄c(1 − β)/μeDs is called the property parameter as it depends on the various material
properties. Here we have assumed that k has a magnitude of O(1), which is consistent with Pes ∼ Ca.
Thus, the droplet deformation is solely a function of Ca for any given values of k, β, and λ. The
modified surfactant transport equation for this limiting case can be expressed as

kCa∇s · (us�) = ∇2
s �. (14)

For the other limiting case of convection-dominated surfactant transport along the droplet surface
(Pes → ∞), the surfactant transport equation reduces to

∇s · (us�) = 0. (15)

Vlahovska et al. [27] have employed Eq. (15) in their analysis, which does not contain the
diffusion term. Note that a slight rearrangement of Eq. (14) reduces to Eq. (15) in the limit of
k → ∞. Thus, the present analysis simplifies to the analysis of Vlahovska et al. [27] in the limit of
k → ∞.

In the present study, we choose the capillary number as the perturbation parameter. All the field
variables can thus be expanded in a power series as follows [27]:

ψ = ψ (0) + ψ (Ca)Ca + O(Ca2), (16)

where ψ is any generic dependent variable. The first term in the above expansion represents the
leading-order term that is the variable, ψ for no deformation. All the other terms are O(Ca) or
higher-order correction terms due to deformation of the droplet. The surfactant concentration, on
the other hand, is expanded as follows [27]:

� = 1 + �(0)Ca + �(Ca)Ca2 + O(Ca3). (17)

Note that the surfactant concentration obtained at each order of perturbation should always satisfy
the mass conservation constraint on the droplet surface as given in Eq. (12).

Toward obtaining an asymptotic solution, we express all the different quantities involved in terms
of spherical harmonics. At each order of perturbation, the local surfactant concentration is expressed
in the form of an infinite series in terms of spherical surface harmonics as follows:

� =
∞∑

n=0

n∑
m=0

[�n,m cos(mϕ) + �̂n,m sin(mϕ)]Pn,m(cos θ ), (18)

where Pn,m(cos θ ) are the associated Legendre polynomials of order m and degree n. The unknown
coefficients, �n,m and �̂n,m, are found out by solving the surfactant transport equation. As both the
flow inside as well as outside the droplet satisfies the Stokes equations, the use of Lamb’s general
solution can be made to find out the velocity and pressure fields in either of the phases. The detailed
expression for the Lamb’s general solution is provided in the supporting material. Here we discuss
the important steps towards obtaining the solution. The velocity and pressure fields can be obtained
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with the help of the boundary conditions at the droplet interface namely the kinematic boundary
condition, the no-slip condition and the tangential stress balance. The tangential stress boundary
condition can be obtained from the stress balance condition as given in the last of the equations
in Eq. (6). The tangential stress boundary condition represents the balance between the tangential
component of the jump in hydrodynamic stress and the tangential component of surfactant-induced
Marangoni stress. This boundary condition can be written in the following form:

at r = rs, (τ e · n − τ i · n) · (I − nn) = β

(1 − β)Ca
(∇s�) · (I − nn), (19)

where I is an identity tensor. The radial distance of the deformed surface of the drop, rs , can be
written in the following form [27]:

rs = 1 + Cag(Ca) + Ca2g(Ca2) + O(Ca3), (20)

where g(Ca) and g(Ca2) are O(Ca) and O(Ca2) correction to the spherical shape of the droplet,
respectively.

We next proceed towards obtaining the solution for flow field with the help of the following steps
(i) We first substitute Eqs. (13), (16), and (17) into Eqs. (5), (6), and (11) to obtain the governing

differential equations and boundary conditions for leading-order and O(Ca) problems.
(ii) The boundary conditions (other than the normal stress boundary condition) and the surfactant

transport equation for leading-order are next solved simultaneously to calculate the flow field and
surfactant concentration.

(iii) With the leading-order solution at hand, we further calculate the O(Ca) deformation, which
can be obtained from the normal stress balance at the deformed interface of the droplet. The normal
stress balance obtained from the stress balance equation given in Eq. (6) is written as

at r = rs, (τ e · n − τ i · n) · n = σ

Ca
(∇ · n). (21)

(iv) Thus, expanding the stress tensors as shown in Eq. (16), substituting the expression of n from
Eq. (7) and σ from Eq. (9), and applying the orthogonality condition for the associate Legendre
polynomials on either sides of the normal stress balance we get the expression for O(Ca) correction
to the droplet shape, which is given by

g(Ca) =
∞∑

n=0

n∑
m=0

[
L(Ca)

n,m cos(mϕ) + L̂(Ca)
n,m sin(mϕ)

]
Pn,m(cos θ), (22)

where L(Ca)
n,m and L̂(Ca)

n,m are constant coefficients.
(v) With the leading-order solution as well as O(Ca) deformation at our disposal, we proceed

further towards calculating the O(Ca) solution for flow field and O(Ca2) correction to the droplet
shape. We first start by deriving the O(Ca) boundary conditions and surfactant transport equation at
the deformed surface of the droplet.

(vi) These equations are then solved simultaneously to obtain the O(Ca) flow field and surfactant
concentration.

(vii) Next, we again use the orthogonality condition for associated Legendre polynomials on the
either sides of the O(Ca) normal stress balance to calculate the O(Ca2) correction to the droplet
shape. This correction in droplet shape is given by

g(Ca2) =
∞∑

n=0

n∑
m=0

[
L(Ca2)

n,m cos(mϕ) + L̂(Ca2)
n,m sin(mϕ)

]
Pn,m(cos θ ). (23)

A detailed representation of the asymptotic analysis is given in a separate supporting material,
where we have mentioned the governing equations and boundary conditions for each order of
perturbation. We now put forward the expressions for the surfactant concentration and the corrections
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FIG. 2. Schematic of a surfactant-laden droplet suspended in a uniaxial extensional flow with z̄ being the
axis of extension. Both the imposed flow field as well as non-uniform distribution of surfactants are responsible
for the deformation of the droplet.

to the droplet shape for the following two separate cases: (a) uniaxial extensional flow and (b) simple
shear flow.

A. Uniaxial extensional flow field

A schematic for the case of a surfactant-laden droplet suspended in a uniaxial extensional flow
field is shown in Fig. 2. The velocity as well as the pressure fields for this special case are given in
Appendix A. The surfactant concentration at the droplet interface when a uniaxial extensional flow
is imposed in the far-field is given by Eq. (17). The expressions for �(0) and �(Ca) are of the form

�(0) = �
(0)
2,0P2,0 and �(Ca) = �

(Ca)
2,0 P2,0 + �

(Ca)
4,0 P4,0, (24)

where the unknown coefficients are obtained as

�
(0)
2,0 = 5k

2

(
1 − β

5 + kβ + 5λ − 5β − 5λβ

)
,

�
(Ca)
2,0 = −25k

(g12,0β
3 + g22,0β

2 + g32,0β + g42,0)

112(βk − 5β − 5βλ + 5 + 5λ)3 , (25)

�
(Ca)
4,0 = −45k

(g14,0β
3 + g24,0β

2 + g34,0β + g44,0)

112(βk − 5β − 5βλ + 5 + 5λ)2(βk − 9β − 9βλ + 9λ + 9)
,

where g1i,0 ≡ �(λ,k) ≡ g2i,0 ≡ g3i,0 ≡ g4i,0 with i = 2,4. The constants present in the above
equation are provided in Appendix A.

The deformed shape of the surfactant-laden droplet when it is suspended in a uniaxial extensional
flow field is obtained as

rs = 1 + Ca
(
L

(Ca)
2,0 P2,0

)+ Ca2
(
L

(Ca2)
0,0 + L

(Ca2)
2,0 P2,0 + L

(Ca2)
4,0 P4,0

)
, (26)

where L
(Ca2)
0,0 is included in the O(Ca2) correction in droplet shape to take into consideration the

volume conservation constraint. The volume conservation constraint is given by∫ 2π

ϕ=0

∫ π

θ=0

∫ rs

r=0
r2dr sin θdθdϕ = 4π

3
. (27)

Thus, using the above volume conservation condition, L
(Ca2)
0,0 is found out to be

L
(Ca2)
0,0 = − 1

5

(
L

(Ca)
2,0

)2
. (28)
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The unknown coefficients present in Eq. (26) are obtained as

L
(Ca)
2,0 = 5

8

(
16 − 16β + 19λ + 4kβ − 19λβ

5 + kβ + 5λ − 5β − 5λβ

)
, (29)

L
(Ca2)
2,0 =

{(
a

(20)
0 λ3 + a

(20)
1 λ2 + a

(20)
2 λ + a

(20)
3

)
β3 + (

b
(20)
0 λ3 + b

(20)
1 λ2 + b

(20)
2 λ + b

(20)
3

)
β2

+(c(20)
0 λ3 + c

(20)
1 λ2 + c

(20)
2 λ + c

(20)
3

)
β + 25(19λ + 16)(601λ2 + 893λ + 256)

}
448(βk − 5β − 5βλ + 5 + 5λ)3 ,

(30)

L
(Ca2)
4,0 =

{(
a

(40)
0 λ3 + a

(40)
1 λ2 + a

(40)
2 λ + a

(40)
3

)
β3 + (

b
(40)
0 λ3 + b

(40)
1 λ2 + b

(40)
2 λ + b

(40)
3

)
β2

+(c(40)
0 λ3 + c

(40)
1 λ2 + c

(40)
2 λ + c

(40)
3

)
β + 15(751λ + 656)(19λ + 16)(λ + 1)

}
224(βk − 5β − 5βλ + 5 + 5λ)2(βk − 9β − 9βλ + 9λ + 9)

,

(31)

where the expressions for the constants a
(20)
0 − a

(20)
3 , b

(20)
0 − b

(20)
3 , c

(20)
0 − c

(20)
3 , a

(40)
0 − a

(40)
3 , b

(40)
0 −

b
(40)
3 , and c

(40)
0 − c

(40)
3 are given in Appendix A. Although the present study is for the case of k ∼ O(1),

we still obtain the results of Vlahovska et al. [27] on substitution of k → ∞. The surfactant transport
equation for this limiting case is provided in Eq. (15). The corresponding coefficients under this
limit are provided below:

lim
k→∞

L
(Ca)
2,0 = 5

2 , lim
k→∞

L
(Ca2)
2,0 = 75

14 , lim
k→∞

L
(Ca2)
4,0 = 135

28 . (32)

The deformation can be conveniently quantified for the case of small deformation (Ca � 1) with
the help of a deformation parameter, Dfe, which for the case of an extensional flow field is given by

Dfe = rs(θ = 0) − rs(θ = π/2)

rs(θ = 0) + rs(θ = π/2)
. (33)

The above expression can be expanded in a polynomial series which can be expressed as

Dfe = (
3
4L

(Ca)
2,0

)
Ca + {

5
16L

(Ca2)
4,0 + 3

4L
(Ca2)
2,0 − 3

16

(
L

(Ca)
2,0

)2}
Ca2. (34)

B. Simple shear flow field

The schematic for the special case when the imposed flow field is a simple shear flow is shown
in Fig. 1. The expressions for the velocity and pressure fields are given in Appendix B. The constant
coefficients in the expression of surfactant concentration of a droplet in a simple shear flow field, as
shown in Eq. (17), is given by

�(0) = �̂
(0)
2,2 sin(2ϕ)P2,2,

�(Ca) = �
(Ca)
2,0 P2,0 + �

(Ca)
4,0 P4,0 + �

(Ca)
2,2 cos(2ϕ)P2,2 + �

(Ca)
4,4 cos(4ϕ)P4,4, (35)

where the unknown coefficients present in the above equation are given in Appendix B.
The deformed shape of a surfactant-laden droplet suspended in simple shear flow is obtained as

rs = [
1 + Ca

{
L̂

(Ca)
2,2 sin(2ϕ)P2,2

}+ Ca2{L(Ca2)
0,0 + L

(Ca2)
2,0 P2,0 + L

(Ca2)
4,0 P4,0

+L
(Ca2)
2,2 cos(2ϕ)P2,2 + L

(Ca2)
4,4 cos(4ϕ)P4,4

}]
, (36)
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where L
(Ca2)
0,0 is included to satisfy the volume conservation condition given in Eq. (27). The expression

of L
(Ca2)
0,0 thus evaluated from the volume conservation constraint is given by

L
(Ca2)
0,0 = − 12

5

(
L̂

(Ca)
2,2

)2
. (37)

All the other unknown coefficients in Eq. (36) are given in Appendix B. Even though the present
study is strictly valid for k ∼ O(1), we obtain the results of Vlahovska et al. [27] for a surfactant
laden droplet suspended in a simple shear flow as k → ∞. The corresponding coefficients [appearing
in Eq. (36)] for this limiting case are given below:

lim
k→∞

L̂
(Ca)
2,2 = 5

12
, lim

k→∞
L

(Ca2)
2,0 = −25

14
, lim

k→∞
L

(Ca2)
2,2 = 5

144

(
11λ + 14 + λ + 4

2β

)
,

lim
k→∞

L
(Ca2)
4,0 = 15

56
, lim

k→∞
L

(Ca2)
4,4 = − 5

448
. (38)

The deformation parameter, Dfl, for the present case can be written as

Dfl = max{rs(θ = π/2,ϕ)} − min{rs(θ = π/2,ϕ)}
max{rs(θ = π/2,ϕ)} + min{rs(θ = π/2,ϕ)} , (39)

where Dfl gives a measure of the deformation of the droplet in the plane of shear (θ = π/2), when
suspended in a simple shear flow.

The steady-state angle of inclination of the droplet in the plane of shear is given by

ϕd = π

4
− L

(Ca2)
2,2

2L̂
(Ca)
2,2

Ca + O(Ca2). (40)

The above expression is obtained by performing a Taylor series expansion about ϕ = π/4. In the
limiting case of high Péclet number (Pes → ∞), the expression for ϕd in Eq. (40) matches exactly
with that obtained by Vlahovska et al. [27] Another alternative method to calculate the inclination
angle, ϕd, for a given value of θ is to find the value of ϕ corresponding to the maximum value of rs .

IV. SUSPENSION RHEOLOGY

Next, we move on to the calculation of the suspension rheology of a dilute emulsion in an imposed
flow, which may be a uniaxial extensional flow or a simple shear flow. Here we focus on the dilute
limit which is given by φ � 1, where φ is the droplet phase volume fraction. Now, we use the
leading-order and O(Ca) flow fields to determine the O(φ) and O(φCa) corrections in suspension
rheology. According to Batchelor [44], the volume averaged suspension stress for a suspension of
force-free particles in linear flow is given by

〈τ 〉 = −〈p〉I + 2D∞ + φ

Vd

S, (41)

where S is a stresslet, which signifies the change in total stress as a result of change in velocity
and stress due to the presence of a suspended particles in the flow field. It can be expressed in the
following manner [44]:

S =
∫ 2π

ϕ=0

∫ π

θ=0

[
1

2
{(τ · n)x + ((τ · n)x)T } − 1

3
I{(τ · n) · x} − {un + (un)T }

]
r2
s sin θdθdϕ. (42)
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For the case of extensional flow in the far-field, the Trouton or the effective extensional viscosity
of a dilute emulsion of droplets is given by

μext

μe

= 〈τ̄zz〉 − 〈τ̄yy〉
μeγ̇

= 〈τ̄zz〉 − 〈τ̄xx〉
μeγ̇

= 3

⎡
⎢⎢⎢⎢⎢⎣1 + 5

2
φ

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(−5λ + k − 2)β + 5λ + 2

(k − 5 − 5λ)β + 5 + 5λ

+ 15

(
m

(1)
0 λ3 + m

(1)
1 λ2 + m

(1)
2 λ + m

(1)
3

)
β3 + (

m
(2)
0 λ3 + m

(2)
1 λ2 + m

(2)
2 λ + m

(2)
3

)
β2

+(m(3)
0 λ3 + m

(3)
1 λ2 + m

(3)
2 λ + m

(3)
3

)
β + (19λ + 16)(25λ2 + 41λ + 4)

56(βk − 5β − 5βλ + 5 + 5λ)3 Ca

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

⎤
⎥⎥⎥⎥⎥⎦,

(43)

where m
(j )
i ≡ �(k) with i = 0,1,2,3 and j = 1,2,3. The different constants present in the above

expression are given in Appendix C.
When a simple shear flow is imposed in the suspending fluid, the effective shear viscosity of the

dilute emulsion is given by

μeff

μe

= 〈τ̄xy〉
μeγ̇

= 1 + 5

2

{
(−5λ + k − 2)β + 5λ + 2

(−5 − 5λ + k)β + 5 + 5λ

}
φ + O(Ca2). (44)

As can be seen from the above expression, there is no O(Ca) contribution to the effective shear
viscosity. The first and second normal stress differences (N1 and N2) are obtained as

N1 = 〈τ̄xx〉 − 〈τ̄yy〉
μeγ̇

= 5

(
n

(1)
1,0λ

2 + n
(1)
1,1λ + n

(1)
1,22

)
β2 + (

n
(1)
2,0λ

2 + n
(1)
2,1λ + n

(1)
2,2

)
β + (16 + 19λ)2

8(−5β − 5λβ + kβ + 5 + 5λ)2 φCa, (45)

N2 = 〈τ̄yy〉 − 〈τ̄zz〉
μeγ̇

= −
5

{(
n

(2)
1,0λ

3 + n
(2)
1,1λ

2 + n
(2)
1,2λ + n

(2)
1,3

)
β3 + (

n
(2)
2,0λ

3 + n
(2)
2,1λ

2 + n
(2)
2,2λ + n

(2)
2,3

)
β2

+(n(2)
3,0λ

3 + n
(2)
3,1λ

2 + n
(2)
3,1λ + n

(2)
3,3

)
β + 10(19λ + 16)(29λ2 + 61λ + 50)

}

112 (kβ − 5λβ − 5β + 5 + 5λ)3 φCa, (46)

where n
(1)
i,j ≡ �(k) ≡ n

(2)
i,j with i = j = 1,2,3. The expressions of these constants are provided in

Appendix C. We again obtain the results of Vlahovska et al. for bulk rheology in the limiting case
of k → ∞ although our theory considers a finite value of k(∼1).

V. RESULTS AND DISCUSSIONS

A. Droplet deformation

1. Uniaxial extensional flow

We first provide a validation for our theoretical results with the numerical results obtained by
Milliken et al. [26].The variation of deformation parameter with capillary number is first shown in
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FIG. 3. Variation of deformation parameter (Dfe) with Ca is shown. For (a) λ = 0.1, (b) λ = 1, and
(c) λ = 10. In each of these figures numerical data from the work done by Milliken et al. [26] is shown
along with O(Ca) and O(Ca2) solutions obtained from our theory. The value of other parameter in these plots
are β = 0.5, and k = 0.1.

Fig. 3 for three different values of viscosity ratio (i.e., λ = 0.1, 1, 10) and for each case the results
are validated with that obtained by Milliken et al. [26]. The other parameters used in the plot are
β = 0.5 and k = 0.1. As can be seen from the Fig. 3, there is a good match between our O(Ca2)
theory and the numerical results as obtained by Milliken et al. [26]. In both the cases, the droplet
deformation increases with Ca. The O(Ca) theory (first developed by Stone and Leal [20]), however,
deviates from the numerical results at a much earlier point. It is also seen that the match is much
better for the case of a low value of λ(=0.1) as compared to a highly viscous droplet (λ = 10). It is
observed from Fig. 3 that for a fixed value of Ca, the droplet deformation reduces with decrease in
λ. This result is similar to the case of a surfactant-free droplet. The effect of viscosity ratio on the
deformation of a surfactant-free droplet has been investigated previously by Bentley and Leal [45].

For the purpose of an even better match between our theoretical prediction and the numerical
results of Milliken et al. [26], we make use of Padé approximants. The Padé approximant of order
[M/N] for droplet deformation parameter, Dfe, can be expressed as [43,46]

Dp,fe[M/N] =
∑N

n=0 pnCan

1 +∑M
n=1 qnCan

(47)
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FIG. 4. Contour plot showing the variation of deformation parameter (Dfe) with β and k. For (a) λ = 0.1,
while in (b) λ = 10. The values of the deformation parameter corresponding to different values of β and k are
also provided in the plot above. The value of capillary number for the above plot is taken to be Ca = 0.1.

Thus, a Padé approximant consists of M + N terms as the ratio of two power series in Ca of
degree M and N. For the present analysis, we use a [1/1] Padé approximant. We obtain the constants
p0, p1, and q1 by comparing the expression in Eq. (47) with the expression for the deformation
parameter as given in Eq. (34) and then equating like coefficients of Ca. The [1/1] Padé approximant
thus obtained is provided below:

Dp,fe = 9
(
L

(Ca)
2,0

)2
Ca

12L
(Ca)
2,0 − 5CaL(Ca2)

4,0 − 12CaL(Ca2)
2,0 + 3Ca

(
L

(Ca)
2,0

)2 . (48)

When the above expression for deformation parameter is plotted with respect to Ca, a significant
improvement in the match between our theoretical results and the numerical results of Milliken
et al. [26] is seen. The theoretical results obtained from Padé approximants, thus, deviate from the
numerical results at a much later stage.

The effect of surfactants on the deformation of the droplet provides us some interesting results.
A physical insight on the effect of surfactants as well as viscosity ratio on the deformation of the
droplet can be obtained with the help of a contour plot as shown in Fig. 4. The parameter k, which is
the property parameter, when increased, enhances the convection of surfactants along the surface of
the droplet. Due to the imposed extensional flow the surfactants start accumulating at the two tips of
the droplet along the z-axis. In addition to this, if k is increased, the concentration of the surfactants
further increases at the tip due to increase in convection. This results in a lower surface tension at the
tips as compared to the other regions on its surface. In other words, the surface tension gradient along
the surface increases with increase in k and hence the surfactant-induced Marangoni stress increases,
which causes a larger deformation of the droplet as compared to a clean droplet. Also, accumulation
of surfactants at the end of the droplet along the axis of elongation of the droplet requires a
higher curvature and hence results in an increased deformation. It is confirmed from Fig. 4 that for a
particular value of β, increase in k increases the deformation of the droplet. For a droplet having fixed
concentration of surfactants along its surface (that is β = 0), the average surfactant concentration
decreases upon deformation. Thus, the surface tension increases and any further deformation of the
droplet reduces in comparison to a droplet having uniform surfactant distribution.

If λ is increased, or if the droplet is more viscous as compared to the suspending flow, then any
change in the surface tension on the surface of the droplet (and hence the Marangoni stress) does
not affect its deformation to that extent as it would had been for a low viscosity droplet. In other
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FIG. 5. Deformed shape of the droplet at different orders of perturbation. The different parameters involved
in this plot are β = 0.5, k = 0.1, λ = 1, and Ca = 0.1.

words, the reduction in surface velocity of the droplet, due to increase in Marangoni stress, does
not contribute much to the deformation characteristics for a high viscous droplet. This is because
the surface velocity is already significantly reduced due to the high viscosity of the droplet and any
further reduction in the same due to variation in surfactant concentration is just incremental. This
can as well be observed by comparing Figs. 4(a) and 4(b). The change in deformation parameter
(Dfe) of a droplet with λ = 10 due to change in β or k is found to be much less in comparison
to that of a droplet with λ = 0.1. It can also be said that for a high value of k (e.g., k = 5), the
Marangoni stress is high enough to affect the deformation of the droplet and any change in λ (say
from λ = 0.1 to λ = 1) has minimal effect on the same. For smaller values of k, the Marangoni
stress developed is low and hence any change in λ has significant effect on the deformation of the
droplet. At the same time, from Fig. 4 we can also say that an increase in the viscosity ratio (from
λ = 0.1 to λ = 10) reduces the effect of surfactants on the deformation of the droplet. For λ = 0.1,
the deformation parameter varies from a minimum of 0.168 to a maximum of 0.188, whereas for
λ = 10, the change in Dfe is way too small, that is from 0.2043 to 0.2053.

The deformed shape of the droplet, subjected to a uniaxial extensional flow is shown in Fig. 5 for
different orders of perturbation, O(Ca) and O(Ca2). It is seen that due to the presence of extensional
bulk flow the droplet takes the shape of an ellipsoid with its major axis aligned along the extensional
axis. Higher-order correction shows that the droplet becomes more ellipsoidal. Thus, the higher-order
correction has a destabilizing effect, which physically signifies the fact that with increase in Ca, the
droplet will eventually breakup into fragments.

2. Simple shear flow

We first validate our result with existing experimental results of Feigl et al. [37]. Toward this, we
first plot the variation of the parameters L, B, and W with Ca. These parameters have been previously
used by Feigl et al. [37] to define different experimentally observed droplet dimensions. L denotes
the dimensionless major axis of the deformed droplet, which increases as the surface tension force
reduces in comparison to the viscous forces acting on the droplet (or as Ca increases). B indicates
the minor axis of the droplet and it reduces with increase in Ca. Finally, W is the length along the
vorticity axis which too reduces with increase in Ca. These parameters thus give a measure of the
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FIG. 6. Variation of O(Ca) and O(Ca2) solution for (a) L, (b) B, and (c) W with Ca. The circular and the
square points indicate the experimental and numerical data points, respectively, as obtained from Fig. 4 of Feigl
et al. [37]. The values of the other parameters are β = 0.8, λ = 0.335, and k = 1.

deformation of the droplet and can be expressed as

L = max
ϕ

{rs(θ = π/2, ϕ ∈ [0,π ])},
B = min

ϕ
{rs(θ = π/2, ϕ ∈ [0,π ])}, (49)

W = min
θ

{rs(ϕ = π/2, θ ∈ [0,π/2])}.

In Fig. 6 we see that for all the three parameters (L, B, W), there is a good match between the
experimental results of Feigl et al. [37] and our O(Ca2) solution. The O(Ca) solution, however,
largely deviates from the experimental result in comparison to the higher-order solution. Due to the
presence of bulk shear flow, the surfactants accumulate on either of the tips of the major axis, while
there is a dearth of the same at the end of both the minor as well as the vorticity axis. Because of
this nonuniform distribution of surfactants along the droplet surface, a gradient in surface tension is
generated which results in Marangoni stress. This results in the deformation of the droplet.

We also compare our asymptotic results with the numerical results obtained by Feigl et al. [37].
In Fig. 7 we have shown the variation of L, B, and W for two different values of k(= 0,5). As can be
seen that for the case of k = 5, the match between our theoretical results and their numerical results
is pretty good. For the case of an imposed simple shear flow, we do not indulge in the use of Padé
approximants as there is not any significant improvement in the accuracy of the results.
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FIG. 7. Variation of O(Ca) and O(Ca2) solution for (a) L, (b) B, and (c) W with Ca. The circular and the
square points indicate the experimental and numerical data points, respectively, as obtained from Fig. 4 of Feigl
et al. [37]. The values of the other parameters are β = 0.8, λ = 0.335. Each of the above plots are drawn for
k = 0, 5.

We next explore the effect of surfactant distribution as well as the viscosity ratio on the deformation
of the droplet. Towards investigating the effect of surfactant distribution on the deformation of the
droplet, we show two contour plots in Fig. 8. Figure 8(a) considers the case of a low viscous droplet
with λ = 0.1, and Fig. 8(b) considers the case of a highly viscous droplet with λ = 10. It can be
seen from the contour plot in Fig. 8 that increase in both β and k increases the deformation of
the droplet. Increase in k increases the nonuniformity in surfactant distribution due to enhanced
surfactant convection. Hence, the surface tension gradient along the droplet surface increases which
further results in a higher Marangoni stress. This Marangoni stress developed due to nonuniform
surfactant distribution is responsible for the droplet deformation. For low viscous droplets (λ = 0.1),
the Marangoni stress plays an important role in the deformation of the droplet. For high viscous
droplets (λ = 10), although the deformation of the droplet for same values of β and k is larger, the
effect of Marangoni stress on droplet deformation is minimal. This can be observed by comparison
of Figs. 8(a) and 8(b). It is thus seen that increase in droplet deformation due to increase in either β

or k is larger for λ = 0.1 as compared to the case when λ = 10. Thus, it can be said that change in
surfactant distribution along the surface of the droplet results in a significant change in deformation
for a bubble (λ → 0), where no deformation takes place for a particle (λ → ∞).

The angle of inclination can be also theoretically predicted. In the plane of shear (θ = π/2), the
expression for angle of inclination as given in Eq. (40), when plotted against Ca, matches pretty well
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FIG. 8. Contour plot showing the variation of deformation parameter (Dfl) with β and k. For (a) λ = 0.1,
while in (b) λ = 10. The values of the deformation parameter corresponding to different values of β and k are
labeled in the plot above. The value of capillary number for the above plot is taken to be Ca = 0.1.

with the numerical result obtained by Li and Pozrikidis [28]. This is shown in Fig. 9(a). The effect of
droplet viscosity or the viscosity ratio on the inclination angle of the droplet can be explained from
Fig. 10. It is seen that higher the viscosity ratio, lower is the inclination angle for a given value of
capillary number. That is, a droplet with a higher viscosity aligns itself more towards the direction
of imposed flow in comparison to a low viscous droplet. It is also seen that surfactant distribution
along the droplet surface has no effect on the orientation or the inclination angle of the droplet.
Figure 10 is drawn for a fixed value of the polar angle, θ = π/2. For higher Ca, change in λ has a
greater effect on the orientation of the droplet suspended in a simple shear flow.

The shape of a surfactant-laden droplet suspended in a simple shear flow is shown for different
orders of perturbation in Fig. 11. This figure clearly shows the orientation of the droplet as well. The
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FIG. 9. Variation of inclination angle with Ca. (a) A series approximation for the inclination angle is found
out [Eq. (40)] and plotted against Ca. The different parameters involved are k = 10, λ = 1 , and β = 0.1. The
marker points indicate numerical data taken from the work of Li and Pozrikidis [28]. (b) A more accurate
approach is used to calculate the angle of inclination directly from the solution for the deformed droplet shape.
The “green” square points denote the experimental data points from the work done by Feigl et al. [37]. The
other parameters are λ = 6.338, β = 0.5, and k = 5.
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FIG. 10. Variation of the inclination angle of the droplet with Ca for different values of λ(=0.1, 1, 10). The
other parameters values are β = 0.5, k =5, λ = 1, and θ = π/2.

droplet is found to elongate and take the shape of an ellipsoid with the major axis oriented along
the extensional axis. The surfactants thus accumulate at the either ends of the major axis and affect
the droplet deformation.

B. Suspension rheology

1. Uniaxial extensional flow

In Fig. 12 we show the variation of normalized Trouton viscosity or the effective extensional
viscosity with the bulk viscosity ratio, λ. The effective extensional viscosity is normalized with
respect to the volume fraction, φ. For the limiting case of a clean droplet k = 0, our theoretical result

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

z

x

O(Ca2)

O(Ca)

FIG. 11. Shape of the surfactant laden-droplet when suspended in a simple shear flow. Both the shapes
due to O(Ca) as well as O(Ca2) corrections are shown. The different parameters used for this plot are
β = 0.1, k = 5, λ = 1, and Ca = 0.15.
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FIG. 12. Variation of normalized effective extensional viscosity with λ for different values of k(=0, 2.5, 5).
Variation of the normalized effective extensional viscosity with λ for a clean droplet (k = 0) has been shown
by Ramachandran and Leal. The value of the capillary number is taken as Ca = 0.1 and β = 0.5.

matches exactly with that obtained by Ramachandran and Leal [51] (they have considered the effect
of slip in their analysis, however, we have taken the slip factor to be zero for comparison purpose).
For the case of clean droplets (k = 0), the presence of the droplets in the suspending fluid tends to
retard the imposed flow. This results in a viscosity of the emulsion which is larger than the viscosity
of the bulk fluid. As the viscosity of the surfactant-free droplet increases (or as λ increases), the
resistance provided by the suspended droplet increases and hence the effective extensional viscosity
(μext) increases too (see Fig. 12). In the limiting case of particle (λ → ∞), the effective extensional
viscosity is the highest. Presence of surfactants on the surface of the droplets further modifies the
effective extensional viscosity. Nonuniform distribution of the surfactants induced by the bulk flow,
generates a Marangoni stress due to variation of surface tension about the droplet surface. This
Marangoni stress, which acts against the direction of bulk flow deforms the droplet and further
increases the effective extensional viscosity of the droplet. Increase in k increases the convective
transport of surfactants along the droplet surface and hence increases the non-uniformity in surfactant
distribution, which in turn increases the Marangoni stress. As a result, μext increases with increase
in k. This can clearly be seen from Fig. 12. Another important observation from the same figure
is that the increase in μext with increase in k is the largest for the case of low viscous droplets.
That is, the surfactant concentration on droplet surface has almost negligible effect on the effective
extensional viscosity for a highly viscous droplet, as the effect of Marangoni stress is minimal. It
can also be shown that the parameter β has a similar effect on the bulk rheology. The elasticity
parameter, β, increases the sensitivity of surface tension towards the surfactant distribution and
hence for a constant k, increase in β increases the Marangoni stress, which in turn increases the
effective extensional viscosity. That is, the effect of k on bulk rheology is enhanced with increase
in β.

We also show a comparison between the leading order and O(Ca) solution for effective viscosity
in Fig. 13. Shape deformation further increases the effective viscosity as evident from Fig. 13. It
can be seen that the effect of shape deformation on the magnitude of normalized effective viscosity
is relatively less for a low viscous droplet as compared to a highly viscous droplet. For a highly
viscous droplet, the O(Ca) correction to the droplet shape results in a higher effective viscosity in
comparison to that for a spherical droplet.

113604-19



SHUBHADEEP MANDAL, SAYAN DAS, AND SUMAN CHAKRABORTY

10
−2

10
−1

10
0

10
1

10
2

3

4

5

6

7

8

9

λ

(µ
e

x
t

µ
e

−
3)

/
φ

 

 

Leading order solution

O(Ca) solution

FIG. 13. Variation of normalized effective extensional viscosity with λ at different orders of perturbation.
The value of other important parameters are β = 0.3, k = 1 , and Ca = 0.1.

2. Simple shear flow

The nature of variation of the effective shear viscosity (μeff) is the same as was observed for
the case of effective extensional viscosity, that is, effective shear viscosity increases with increase
in nonuniformity of surfactant distribution along the droplet surface. Hence, no further attempt has
been made to display the variation of effective viscosity with λ for the case of an imposed simple
shear flow. Note that shape deformation does not affect the effective shear viscosity. However, shape
deformation leads to generation of first and second normal stress differences N1 and N2 in the
emulsion [48]. Thus, the emulsion exhibits non-Newtonian behavior. The variation of the first and
second normal stress differences, N1 and N2, with Ca is shown in Fig. 14. For both the cases, there is
a good match between our theoretical prediction and the numerical results of Li and Pozrikidis [28].
Both the magnitude of N1 and N2 increase with increase in Ca. Under the assumption of negligible
inertia, N1 is positive and N2 is negative for a dilute emulsion of droplets. This can be seen from
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FIG. 14. (a) Variation of first normal stress difference (N1) with Ca. (b) Variation of the second normal
stress difference (N2) with Ca. The circular points in the plot indicate the numerical result as obtained by Li
and Pozrikidis [28]. The different parameters involved in either of the plots are β = 0.1, k = 10, and λ = 1.
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FIG. 15. (a) Variation of normalized first normal stress difference (N1/φ) with λ. (b) Variation of the
normalized second normal stress difference (N2/φ) with λ. Each of the plots are drawn for different values of
k(=0, 1, 10). The different parameters involved in either of the plots are β = 0.1 and Ca = 0.1.

Fig. 14 as well as in Fig. 15. The sign of these normal stress differences is related to the deformation
of a droplet suspended in a simple shear flow. As seen from Fig 11, at O(Ca) the initially spherical
droplet is stretched into an ellipsoidal shape with the major axis aligned along the extensional axis
of the simple shear.

Finally we show the variation of N1 and N2 with λ for different values of k(=0, 2.5, 5) in Fig. 15.
It can be seen from Fig. 15 that both the normal stresses increase with an increase in λ. There is also
an increase in N1 due to an increase in k. This increase is the largest for the case of a low viscous
droplet as compared to a highly viscous droplet. At O(Ca2), the shape of the droplet is unaffected
by rotation and is directly proportional to the rate of strain tensor. However, the vorticity present in
the simple shear bulk flow tends to rotate the ellipsoidal droplet in the flow direction. The tensile
component of surface tension forces that act in this direction, thus results in a positive N1 at O(Ca),
whereas the extra compressive stress acting on the droplet in the gradient direction causes a negative
N2 for the same order.

To investigate the effect of surfactant concentration on N1 and N2, we have shown the variation
of the normalized first and second normal stress difference (N1/φ ,N2/φ ) with the viscosity ratio,
λ for different values of k. It can be seen from Fig. 15(a) that N1 increases as the droplet phase is
made more viscous or in other words, as λ is increased. For the case of a surfactant-laden droplet the
surface tension along the droplet interface varies due to the non-uniform distribution of surfactants.
Thus, with an increase in k, the gradient in surface tension along the droplet surface increases. This
results in an increase in the tensile component of the surface tension force along the flow direction
thus elongating the droplet along the extensional axis. This in turn results in an increase in the
magnitude N1 which can be seen from Fig. 15(a). The effect of surfactant distribution on N1 is seen
to be higher for a low viscous droplet as compared to a highly viscous droplet. Now looking into
Fig. 15(b), we can find that the nature of variation of N2 is just the opposite as compared to N1. As
λ increases, the magnitude of N2 decreases. For a low viscous droplet, if compare between a clean
droplet and surfactant laden droplet, we can say that for the later the Marangoni stress generated
due to non-uniform distribution of surfactants results in a compression along the gradient direction.
This results in a increase of N2 for a surfactant-laden droplet. It can be also seen from the Fig. 15(b)
that an increase in the parameter k increases the convection driven surfactant transport and hence
increases the magnitude of N2. Comparison of the above plots for k = 0 (clean droplet) [47,48],
k = 1, k = 10 (low surface diffusion) [27] shows that the surface diffusion plays an important role
in determining the normal stress differences. That is, as the surface diffusion of surfactants reduces,
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the magnitude of the normal stress differences (|N1|, |N2|) increases. Just like in the case of N1,
variation in N2 due to presence of surfactants is found to be significant for a low viscous droplet as
compared to a highly viscous droplet.

VI. CONCLUSIONS

In the present study, we have investigated the effect of surfactant distribution on droplet
deformation as well as on the bulk rheology of a dilute emulsion of droplets. An asymptotic
approach is used to analyze the problem for the limiting case when the surfactant transport along
the droplet surface is dominated by the surface diffusion rather than surface convection. A regular
perturbation methodology was used, with Ca as the perturbation parameter to solve the flow field
in the small deformation limit. This approach has its own limitations for example, a study based
on large deformations of the droplet or any arbitrary Péclet is not feasible. None the less, within
the limiting regime, a perturbation analysis gives us remarkably good match with experiments
and numerical simulations, which makes it an important candidate in this field and outweighs any
numerical methods that brings in unnecessarily high computational costs. Based on these results a
fair prediction can be made on the fate of droplet dynamics outside the limiting regime. The results
thus obtained revealed various interesting outcomes, some of which are stated below:

(i) For a droplet suspended in a linear flow (uniaxial extensional or simple shear flow), increase
in k or β, enhances the deformation of the droplet. This effect of surfactant concentration on the
droplet deformation reduces as the droplet becomes more viscous or as λ increases.

(ii) For the case when the droplet is suspended in a simple shear flow, the inclination angle remains
unaffected by any variation in the surfactant concentration along the droplet surface. However, if the
viscosity of the droplet with respect to the suspending fluid is increased gradually, the droplet starts
aligning itself toward the direction of flow.

(iii) Considering a dilute emulsion of droplets suspended in a linear flow field, the effective
shear viscosity (effective extensional viscosity for extensional flow) of the emulsion is significantly
affected by both the viscosity ratio as well as the surfactant concentration along the droplet surface.
That is, increase in k, β, or λ increases the effective shear viscosity of the emulsion, although the
effect of the parameter k is more significant for low value of λ.

(iv) For the case of dilute emulsion of droplets suspended in a simple shear flow, normal stress
differences (N1, N2) are present. The first normal stress difference (N1) is found to increase with
increase in k, whereas the same also is found to increase for a higher value of λ provided k is a
constant. The second normal stress difference (N2), on the other hand, seems to be unaffected by
any change in the surfactant concentration, although it reduces with increase in λ.

See the Supplemental Material for the details of the boundary conditions, governing equations,
and the asymptotic analysis [49].

APPENDIX A: DIFFERENT CONSTANTS PRESENT IN THE EXPRESSIONS OF SURFACTANT
CONCENTRATION AND DROPLET DEFORMATION WHEN THE BULK FLOW IS A

UNIAXIAL EXTENSIONAL FLOW

The constant coefficients present in the expression for surfactant concentration as shown in
Eqs. (24) and (25) are given below:

g12,0 = {76λ2 + (368 − 15k)λ + 256 − 60 k + 4k2}

g22,0 = {−228λ2 + (−1104 + 10k)λ + −768 + 100k − 4k2}

g32,0 = {228λ2 + (1104 + 25k)λ − 20k + 768}

g42,0 = −76λ2 − (20k + 368)λ − 256 − 20k (A1)
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and

g14,0 = {608λ2 + (1120 − 187k)λ + 512 − 172k + 20k2},

g24,0 = {−1824λ2 + (−3360 + 338k)λ − 1536 + 308k − 20k2},

g34,0 = {1824λ2 + (3360 − 115k)λ − 100k + 1536},
g44,0 = −4 (λ + 1)(152λ + 128 + 9k). (A2)

The expression of the constants present in Eqs. (29)–(31) for O(Ca2) deformation is given by

a
(20)
0 = −285475, a

(20)
1 = (174100k − 664575),

a
(20)
2 = (270800k − 478800 − 35300k2), a

(20)
3 = 97600 k − 102400 + 2400 k3 − 27200k2,

b
(20)
0 = 856425, b

(20)
1 = (−348200k + 1993725),

b
(20)
2 = (−541600k + 35200k2 + 1436400), b

(20)
3 = 307200 + 26800k2 − 195200k,

c
(20)
0 = −856425, c

(20)
1 = (174100k − 1993725),

c
(20)
2 = (−1436400 + 100k2 + 270800k), c

(20)
3 = −307200 + 97600k + 400k2, (A3)

and

a
(40)
0 = −214035, a

(40)
1 = (−581235 + 114600k),

a
(40)
2 = (−19710k2 + 209100k − 524640), a

(40)
3 = −157440 − 18120k2 + 95040k + 1080k3,

b
(40)
0 = 642105, b

(40)
1 = (−229200k + 1743705),

b
(40)
2 = (19650k2 − 418200k + 1573920), b

(40)
3 = −190080k + 18000k2 + 472320,

c
(40)
0 = −642105, c

(40)
1 = (−1743705 + 114600k),

c
(40)
2 = (209100k − 1573920 + 60k2), c

(40)
3 = −472320 + 95040k + 120k2. (A4)

The expression of the velocity field both outside and inside the droplet is given below:

ui,0 = 15

4

{
r(1 − β)(1 − r2)

5 + kbt + 5λ − 5bt − 5λbt

}
(1 − 3cos2θ )er

+ 15

8

{
r(1 − β)(3 − 5r2)

5 + kβ + 5λ − 5β − 5λβ

}
sin(2θ )eθ ,

ue,0 =
[

5

4

{(
(−5λ + k − 2)r2 + 3λ − 3

5k
)
bt + (5λ + 2)r2 − 3λ

}
r4{(k − 5 − 5λ)bt + 5 + 5λ} (1 − 3cos2θ )

+ 3

2
rcos2θ − 1

2
r

]
er + 3

4

[ {(−5λ + k)bt + 5λ}
r4{(k − 5 − 5λ)bt + 5 + 5λ} − r

]
sin(2θ )eθ . (A5)

The pressure field for either of the phases are written below:

pi,0 = −
{

105λ(1 − β)r2

(4k − 20 − 20λ)bt + 20 + 20λ

}
(1 − 3cos2θ ),

pe,0 = 5

2r3

{
(−5λ + k − 2)bt + 5λ + 2

(k − 5 − 5λ)bt + 5 + 5λ

}
(1 − 3cos2θ). (A6)
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APPENDIX B: CONSTANTS PRESENT IN THE EXPRESSIONS OF SURFACTANT
CONCENTRATION AND DROPLET DEFORMATION WHEN THE BULK FLOW

IS A SIMPLE SHEAR FLOW

The expression of the constant coefficients present in Eq. (35), in the expression for surfactant
concentration are written below:

�̂
(0)
2,2 = 5k

12

{
1 − β

−5β − 5λβ + 5λ + 5 + kβ

}
,

�
(Ca)
2,0 = −25k

{h12,0β
3 + h22,0β

2 + h32,0β + h42,0}
336(−5β − 5βλ + βk + 5 + 5λ)3 ,

�
(Ca)
4,0 = −45k

{h14,0β
3 + h24,0β

2 + h34,0β + h44,0}
224(βk − 9β − 9βλ + 9λ + 9)(−5β − 5βλ + βk + 5 + 5λ)2 , (B1)

�
(Ca)
2,2 = 5k

{h12,2β
2 + h22,2β + h32,2}

288(−5β − 5βλ + βk + 5 + 5λ)2 ,

�
(Ca)
4,4 = 5k

{h14,4β
3 + h24,4β

2 + h34,4β + h44,4}
5376(βk − 9β − 9βλ + 9λ + 9)(−5β − 5βλ + βk + 5 + 5λ)2 ,

where

h12,0 = {76λ2 + (368 − 15k)λ + 256 − 60 k + 4 k2}

h22,0 = {−228λ2 + (−1104 + 10k)λ − 768 + 100k − 4k2}

h32,0 = {228λ2 + (1104 + 25k)λ − 20 k + 768}

h42,0 = {−76λ2 + (−20k − 368)λ − 20 k − 256} (B2)

h14,0 = {608λ2 + (1120 − 187k)λ + 512 − 172k + 20k2}

h24,0 = {−1824λ2 + (−3360 + 338k)λ − 1536 + 308k − 20k2}

h34,0 = {1824λ2 + (3360 − 115k)λ − 100 k + 1536}
h44,0 = −4(λ + 1)(152λ + 9k + 128) (B3)

h12,2 = 19λ2 + (92 + 16k)λ + 64 + 4k

h22,2 = −38λ2 − (184 + 36k)λ − 128 − 24k (B4)

h32,2 = 19λ2 + (92 + 20k)λ + 64 + 20k

and

h14,4 = {608λ2 + (1120 − 187k)λ + 512 − 172k + 20k2},

h24,4 = {−1824λ2 + (−3360 + 338k)λ − 1536 + 308k − 20k2},

h34,4 = {1824λ2 + (3360 − 115k)λ − 100 k + 1536},
h44,4 = −4(λ + 1)(152λ + 9k + 128). (B5)
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The constant coefficients in the expression of droplet shape as given in Eq. (36), are given by

L̂
(Ca)
2,2 = 5

48

(
16 + 19λ − 19λβ + 4kβ − 16β

−5β − 5λβ + 5λ + 5 + kβ

)
. (B6)

L
(Ca2)
2,0 =

{(
a

(20)
0 λ3 + a

(20)
1 λ2 + a

(20)
2 λ + a

(20)
3

)
β3 + (

b
(20)
0 λ3 + b

(20)
1 λ2 + b

(20)
2 λ + b

(20)
3

)
β2

+(c(20)
0 λ3 + c

(20)
1 λ2 + c

(20)
2 λ + c

(20)
3

)
β − 25(19λ + 16)(601λ2 + 893λ + 256)

}

1344(−5β − 5βλ + βk + 5 + 5λ)3 ,

L
(Ca2)
2,2 =

{(
b

(22)
0 λ3 + b

(22)
1 λ2 + b

(22)
2 λ + b

(22)
3

)
β2

+(c(22)
0 λ3 + c

(22)
1 λ2 + c

(22)
2 λ + c

(22)
3

)
β + 15(2λ + 3)(16 + 19λ)2

}

1152(−5β − 5βλ + βk + 5 + 5λ)2 ,

L
(Ca2)
4,0 =

{(
a

(40)
0 λ3 + a

(40)
1 λ2 + a

(40)
2 λ + a

(40)
3

)
β3 + (

b
(40)
0 λ3 + b

(40)
1 λ2 + b

(40)
2 λ + b

(40)
3

)
β2

+(c(40)
0 λ3 + c

(40)
1 λ2 + c

(40)
2 λ + c

(40)
3

)
β + 5(751λ + 656)(19λ + 16)(λ + 1)

}

1344(−5β − 5βλ + βk + 5 + 5λ)2(βk − 9β − 9βλ + 9λ + 9)
,

L
(Ca2)
4,4 =

{(
a

(44)
0 λ3 + a

(44)
1 λ2 + a

(44)
2 λ + a

(44)
3

)
β3 + (

b
(44)
0 λ3 + b

(44)
1 λ2 + b

(44)
2 λ + b

(44)
3

)
β2

+(c(44)
0 λ3 + c

(44)
1 λ2 + c

(44)
2 λ + c

(44)
3

)
β − 5(751λ + 656)(19λ + 16)(λ + 1)

}

32256(−5β − 5βλ + βk + 5 + 5λ)2(βk − 9β − 9βλ + 9λ + 9)
,

(B7)

where the constants in the above Eqs. (B6) and (B7) are given below:

a
(20)
0 = 285475, a

(20)
1 = (664575 − 174100k),

a
(20)
2 = (5300k2 + 478800 − 270800k), a

(20)
3 = 27200k2 − 2400k3 − 97600k + 102400,

b
(20)
0 = −856425, b

(20)
1 = (−1993725 + 348200k),

b
(20)
2 = (541600k − 1436400 − 35200k2), b

(20)
3 = −26800k2 − 307200 + 195200k,

c
(20)
0 = 856425, c

(20)
1 = (−174100k + 1993725),

c
(20)
2 = (1436400 − 100k2 − 270800k), c

(20)
3 = −400k2 + 307200 − 97600k, (B8)

b
(22)
0 = 10830, b

(22)
1 = (−4465k + 34485),

b
(22)
2 = (35040 + 440k2 − 10220k), b

(22)
3 = 560k2 + 11520 − 5440k,

c
(22)
0 = −856425, c

(22)
1 = (174100k − 1993725),

c
(22)
2 = (−1436400 + 100k2 + 270800k), c

(22)
3 = −307200 + 97600k + 400k2, (B9)
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a
(40)
0 = −71345, a

(40)
1 = (−193745 + 38200k),

a
(40)
2 = (−174880 + 69700k − 6570k2), a

(40)
3 = 31680k − 52480 + 360k3 − 6040k,

b
(40)
0 = 214035, b

(40)
1 = (−76400k + 581235),

b
(40)
2 = (6550k2 − 139400k + 524640), b

(40)
3 = −63360k + 6000k2 + 157440,

c
(40)
0 = −214035, c

(40)
1 = (38200k − 581235),

c
(40)
2 = (69700k − 524640 + 20k2), c

(40)
3 = −157440 + 31680k + 40k2, (B10)

and

a
(44)
0 = 71345, a

(44)
1 = (193745 − 38200k),

a
(44)
2 = (6570k2 + 174880 − 69700k), a

(44)
3 = −31680k − 360k3 + 6040k2 + 52480,

b
(44)
0 = −214035, b

(44)
1 = (76400k − 581235),

b
(44)
2 = (−6550k2 + 139400k − 524640), b

(44)
3 = −157440 + 63360k − 6000k2,

c
(44)
0 = 214035, c

(44)
1 = (581235 − 38200k),

c
(44)
2 = (524640 − 69700k − 20k2), c

(44)
3 = 157440 − 31680k − 40k2. (B11)

The velocity fields in both the phases is written as

ui,0 =

⎡
⎢⎢⎣15

4

{
r(1 − β)(−1 + r2)

−5β − 5λβ + 5 + 5λ + kβ

}
sin(2φ) sin (θ )2er

+ 5

8

{
r(1 − β)(−3 + 5r2)

−5β − 5λβ + 5 + 5λ + kβ

}
sin(2φ) sin(2θ )eθ

− 1

4

r
{−10β − 10λβ + 10 + 10λ + 2kβ

−15 cos(2φ)β + 15 cos(2φ) + 25r2 cos(2φ)β − 25r2 cos(2φ)

}
−5β − 5λβ + 5 + 5λ + kβ

sin(θ )eϕ

⎤
⎥⎥⎦,

(B12)

ue,0 =
[{

− 5

4r4

(
(−5λ + k − 2)r2 + 3λ − 3

5k
)
β + (5λ + 2)r2 − 3λ

(−5 − 5λ + k)β + 5 + 5λ
sin(2φ) sin (θ )2

+ r

2
sin (θ )2 sin(2φ)

}
er −

(
1

4r4

(−5λ + k)β + 5λ

(−5 − 5λ + k)β + 5 + 5λ
sin(2θ) sin(2φ)

+ r

4
sin(2θ) sin(2φ)

)
eθ −

(
1

2r4

(−5λ + k)β + 5λ

(−5 − 5λ + k)β + 5 + 5λ
sin(θ ) cos(2φ)

−r sin(θ ) sin (φ)2

)
eϕ

]
. (B13)
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The corresponding pressure field is given below

pi,0 = 105r2λ(1 − β)

(−20 − 20λ + 4k)β + 20 + 20λ
sin(2φ) sin (θ )2,

pe,0 = − 5

2r3

{
(−5λ + k − 2)β + 5λ + 2

(−5 − 5λ + k)β + 5 + 5λ

}
sin(2φ) sin (θ )2. (B14)

APPENDIX C: EXPRESSION OF THE CONSTANTS PRESENT IN EQS. (43) AND (45)

The constants present in the expression of effective extensional viscosity in Eq. (43), are given
by

m
(1)
0 = −475, m

(1)
1 = (−1179 + 290k),

m
(1)
2 = (−732 − 59k2 + 476k), m

(1)
3 = (−64 + 144k + 4k3 − 44k2),

m
(2)
0 = −214035, m

(2)
1 = (76400k − 581235),

m
(2)
2 = (−6550k2 + 139400k − 524640), m

(2)
3 = −157440 + 63360k − 6000k2,

m
(3)
0 = 214035, m

(3)
1 = (581235 − 38200k),

m
(3)
2 = (524640 − 69700k − 20k2), m

(3)
3 = 157440 − 31680k − 40k2. (C1)

The constants present in the expression of N1 and N2 in Eq. (45) are given below:

n
(1)
1,0 = 361, n

(1)
1,1 = (−152k + 608), n

(1)
1,2 = (256 + 12k2 − 128k)

n
(1)
2,0 = −722, n

(1)
2,1 = (152k − 1216), n

(1)
2,2 = −512 + 4k2 + 128k (C2)

n
(2)
1,0 = −5510, n

(2)
1,1 = (−16230 + 3497k),

n
(2)
1,2 = (−599k2 − 19260 + 6916k), n

(2)
1,3 = −656k2 − 8000 + 4112k + 24k3,

n
(2)
2,0 = 16530, n

(2)
2,1 = (48690 − 6994k),

n
(2)
2,2 = (57780 − 13832k + 459k2), n

(2)
2,3 = −8224k + 576k2 + 24000 + 28k3,

n
(2)
3,0 = −16530, n

(2)
3,1 = (−48690 + 3497k),

n
(2)
3,2 = (−57780 + 140k2 + 6916k), n

(2)
3,3 = −24000 + 4112k + 80k2. (C3)
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