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Turbulent entrainment across turbulent-nonturbulent interfaces in stably
stratified mixing layers
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The entrainment process in stably stratified mixing layers is studied in relation to the
turbulent-nonturbulent interface (TNTI) using direct numerical simulations. The statistics
are calculated with the interface coordinate in an Eulerian frame as well as with the
Lagrangian fluid particles entrained from the nonturbulent to the turbulent regions. The
characteristics of entrainment change as the buoyancy Reynolds number Reb decreases
and the flow begins to layer. The baroclinic torque delays the enstrophy growth of the
entrained fluids at small Reb, while this effect is less efficient for large Reb. The entrained
particle movement within the TNTI layer is dominated by the small dissipative scales, and
the rapid decay of the kinetic energy dissipation rate due to buoyancy causes the entrained
particle movement relative to the interface location to become slower. Although the Eulerian
statistics confirm that there exists turbulent fluid with strong vorticity or with large buoyancy
frequency near the TNTI, the entrained fluid particles circumvent these regions by passing
through the TNTI in strain-dominant regions or in regions with small buoyancy frequency.
The multiparticle statistics show that once the nonturbulent fluid volumes are entrained,
they are deformed into flattened shapes in the vertical direction and diffuse in the horizontal
direction. When Reb is large enough for small-scale turbulence to exist, the entrained fluid
is able to penetrate into the turbulent core region. Once the flow begins to layer with
decreasing Reb, however, the entrained fluid volume remains near the outer edge of the
turbulent region and forms a stably stratified layer without vertical overturning.

DOI: 10.1103/PhysRevFluids.2.104803

I. INTRODUCTION

Localized turbulent regions often appear in the natural environment surrounded by nonturbulent
or weakly turbulent fluids. Examples are the atmospheric boundary layer [1] and the ocean mixed
layer [2], where the turbulent fluids are separated from the external regions by a thin interfacial
layer, across which the flow characteristics change significantly. In the case that the outside fluid
is nonturbulent (irrotational), this interfacial layer is called the turbulent-nonturbulent interface
(TNTI) [3], which also exists in various canonical flows, such as mixing layers, jets, and boundary
layers. Corrsin and Kistler [4] predicted that the vorticity diffusion within the TNTI layer causes
the spatial development of turbulent flows, resulting in the entrainment of nonturbulent fluid.
Furthermore, this interfacial region is responsible for the exchanges of mass, energy, momentum,
and scalars between the turbulent and the nonturbulent flows. Thus, the flow dynamics near the
TNTI layer, as well as associated phenomena such as scalar mixing, are crucial in the behavior of
environmental flows [1,5]. For example, the entrainment rate of turbulence often governs the flow
evolution in environmental flows [6].

Observations in the atmosphere and oceans have shown that flows are often strongly stably
stratified [2,7,8]. However, most studies of TNTIs, defined in terms of vorticity rather than
density [9,10], are limited to nonstratified flows. As proposed by Corrsin and Kistler [4], a very thin
layer, so called “viscous superlayer,” where the fluid acquires vorticity by viscous diffusion, has
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been found at the edge of the turbulence in both direct numerical simulations [11] and in laboratory
experiments [12,13]. Furthermore, an adjacent layer called the “turbulent sublayer” was also found
between the viscous superlayer and the turbulent region [14]. The relationship between entrainment
and the TNTI has been studied in nonstratified flows. The outer edge of the interface layer propagates
into the nonturbulent fluid, resulting in the entrainment of fluid [13]. This propagation velocity was
found to be dominated by viscous effects and to scale with the Kolmogorov velocity [14,15] and is
related to the global development of turbulent flows through the surface area of the outer edge of the
interface layer. Furthermore, the Lagrangian tracking of the entrained fluid showed that the entrained
fluid motion is dominated by different processes depending on the location within the TNTI layer:
by viscous effects in the viscous superlayer and by inviscid small-scale turbulent motions in the
turbulent sublayer [16]. During the entrainment of the fluid, the physical processes dominating the
enstrophy and rate-of-strain change depending on the fluid location [17]. Chauhan et al. [18] also
showed, from the movement of the TNTI detected with the isosurface of local turbulent kinetic
energy, that the entrainment velocity is characterized by two distinctive length scales.

The importance of the interface separating two different fluids in stratified flows has been
recognized, and therefore the density interface has been studied in experiments [9,10,19–21],
with numerical simulations [22], and with theoretical approaches [23,24]. The TNTI defined in
terms of vorticity, in particular, rather than an advective-diffusive scalar field, such as density, has
been studied in detail recently using high resolution direct numerical simulations [25] and two-
and three-dimensional velocity measurements in experiments [15]. The interfaces defined with
vorticity or with a scalar are different especially when the Schmidt (Prandtl) number Sc (Pr) is not
unity [26]. This is because a nonturbulent fluid gains a scalar by molecular diffusion and vorticity
by viscous diffusion [27], where the diffusion coefficients are equal in the case of Sc = 1 (Pr = 1).
The statistical properties of the TNTI have been revealed from statistics calculated using the local
interface coordinate, whose origin is located at the TNTI [28]. Several studies based on the statistics
in relation to the TNTI have been carried out in stratified flows [29–33]. In gravity currents, Krug
et al. [29] experimentally investigated the TNTI, and showed that the entrainment rate is reduced by
the stratification because of the reduction of the TNTI surface area. DNS of a stratified wake showed
that, when the flow outside the turbulent fluid is stably stratified, the turbulent region near the TNTI
is strongly affected by the emission of internal gravity waves, which transfer kinetic energy from
the turbulent fluid [30]. We have also studied the effects of stable stratification on the small-scale
dynamics near the TNTI using the DNS of stratified mixing layers [31].

In this paper, we investigate the entrainment process across the TNTI in stably stratified
mixing layers [34]. We perform DNS of temporally evolving stratified mixing layers, where
the Kelvin-Helmholtz (KH) instability generates three-dimensional turbulence. This process of
turbulence generation is sometimes considered a good model for turbulence generation in geophysical
flows [35,36]. The flow is considered with density stratification localized within the shear layer,
and, therefore, the density is uniform outside the mixing layer; so the ambient fluid does not
allow the propagation of internal gravity waves, unlike cases where the external region is stably
stratified [37]. In this flow, the flow structure significantly changes with time [38]. In the initial state,
three-dimensional small-scale turbulence is generated by the KH instability. Initially, buoyancy
suppresses the large-scale turbulent motion, and, as the flow evolves, the fluid motions from large
to smaller scales begin to be strongly affected by buoyancy, forming layered structures. In our
recent study [31], we have presented the statistics near the TNTI in the stratified mixing layer at
the early stage of the flow development, where the buoyancy Reynolds number is high enough for
the small-scale, three-dimensional turbulence to exist. In this paper, we investigate the entrainment
process for the different stages of the flow development, including the later times at which the flow
begins to become layered. Previous studies of the TNTI have shown that the small scale characteristics
are important in phenomena associated with the TNTI, such as the entrainment mechanism [3]. The
influence of stable stratification on the small scales is often discussed in terms of the buoyancy
Reynolds number, Reb = (ε̃/Ñ3), where ε̃ is the kinetic energy dissipation rate and Ñ the buoyancy
frequency [39]. This quantity can be defined in terms of the ratio of the largest length scale which
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can overturn, the Ozmidov scale, to the smallest length scale of turbulence, the Kolmogorov scale.
For Reb large enough, there is a range of energetic scales of turbulence which can act to entrain
nonturbulent fluid. As Reb becomes small, however, even the smaller-scale motions become affected
by the stable stratification. Therefore, Reb is a key parameter in the entrainment process across the
TNTI layer, although other parameters are also used in parametrizations of mixing efficiency in
stably stratified flows [40].

Lagrangian tracking of fluid particles being entrained is useful for studying the entrainment
process, and the Lagrangian statistics during entrainment have been reported in nonstratified
flows [15–17,41,42]. We apply these methods to stratified mixing layers. The Lagrangian statistics
only contain the contribution of the fluid being entrained, while the Eulerian statistics are studied for
both entrained fluids and for fluids existing in the turbulent region. We compare the Lagrangian
statistics with their Eulerian counterparts to highlight the entrainment characteristics. For this
purpose, the entrained fluid particle locations are examined in relation to the TNTI location by
tracking the TNTI movement. This allows us to link the Lagrangian statistics to the layered structure
of the TNTI [16] and to investigate how deeply the entrained particles are able to penetrate across
the TNTI into the turbulent core region. Furthermore, we also discuss the relationship between the
entrainment and the flow structures using multiparticle statistics, which are related to the deformation
of material volumes [42].

The new DNS of the stratified mixing layer are described in Sec. II. The Eulerian statistics
including the temporal evolution of the statistics and the conditional statistics near the TNTI are
presented in Sec. III. The Lagrangian statistics for the entrained particles are discussed in Sec. IV.
Finally, Sec. V summarizes the conclusions.

II. DIRECT NUMERICAL SIMULATION OF STRATIFIED MIXING LAYER

Temporally evolving mixing layers in a stably stratified environment [39,43,44] are computed
by the DNS of the Navier-Stokes equations within the Boussinesq approximation. The streamwise,
spanwise, and vertical directions are represented by x, y, and z, respectively. The flow develops
with time from an initial field described by a characteristic density of the fluid ρ0, the velocity and
density jumps across the mixing layer (�U and �ρ, respectively), and the initial layer thickness h0.
The nondimensional variables are then introduced as

xi = x̃i

h0
, t = t̃i

h0/�U
, ui = ũi

�U
, ρ = ρ̃

�ρ
, p = p̃

ρ0�U 2
, (1)

where xi , t , ui , ρ, and p denote position, time, velocity, density, and pressure, respectively, and the
tilde represents the dimensional variables. The initial nondimensional velocity and density fields are
given by

u(x,y,z) = 1
2 tanh(2z) + u′(x,y,z), (2)

v(x,y,z) = v′(x,y,z), (3)

w(x,y,z) = w′(x,y,z), (4)

ρ(x,y,z) = ρ0/�ρ − 1
2 tanh(2z), (5)

where u′, v′, w′ are the initial velocity fluctuations, which have nonzero values within |z| < 0.7, and
are generated by a diffusion process [45] with the characteristic lengthscale 0.25h0 and root mean
square (rms) velocity fluctuations 0.01�U .
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The governing equations are the continuity equation, the momentum equation, and transport
equation for the density ρ, which are written in nondimensional form as follows:

∂ui

∂xi

= 0, (6)

∂ui

∂t
+ ∂uiuj

∂xj

= − ∂p

∂xi

+ 1

Re

∂2ui

∂xj ∂xj

− Riρ ′δi3, (7)

∂ρ

∂t
+ ∂ujρ

∂xj

= 1

RePr

∂2ρ

∂xj∂xj

, (8)

where ρ ′ = ρ − ρ0/�ρ. The nondimensional parameters in these equations are the Reynolds number
Re = �Uh0/ν, the Prandtl number Pr = ν/κ , and the Richardson number Ri = g�ρh0/ρ0�U 2

0 ,
where ν is the kinematic viscosity, κ is the diffusivity coefficient for density, and g is the gravitational
acceleration. We consider the stably stratified mixing layer for three cases determined by three
sets of parameters, i.e., (Re, Ri, Pr) = (2000, 0.06, 1), (2000, 0.08, 1), and (1200, 0.06, 1), which
are referred to as Re20Ri06, Re20Ri08, and Re12Ri06, respectively. We discuss the temporal
development of statistics mainly for case Re20Ri06, since most results are qualitatively similar in
all three DNS cases. The computational domain is periodic in the horizontal (x and y) directions,
while for the vertical (z) direction, the impermeability condition is used for the vertical velocity and
zero-flux conditions are used for the horizontal velocity and density following Smyth [39].

The size of the computational domain normalized by h0 is Lx × Ly × Lz = 48 × 28 × 80, and
the number of computational grid points is Nx × Ny × Nz = 1200 × 800 × 1500. There is fixed
grid spacing in the horizontal directions while the grid is stretched in the vertical direction near the
vertical boundaries. The DNS is performed with the same code as in our previous study [31]. For
completeness, we briefly present the numerical methods. The DNS code is based on a fractional
step method with fully conservative finite-difference schemes [46] for spatial discretization and a
third-order Runge-Kutta method for temporal advancement with a constant time increment �t =
0.01. A fourth-order scheme and a second-order scheme are used for the spatial discretization in
the horizontal directions and vertical direction, respectively. The Bi-CGSTAB method is used for
solving the Poisson equation for pressure [47].

The statistics are computed from snapshots by taking an average, denoted by 〈 〉, in the
homogeneous (x and y) directions. The DNS is performed until t = 320, by which time the centerline
buoyancy Reynolds number has decreased to less than O(10), indicating that turbulence at all length
scales is strongly influenced by buoyancy. The main results presented in this paper are taken from
t � 130, for which the computational grid spacing is smaller than 1.5η on the centerline in the
all DNS, where η̃ = (ν3/〈ε̃〉)1/4 is the Kolmogorov lengthscale and 〈ε̃〉 is the mean kinetic energy
dissipation rate 〈ε̃〉 = 2ν〈S̃ij S̃ij 〉 (S̃ij : rate of strain tensor).

III. EULERIAN STATISTICS OF A STRATIFIED MIXING LAYER

A. Temporal evolution

The fundamental characteristics of the flow are presented here before we discuss the entrainment
in the stratified mixing layer. Figure 1(a) shows the thickness of the mixing layer defined from the
mean velocity and density profiles as

δU =
∫ Lz/2

−Lz/2
(u1 − 〈u〉)(〈u〉 − u2)dz, (9)

δρ =
∫ Lz/2

−Lz/2
(ρ ′

1 − 〈ρ ′〉)(〈ρ ′〉 − ρ ′
2)dz, (10)
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FIG. 1. Temporal evolution of the stratified mixing layer. (a) The thicknesses of the stratified mixing
layer δU and δρ . (b) Kolmogorov scale η, Ozmidov scale LO , and Taylor microscale λx calculated from
streamwise velocity on the centerline (z = 0) for case Re20Ri06. (c) Turbulent Reynolds number Reλ, (d)
gradient Richardson number Rig , (e) buoyancy Reynolds number Reb, and (f) mean kinetic energy dissipation
rate on the centerline.

where the subscripts 1 and 2 refer to the mean values at z = Lz/2 and −Lz/2, respectively. The
layer thickness rapidly grows in its initial stage, and then the growth rate is suppressed at a later
time as observed in previous DNS of stratified mixing layers [34]. The thicknesses δU and δρ are
larger in the lower Re case, Re12Ri06, which can be related to stronger viscous (molecular) diffusive
effects on the mean velocity and density profiles for lower Re. A similar Re dependence can be
also found in the shear layer thickness normalized by h0 in previous DNS [34]. Figure 1(b) shows
the centerline evolution of the Kolmogorov lengthscale η, the Ozmidov scale LO = (〈ε〉/N3)1/2,
and Taylor microscale defined with the streamwise velocity λx =

√
〈u′2〉/〈(∂u′/∂x)2〉 (u′ = u − 〈u〉

is the streamwise velocity fluctuation) in Re20Ri06, where the buoyancy frequency Ñ is given
by Ñ = √−(g/ρ0)〈∂ρ̃/∂z̃〉, and N = Ñh0/�U . The temporal development of these length scales
agrees well with previous DNS studies [34]. At the initial stage of decay, the small scales are
less affected by the buoyancy than the large scales, as evidenced from LO being much larger than
η. After the growth rate of the mixing layer has substantially decreased, however, LO decreases
with time while λx and η increase, and ultimately buoyancy becomes important even at the small
dissipative-scales.

104803-5



T. WATANABE, J. J. RILEY, AND K. NAGATA

0 0.1 0.2

-5

0

5

Re20Ri06
t = 130
t = 170
t = 230
t = 290

Re20Ri08
t = 130
t = 170
t = 230
t = 290

Re12Ri06
t = 130
t = 170
t = 230
t = 290

)b()a(
-0.4 -0.2 0 0.2 0.4

-5

0

5

FIG. 2. Vertical profiles of (a) mean streamwise velocity 〈u〉 and (b) rms value of streamwise velocity
fluctuation urms = 〈u′2〉1/2. The vertical coordinate is normalized by δU .

The temporal evolutions of the centerline values of the three nondimensional parameters are
shown in Figs. 1(c)–1(e); the parameters are: the turbulent Reynolds number Reλ, the buoyancy
Reynolds number Reb, and the gradient Richardson number, defined by

Reλ = 〈ũ′2〉1/2λ̃x

ν
, Reb =

(
L̃O

η̃

)4/3

= 〈ε̃〉
νÑ2

, Rig = − g〈∂ρ̃/∂z̃〉
ρ0〈∂ũ/∂z̃〉2

, (11)

where the total density gradient is used in Eq. (11).
During the decay period Reλ decreases from Reλ ≈ 200 to 50, and Rig ≈ 0.4–0.5, almost

independent of time. On the other hand, Reb keeps decreasing from the maximum value Reb

greater than 100 toward O(1), at which point both the small-scale and the large-scale turbulent
motions are being damped by the buoyancy. Time independence of Rig , which was also found in
DNS by Brucker and Sarkar [44], indicates that the turbulent region remains in a marginal state of
instability, which is related to a asymptotic behavior of the thickness of the shear layer measured by
mean density and velocity profiles. At the initial stage of the decay, Reb is larger than O(100) and
the small-scale turbulence dynamics on the centerline is somewhat free from the direct influence
of the stratification [39]. Figure 1(f) shows the decay of the mean kinetic energy dissipation rate,
〈ε〉, on the centerline, which can be related to the mixing efficiency in stratified flows [48]. The
mean kinetic energy dissipation rate exhibits an exponential decay, which is more rapid than in
nonstratified mixing layers [42], implying that the buoyancy suppresses the mixing in the stratified
mixing layer.

Figure 2 shows the vertical profiles of mean streamwise velocity 〈u〉 and rms value of streamwise
velocity fluctuation urms. The profile of 〈u〉 collapses well while urms continually decreases with
time, unlike in nonstratified mixing layers where urms hardly changes with time in a self-similar
regime. This decrease with time was explained by the suppression of turbulence production due to
the significant reduction of Reynolds shear stress 〈u′w′〉 by buoyancy effects [44].

Visualization of ρ ′ in Fig. 3 also confirms the dependence on Reb of the different stages of
the decay of the stratified mixing layer. One can easily see density fluctuations associated with
small-scale turbulence at earlier times with large Reb, while these are missing in later times for
which Reb < 30; finally, the flow starts to become layered for t � 230.

B. Conditional statistics near TNTIs

The entrainment in the stratified mixing layer is studied in relation to the TNTI. The interface is
detected by defining its location at the isosurface of the vorticity magnitude |ω| = ωth, where the
threshold ωth is determined from the ωth-dependence of the turbulent volume, as in previous studies
of the TNTI [26,41,49]. We set ωth = 0.04〈|ω|〉, where 〈|ω|〉 is on the centerline. The same threshold
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FIG. 3. Visualization of density field ρ ′ on an x-z plane at (a) t = 130 (Reb = 90), (b) t = 170 (Reb = 39),
(c) t = 230 (Reb = 11), and (d) t = 290 (Reb = 3), where Reb is calculated on the centerline. The total extent
of the computational domain in the vertical (z) dimension is not shown in the figure.

was used in our recent DNS of stratified mixing layers [31]. The isosurface |ω| = ωth is chosen
so that it is located near the outer edge of the TNTI layer, and this isosurface is referred to as the
irrotational boundary [26]. To clarify the discussion of the TNTI region, we employ the following
terminology: the isosurface defined by |ω| = ωth is called the irrotational boundary, whereas the
region just inside this isosurface characterized by a large gradient in |ω| is called the TNTI layer.
We also refer to the region with |ω| > ωth to as the turbulent region. Furthermore, “turbulent core
region” is used for the turbulent region inside the TNTI layer where the mean vorticity magnitude is
almost uniform [14].

The statistics are calculated conditioned on a distance from the irrotational boundary, ζI , whose
direction is given by the enstrophy gradient −∇ω2, where positive ζI is in the nonturbulent region.
The average based upon the interface coordinate is denoted by 〈 〉I . The statistics are calculated for
the upper TNTI. Because the flow is antisymmetric, the lower interface is also used for calculating
conditional statistics by changing the sign of relevant variables. We present the conditional statistics
as a function of ζI /η, where the value of η is taken at the centerline. It should be noted that the
stratification is localized in the mixing layer and internal gravity waves are absent in nonturbulent
regions, and therefore vorticity rather than potential vorticity can be used for detecting the turbulent
region [30].

Figure 4(a) shows the conditional mean vorticity magnitude as a function of ζI /η at t = 130,
170, 230, and 290. The vorticity magnitude decreases sharply near and across the TNTI layer.
Figure 4(b) shows the conditional mean kinetic energy dissipation rate 〈ε〉I , which also greatly
changes across the TNTI layer. It should be noted that the magnitude of 〈ε〉I in the vicinity of the
TNTI layer (ζI ≈ −15η) is very similar to that deep inside of the turbulent core region (ζI ≈ −50η).
Thus, buoyancy causes the rapid temporal decay of ε in the turbulent core region near the TNTI
(ζI ≈ −15η) as well as on the centerline [Fig. 1(f)].

The thickness of the TNTI layer is estimated with ω′
I = d〈|ω|〉I /dζI , an example of which is

shown in Fig. 5(a). Because of a large difference in vorticity between the turbulent and nonturbulent
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FIG. 4. Temporal variations of conditional average of (a) vorticity magnitude and (b) kinetic energy
dissipation rate near the TNTI.

fluids, −ω′
I has a large peak within the TNTI layer. The thickness of the TNTI, δI , is estimated with

the location where −ω′
I is equal to 25% of its maximum [−ω′

I ]max as defined in Fig. 5(a). Figure 5(b)
shows the temporal variation of δI , which increases with time. However, the thickness normalized by
the Kolmogorov scale, δI /η, hardly changes with time as seen in Fig. 5(c), and the average of δI /η

taken at 4 different times in all DNS is 12η, which is close to the value for nonstratified turbulent
flows [26], although the structure of the stratified mixing layer changes with time as shown in Fig. 3.
It has been shown that the viscous superlayer with the thickness ∼4η, where the vorticity evolution
is dominated by the viscous effects, is formed at outer edge of the TNTI layer in the stratified
mixing layer [31]. Thus, we can identify the region −4η � ζI � 0 as the viscous superlayer while
the turbulent sublayer can be found for −12η � ζI � −4η.

100 200 300
0

10

20

100 200 300
0

0.2

0.4

0.6

0.8

1

-1 -0.5 00

0.5

1

0

1

2

3

4

(a) (b) (c)

TNTI Non-turbulent region Turbulent core region

Turbulent region
Irrotational boundary 

Re20Ri06
Re20Ri08
Re12Ri06

Re20Ri06
Re20Ri08
Re12Ri06

FIG. 5. (a) Estimation of the thickness of the TNTI layer, δI , based on the conditional mean vorticity. 〈|ω|〉I

and −ω′
I = −d〈|ω|〉I /dζI are shown for t = 130 in Re20Ri06. δI is estimated with the location where −ω′

I

reaches 25% of the maximum [−ω′
I ]max. Temporal variation of (b) δI and (c) δI /η, where η is taken from the

centerline. The horizontal broken line (δI = 12η) in (c) indicates the average value of δI /η.
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FIG. 6. Surface area of irrotational boundary A divided by a horizontal area of the computational box LxLy .

The propagation velocity of the irrotational boundary is related to the total entrainment rate
through its surface area A. Figure 6 shows the temporal evolution of A divided by a horizontal area
of the computational box LxLy , computed with the surface integration tool in ParaView following
Jahanbakhshi and Madnia [50]. Values of A/LxLy in the stratified shear layers are smaller than
A/LxLy ≈ 7.3 found in nonstratified mixing layer (at convective Mach number 0.2) [50]. The
surface area continually decreases with time, as seen in Fig. 6, which can be related to the slower
growth rate of the shear layer thickness found in Fig. 1(a) at later times. The reduction of the surface
area by buoyancy was also reported in a study of gravity currents [29].

We can define the local mean vertical shear near the TNTI as S̃I = 〈∂ũ/∂z̃〉I . Similarly, the
local buoyancy frequency can be defined with the conditional average as ÑI = √−(g/ρ0)〈∂ρ̃/∂z̃〉I .
Figures 7(a) and 7(b) show SI and NI , both of which increase across the TNTI layer from the
nonturbulent toward the turbulent regions. Both SI and NI decrease with time near the TNTI layer.
Figures 7(c) and 7(d) show the local Richardson number RiI = N2

I /S2
I and the local buoyancy

Reynolds number RebI = 〈ε̃〉I /νÑ2
I , respectively. In the turbulent region, except within the TNTI

layer, RiI mainly increases from t = 170 to 230, during which RebI decreases from 100 to 20. These
changes of RiI and RebI are consistent with the visualization of density in Fig. 3 where, during
the period t = 170 to 230, the flow structures change from being more turbulent-like, to becoming
layered without significant small-scale fluctuations. The decrease in RebI with time is related to the
rapid temporal decay of 〈ε〉I ; the local minimum value of RebI in the TNTI layer, at ζI ≈ −4η, could
be due to the increase in RiI to above 1 in the TNTI layer, possibly acting to stabilize the turbulence
in that region. The Richardson number for −10 � ζ/η � 0 hardly changes with time, implying
that the time scale ratio between the shear 1/SI and the buoyancy 1/NI is almost independent of
time. This observation of the time-independent RiI agrees with the TNTI in gravity currents, for
which a detailed analysis has been presented for the evolution of vertical gradients of density and
velocity [29].

The vertical overturning motions in density stratified flows can be observed from the isopycnals,
whose unit normal is given by nρ = ∇ρ/|∇ρ|. The vertical component of nρ , denoted by nρz =
nρ · ez, is the cosine of the angle between the vertical direction and the density gradient. For a stably
stratified state without the density fluctuations, nρz is equal to −1, while fluids with overturning
motions have positive nρz. Figure 8 shows plots of the probability density function (PDF) of nρz

near the TNTI, which have large peaks at nρz = −1. The peaks at t = 130 decrease as ζI /η goes
from −2 toward −18. In addition, the probability for positive nρz becomes large in the turbulent
region, except within the TNTI layer, as confirmed from the PDF at ζI /η = −18. Thus, overturns
occur more frequently in the turbulent core region than within the TNTI layer. This can be related
to the small buoyancy Reynolds number within the TNTI, which results from the suppression of
small-scale turbulent motions. As t increases, the probability for nρz = −1 also increases, and
the vertical overturning motions become less and less frequent for flows within the TNTI layer
(−12η � ζI � 0), as evidenced by the increasingly lower probability for nρz > 0. However, in the
turbulent core region at ζI /η = −18, the probability for nρz > 0 is still nonzero and overturns can
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FIG. 7. Characteristics of stratified mixing layer near the TNTI in Re20Ri06. (a) Vertical shear SI

(S̃I = 〈∂ũ/∂z̃〉I ). (b) Buoyancy frequency NI (ÑI = √−(g/ρ0)〈∂ρ̃/∂z̃〉I ). (c) Local Richardson number
RiI = N 2
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I . (d) Buoyancy Reynolds number RebI = 〈ε̃〉I /νÑ 2

I .

be found in some parts of stratified mixing layer, even after the buoyancy Reynolds number reaches
below 10 (t = 290).

Since turbulence is regarded as motion with nonzero vorticity, the entrainment of nonturbulent
fluid has been examined by studying the vorticity evolution near the TNTI [3]. The equation for
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FIG. 8. PDFs of the vertical component of normalized density gradient nρz = nρ · ez near the TNTI at (a)
t = 130, (b) t = 230, and (c) t = 290 in Re20Ri06, where nρz represents the cosine of the angle between the
vertical direction and the density gradient direction θgz.
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FIG. 9. Enstrophy evolution near the TNTI at t = 290 in Re20Ri06. PDFs of viscous diffusion term Dω,
production term Pω, viscous dissipation term εω, and baroclinic torque Bω at (a) ζI /η = −2, (b) ζI /η = −9,
and (c) ζI /η = −18.

enstrophy ω2/2 within the Boussinesq approximation is given by

Dω2/2

Dt
= ωiSijωj + 1

Re
∇2(ω2/2) − 1

Re
∇ωi · ∇ωi + Riεij3ωi

∂ρ

∂xj

, (12)

where, on the right-hand side, the first term is the production, or vortex stretching/compression, term
Pω, the second term is the viscous diffusion term Dω, the third term is the viscous dissipation rate
term εω, and the last term is the baroclinic torque Bω. It has been shown that, in stratified mixing
layers with high Reb in the turbulent core region, the statistics of Eq. (12) near the TNTI behave in
a qualitatively similar manner to those for nonstratified flows except for the baroclinic torque Bω,
which reduces the enstrophy near the TNTI [31]. Figure 9 shows the PDF of each term in Eq. (12)
near the TNTI at t = 290, at which point in time Reb on the centerline is small enough for turbulent
motions at small scales to be strongly influenced by stratification. At ζI /η = −2, the viscous terms
Dω and εω are dominant over the production and baroclinic torque terms, and the vorticity region
growth is caused by the viscous diffusion, as in the viscous superlayer in nonstratified flows [11].
The production and baroclinic torque terms become important at ζI /η = −9 and −18, which are
located within the turbulent sublayer and in the turbulent core region, respectively. The PDF of Pω

is positively skewed, as vortex stretching is dominant over vortex compression, as in nonstratified
flows. However, even at ζI /η = −18, the local change in ω2 due to Dω is comparable to that due to
Pω, although Pω in nonstratified flows and stratified flows with large Reb has a larger contribution
to the local enstrophy growth than the viscous diffusion term [31,49]. This might be explained by
the misalignment between the vorticity and the extensive strain caused by buoyancy observed in a
low Reb regime [39], which was also found near the TNTI [31].

IV. LAGRANGIAN STATISTICS DURING THE ENTRAINMENT

A. Lagrangian analysis of the entrainment

Lagrangian properties of the entrainment are studied by tracking fluid particles, following previous
DNS studies of nonstratified mixing layers [16,42]. We consider tetrahedra, each consisting of four
fluid particles, which have been used for studying the evolution of material volume in turbulent
flows [51]. At a chosen time t0 of the simulation, 40 000 tetrahedra are seeded in the nonturbulent
regions near the TNTI. The initial location of the one of four particles of a tetrahedron, x1 = x0,
is randomly determined to be in the nonturbulent region within 3η from the irrotational boundary
detected with the threshold ωth = 0.04〈|ω|〉 at t0. Then, following Schumacher [52], the other
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FIG. 10. Lagrangian analysis of turbulent entrainment across the TNTI. (a) Fluid particles are released in
nonturbulent regions near the interface. (b) The time τ is defined for each particle as the elapse time after
the particle crosses the irrotational boundary (enstrophy isosurface). The particle is located on the irrotational
boundary at t = te. Lagrangian statistics are calculated as a function of τ . (c) A marker of enstrophy isosurface
is placed at x(n)(te), and then is tracked with the velocity of enstrophy isosurface movement. The location of the
particle relative to the irrotational boundary is defined as the separation vector δ(τ ). The figure also shows the
vertical distance dz(τ ) = z(n)(te + τ ) − z(n)(te) from the location where the fluid particle enters the turbulent
region.

three particles of the tetrahedron are placed at x2 = x0 + r0ex , x3 = x0 + r0ey , x4 = x0 + r0ez

(x4 = x0 − r0ez is used when z0 < 0 so that x4 is in the nonturbulent region), where ei is the unit
vector in the i direction. Here, all particles of the tetrahedra are placed in the nonturbulent region.
Then 4 × 40 000 particles are tracked with a third-order Runge-Kutta method and a second-order
trilinear interpolation scheme as in previous Lagrangian studies [42,53]. The DNS with the tracking
of fluid particles are performed for the release times of the tetrahedra of t0 = 130, 170, and 230
for the case Re20Ri06 and t0 = 170 for the other cases. We consider the tetrahedra with the initial
sidelength r0 = 2η, 4η, 8η, and 16η. After the particles are released, the DNS are proceeded until
t = t0 + 90.

In addition to tracking fluid particles, we introduce markers moving along the irrotational
boundary, which are tracked with the velocity of enstrophy isosurface uI , following a DNS study of
the entrainment in free shear flows [16]. The normal distance between the entrained particle and the
enstrophy isosurface has been also used in previous studies [15]. We use the approach based on the
tracking of the enstrophy isosurface; this is because the enstrophy isosurface location closest to the
particle can be irrelevant in determining the enstrophy isosurface where the particle will pass during
the entrainment after moving for a long time interval. Both approaches are expected to give a similar
result for short tracking times ∼τη because the entrained particle moves in the direction normal to
the enstrophy isosurface in the very early stage of the entrainment [16,26].

Figure 10 shows the Lagrangian analysis performed in this study, where we assume that particle
n at x(n)(t) crosses the irrotational boundary at time t = te. The time elapsed after te is denoted by τ .
The marker of the enstrophy isosurface, whose location is denoted by x(n)

I , is introduced at x(n)(te)
at time t = te. The velocity of the enstrophy isosurface movement uI is represented by the sum of
the fluid velocity at x(n)

I and the propagation velocity of the enstrophy isosurface [13] uP = uP n,
where n = −∇ω2/|∇ω2| and uP = (Dω2/Dt)/|∇ω2|. This marker at the irrotational boundary x(n)

I

is used as a pair with a fluid particle x(n). The entrainment of the fluid particles is studied with
dz(τ ) = z(n)(te + τ ) − z(n)(te) in Fig. 10(c), which is the vertical distance from the location where
the particle has crossed the irrotational boundary. With the marker of the irrotational boundary,
we can define the relative location between the particle and the irrotational boundary as δ(τ ) =
x(n)(te + τ ) − x(n)

I (te + τ ). The latter definition of the entrained particle location is more useful for
examining the particle location within the TNTI layer than dz(τ ) because both the propagation
velocity and the convective fluid motion significantly change the interface location [16,54]. The
temporal development of δ is described by the velocity of the entrained fluid relative to the velocity
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FIG. 11. (a) Averaged vertical distance dz of entrained particles from the irrotational boundary location
where the particle has crossed. PDFs of dz/η at (b) τ = 6 and (c) τ = 22. The results are shown for Re20Ri06.

of the irrotational boundary motion, and written as δu = u − uI . δu can be related to the entrainment
velocity across the TNTI layer [16,26] while a positive value of uP represents the speed at which
nonturbulent fluid enters the viscous superlayer passing through the irrotational boundary.

One-particle statistics are calculated from 4 × 40 000 particles as a function of τ [41]. Similarly,
the four-particle statistics are calculated as a function of time τ elapsed after one of the particles
making up a tetrahedron crosses the irrotational boundary [42]. The average calculated as a function
of τ is denoted by 〈 〉τ . The statistics are calculated for the particles entrained from the upper TNTI.
Similar to the Eulerian statistics, the particles entrained from the lower interface are also used for
calculating statistics by changing the sign of relevant variables.

B. Location of the entrained particles

Figure 11(a) shows the mean vertical height 〈dz〉τ normalized by η, where η is taken on the
centerline at t = t0. The movement of the entrained fluid particle strongly depends on the release
time of the particles. For t0 = 130, the mean vertical location reaches approximately 15η inside
the location z(n)(te), at which point the particle enters the turbulent core region. 〈dz〉τ is small for
the particles released at later times, and the particles released at t0 = 230, on average, stay close
to z(n)(te). Figures 11(b) and 11(c) show the PDFs of dz/η at τ = 6 and 22. Although the mean
motion of the particles is outward, resulting in 〈dz〉τ < 0 for very small τ , both inward and outward
motions occur as confirmed from the PDF in (b). The PDFs for t0 = 130 and 170 in Fig. 11(c) are
large for positive dz, and the particles tend to move inward. For t0 = 230, the PDF in Figs. 11(b)
and 11(c) has a large peak at dz ≈ 0, and the particles stay around the vertical height at which they
are entrained into the turbulent region.

Since the TNTI propagates and is also convected by the fluid motion, the particle height dz does
not correspond to the particle location in relation to the interface location. The particle location within
the TNTI layer can be examined with the relative location between the entrained particle and the
marker of the irrotational boundary δ = (δx,δy,δz), where δi is the i-direction component of δ. The
relative location δ can be decomposed into the vertical relative distance δV = δz and the horizontal
one δH =

√
δ2
x + δ2

y . Figures 12(a) and 12(b) show 〈δH 〉τ /η and 〈δV 〉τ /η, respectively. From the
case Re20Ri06, it is found that as t0 increases the particles stay closer to the irrotational boundary
location. For t0 = 230, 〈δH 〉τ and 〈δV 〉τ are approximately 5η even at τ = 50, and the entrained
particles stay within the TNTI layer, where the vorticity magnitude is smaller than in the turbulent
core region (Fig. 4). The particles entrained at earlier time are able to penetrate into the turbulent
core region as evidenced by the rapid increases of 〈δH 〉τ and 〈δV 〉τ . The insets shows 〈δH 〉τ /η and
〈δV 〉τ /η against τ normalized by the Kolmogorov timescale τ̃η = (ν/〈ε̃〉)1/2, where both η and τη are
taken at t = t0 on the centerline. The plots with the normalization by the dissipative scales collapse
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FIG. 12. The mean distance between the entrained particle and the irrotational boundary location. (a)
Horizontal distance. (b) Vertical distance. The insets show the distance normalized by the Kolmogorov
lengthscale against time normalized by the Kolmogorov timescale. The figure shows the results for τ � 50.
The results from all DNS cases are plotted in these figures.

onto a single curve, especially for small τ . This is because the speed at which the entrained fluid
enter the viscous superlayer is given by uP , which is dominated by the viscous effects as shown
in Fig. 9(a). This viscous scaling of uP has been also found in nonstratified mixing layers [26,50]
and in other flows [13–15,27,29]. The collapse with the viscous scales indicates that the entrained
particle location in relation to the TNTI is dominated by the small-scale motions of turbulence in
the mixing layer. Therefore buoyancy only indirectly affects the entrained fluid motions within the
TNTI layer; the rapid decay of ε is due to buoyancy; however, the initial movement of the entrained
fluid still scales only with ε and ν.

C. Density on the entrained particle path

Figure 13(a) shows the mean density 〈ρ ′〉τ on the entrained particle path. Note that the statistics
are presented for the particles entrained from the lower-density (upper) side of the mixing layer. The
density at the fluid particle location increases as the particles are entrained. It should be noticed that,
for particles released at later times, especially for t0 = 230, the density hardly changes during the
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FIG. 13. Lagrangian statistics of density during the entrainment in Re20Ri06. (a) Mean density. (b) PDFs
of the vertical component of normalized density gradient nρz = nρ · ez near the TNTI.
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FIG. 14. (a) Mean vertical shear Sτ (S̃τ = 〈∂ũ/∂z̃〉τ ) and (b) buoyancy frequency Nτ (Ñτ =√−(g/ρ0)〈∂ρ̃/∂z̃〉τ ) on the entrained particle path in Re20Ri06. (c) The local Richardson number for the
entrained particles Riτ = N 2

τ /S2
τ in Re20Ri06.

entrainment. As confirmed from the particle locations in Fig. 12, these entrained particles with lower
density remain outside the more turbulent region where the average density is higher. Figure 13(b)
shows the PDF of the vertical component of normalized density gradient nρz = nρ · ez measured on
the Lagrangian particle path for particles released at t0 = 130 and 230. Overturning motions with
nρz > 0 can be found more frequently during entrainment for particles released at t0 = 130, while
overturning is almost absent for particles entrained at later times. These statistics indicate that the
fluid entrained at later times remains above the turbulent region, creating a stably stratified layer
near the outer edge of the turbulent region.

The buoyancy frequency along the entrained particle path can be defined by Nτ (in dimen-
sional form, Ñτ = √−(g/ρ0)〈∂ρ̃/∂z̃〉τ ). Similarly, the mean vertical shear is Sτ = 〈∂u/∂z〉τ (in
dimensional form S̃τ = 〈∂ũ/∂z̃〉τ ). Then, the local Richardson number is defined as Riτ = N2

τ /S2
τ

(= Ñ2
τ /S̃2

τ ). These are plotted in Fig. 14, whereas the Eulerian counterparts were shown in Fig. 7.
The mean vertical shear Sτ acting at the entrained particle location rapidly increases once the particle
enters the turbulent region. Similarly, the buoyancy frequency Nτ also increases as the particles are
entrained. However, the buoyancy frequency on the entrained particle path, Nτ , is much smaller than
the Eulerian one, which reaches a peak within the TNTI layer, while the vertical shear Sτ is higher.
Because of small Nτ and high Sτ , the local Richardson number on the entrained particle path is also
small compared with RiI computed in an Eulerian frame, as confirmed from a comparison between
Figs. 7(c) and 14(c). Thus, although there is a region with large Richardson number within the TNTI
layer, the particles being entrained within the TNTI layer tend to circumvent this region and to pass
into the region with small Richardson number.

D. Vorticity evolution on the entrained particle path

The mean vorticity magnitude for the entrained particles is shown in Fig. 15(a). Once a particle
enters the turbulent region, its vorticity begins to grow rapidly. A much slower growth rate, however,
is observed for about τ > 15. Even for large τ , the Lagrangian mean vorticity magnitude is smaller
than the Eulerian counterpart, as found by comparing Figs. 4(a) and 15(a). The slow growth of
the enstrophy on the Lagrangian path is also related to the turbulence decay. Even at the same
time, however, 〈|ω|〉τ is smaller than 〈|ω|〉I in the turbulent core region. For example, we can
see that 〈|ω|〉τ = 0.35 at τ = 40 for t0 = 130 (i.e., t = 170) and 〈|ω|〉I = 0.46 in the turbulent
core region (ζI /η = −50) at t = 170. The particles entrained at later times stay longer within the
TNTI layer (Fig. 12), where the vorticity magnitude is smaller than in the turbulent core region.
Additionally, the mean vorticity calculated in an Eulerian frame in Fig. 4(a) includes a contribution
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FIG. 15. Lagrangian statistics of vorticity evolution during the entrainment in Re20Ri06. (a) Conditional
mean vorticity magnitude. Averaged enstrophy transport equation for the particles released at (b) t0 = 130 and
(c) t0 = 230.

from fluids existing in the turbulent region, whose characteristics are different from the fluids being
entrained [16]. Therefore, it takes very long time for entrained particles to gain vorticity comparable
to that of the fluid existing in the turbulent core region.

Figures 15(b) and 15(c) show terms in the averaged enstrophy equation [Eq. (12)] for the entrained
particles released at t0 = 130 and 230, respectively. The enstrophy evolution near the TNTI in an
Eulerian frame can be found for the stratified mixing layers in Fig. 9(a) and in Ref. [31], and for
gravity currents in Ref. [29]. We can observe qualitative differences in the enstrophy evolution
between the Eulerian and Lagrangian statistics. In the Eulerian statistics in stratified mixing layers
in [31], the averaged enstrophy production term in the turbulent core region is much larger than the
averaged viscous diffusion term near the TNTI. Although the enstrophy production term averaged in
a Lagrangian frame becomes important for large τ , the maximum value of 〈Pω〉τ , found at τ ≈ 20,
is comparable to the viscous diffusion term at the initial stage of the entrainment, τ ≈ 3. This
difference indicates that inviscid vortex stretching is less efficient for fluids being entrained than for
fluids existing in the turbulent region. For a particle entrained at the later time t0 = 230, the mean
enstrophy growth due to enstrophy production is comparable to the growth due to viscous diffusion,
even for large τ . Furthermore, 〈Dω〉τ does not approach 0 with time, implying that the viscous effects
keep transferring the vorticity from the turbulent fluid with larger ω2/2 to the fluid being entrained.
This is related to the fact that particles entrained at later times hardly penetrate to the turbulent core
region, but remain close to the outer edge of the TNTI layer. It is also found that, unlike Eulerian
statistics found in stratified mixing layers [31] and gravity currents [29], the baroclinic torque Bω

has an important contribution to the vorticity dynamics of the entrained fluids.
Figure 16 shows the PDF of each term in Eq. (12) at τ = 4τη and τ = 20τη for the release times

t0 = 130 and 230. While the baroclinic torque is small compared with the other terms for t0 = 130
[Figs. 16(a) and 16(b)], it becomes as important as the other terms for particles entrained at the later
time [Figs. 16(c) and 16(d)]. For t0 = 230, the PDF of Bω is negatively skewed, indicating that the
baroclinic torque reduces the enstrophy, and slows the enstrophy growth of the entrained fluid. It is
also found that Pω and Dω have a comparable effect on the enstrophy growth at τ = 20τη, while Pω

becomes more important than Dω in the nonstratified free shear flows once the entrained particle
reaches the turbulent sublayer [16].

Figure 17 shows the PDF of the second invariant of the velocity gradient tensor Q = (ωiωi −
2SijSij )/4 obtained both as Eulerian [Figs. 17(a) and 17(b)] and as Lagrangian [Figs. 17(c) and 17(d)]
statistics. From the Eulerian PDF, we can find that in most of the regions at ζI /η = −2 the strain-rate
dominates over the vorticity (Q < 0). Apart from the outer edge of the TNTI layer (ζI /η = −6, − 9,
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FIG. 16. PDFs of enstrophy transport equation calculated from the Lagrangian particles released at (a, b)
t0 = 130 and (c, d) t0 = 230 in Re20Ri06. (a,c) τ = 4τη, (b,d) τ = 20τη.

and −18), a vorticity dominant region (Q > 0) also appears in the Eulerian PDF, as shown in
Figs. 17(a) and 17(b). However, the PDF obtained on the entrained particle path is negatively
skewed as, in the entrained particle path, the strain-rate dominates the vorticity (Q < 0). Thus, the
region with strong vorticity (Q 	 0) near the TNTI mostly consists of fluid which has been existing
in the turbulent region rather than the fluid being entrained from the nonturbulent regions, and the
fluid being entrained within the TNTI layer tends to circumvent the region with strong vorticity.

E. Four-particle statistics: Material volume evolution during the entrainment

Four-particle statistics are presented for investigating material volume evolution during entrain-
ment. We consider four-particle clusters (tetrahedra) with the initial side length r0 equal to 2η, 4η,
8η, or 16η entrained from nonturbulent regions. The location and velocity of the particles are given
by x(n) and u(n), where n = 1,...,4. The center of the four particles is defined as x = ∑4

n=1 x(n)/4,
where the overbar denotes the average over the four particles. The particle location relative to x is
given by r (n) = x(n) − x. The velocity of the four particles’ center is u while the particle velocity
relative to u is u′(n) = u(n) − u.

The kinetic energies of the mean and relative motions of tetrahedra are defined as Em = u · u/2
and Er = u′ · u′/2, respectively. For the tetrahedra with Em 	 Er , the four particles move mainly
along with the four particles’ center. Figures 18(a) and 18(b) show the evolution of 〈Em〉τ and 〈Er〉τ
during the entrainment of the particles released at t0 = 130 and 230. For t0 = 130, 〈Em〉τ slightly
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FIG. 17. Comparison between (a, b) Eulerian and (c, d) Lagrangian PDFs of the second invariant of velocity
gradient tensor Q in Re20Ri06. The Eulerian PDFs are calculated at (a) t = 130 and (b) t = 230 while the
Lagrangian PDFs are calculated with the particles released at (c) t0 = 130 and (d) t0 = 230. The PDFs are
normalized by the mean strain-product 〈SijSij 〉 on the centerline.
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size of r0/η = 2, 4, 8, and 16 released at (a) t0 = 130 and (b) t0 = 230. (c) The ratio between the averaged
kinetic energies in mean and relative motions. The results are shown for Re20Ri06.

decreases after the particles are entrained because of the behavior of the mean streamwise velocity,
as depicted by its vertical profile. However, for t0 = 230, the energy of the motion of the center
of the tetrahedra hardly changes during the entrainment, since 〈Em〉τ ≈ 0.1 even for large τ . The
mean motion hardly changes during the entrainment while the tetrahedra in the nonturbulent region
are convected by the horizontal mean flow. This horizontal convective motion dominates the motion
of the center even after they are entrained into the turbulent region for t0 = 230. For both t0, the
relative motion (〈Er〉τ ) rapidly grows during the entrainment process (τ > 0), as the particles begin
to become separated as they are entrained. This separation often causes the deformation of the fluid
volumes. It is clear in the figure that the larger tetrahedra gain more energy in the relative motion.
However, 〈Er〉τ for the particles entrained at the later time t0 = 230 is much smaller than at t0 = 130.
These dependencies of 〈Er〉τ on t0 and r0 are also confirmed in Fig. 18(c), where the ratio between
the energies in mean and relative motions at τ = 10 is plotted as a function of r0/η. This ratio is
smaller for earlier times t0, and is significantly lower for r0/η < 10, especially for smaller r0/η,
indicating that a fluid volume smaller than ∼10η is entrained along with the center-of-mass motion.

With horizontal and vertical velocities defined by uH and uV , respectively, the kinetic energies
Em and Er can be decomposed into the horizontal and vertical components Em = EmH + EmV

and Er = ErH + ErV , where EmH = uH · uH/2, EmV = uV · uV /2, ErH = u′
H · u′

H/2, and ErV =
u′

V · u′
V /2. The evolution of EmH , EmV , ErH , and ErV is shown in Fig. 19(a) for the tetrahedra with

r0 = 4η released at t0 = 170. It is found that the mean motion of tetrahedra is dominated by the
horizontal velocity. The decomposition of the kinetic energy into the mean and relative motions is
related to the scale decomposition [55], where Em and Er are the energies in large and small scales,
respectively, and the length scale which characterizes this decomposition is the size of the tetrahedron.
Therefore, a small value of EmV is due to the horizontal mean flow and the buoyancy effects on the
large-scale motions, by which large-scale vertical motions are suppressed. The horizontal relative
motion ErH grows more rapidly than in the corresponding vertical one, and, during entrainment,
the four particles tend to separate in the horizontal direction. The dependence on t0 can be found
in Fig. 19(b), where the ratio between the horizontal and vertical motions, 〈EmV 〉τ /〈EmH 〉τ and
〈ErV 〉τ /〈ErH 〉τ , are plotted for the tetrahedra with r0 = 4η. The tetrahedra entrained at later times
possess less kinetic energy in the vertical direction, and this tendency is clearer in the relative motion.
This is because the Ozmidov scale decreases with time and the energy in smaller scales related to
the relative motion is suppressed by buoyancy at later times. A small value of 〈ErV 〉τ /〈ErH 〉τ shows
that the four-particle clusters entrained at later times are hardly separated in the vertical direction,
although they can be diffused in the horizontal direction. A horizontal layer of entrained fluid can be
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FIG. 19. (a) Comparison of averaged kinetic energies in mean and relative motions of the tetrahedra between
the horizontal (EmH , ErH ) and vertical components (EmV , ErV ) calculated from the tetrahedra with r0 = 4η

released at t0 = 170. (b) The ratio between the horizontal and vertical components of averaged kinetic energies
in mean and relative motions. The results are shown for Re20Ri06.

formed over the fluid existing in the turbulent region without mixing with the fluid in the turbulent
core region.

The growth of the kinetic energy of the relative motion results from the deformation of the
tetrahedra. The shape and volume of a tetrahedron are characterized by the volumetric tensor [56]
defined by Rij = rirj , which has three eigenvalues denoted by Ra , Rb, and Rc (Ra � Rb � Rc).
The corresponding eigenvectors are a, b, and c. The shape of the tetrahedra is characterized by two
parameters [56]: elongation E = 1 − √

Rb/Ra and planarity P = 1 − √
Rc/Rb. a and c represent

the directions of the elongation and the planarity normal respectively. A tetrahedron with P ≈ 1 has
a flatten shape with four particles nearly on a plane while E ≈ 1 when four particles lie nearly on a
straight line. Figure 20 shows the mean evolution of E and P for the tetrahedra with r0 = 4η. The
shape starts to change once the particles enter the TNTI layer, as the tetrahedra approach elongated
and flatten shapes. The deformation of the tetrahedra is related to the energy cascade process [57,58].
The deformation during the entrainment indicates that nonlinearity becomes important once the
tetrahedra enter the turbulent region. The rate of deformation depends on the release time of the
particles, as the tetrahedra entrained at earlier times deform more rapidly. It was shown that the
deformation rates of small tetrahedra are characterized by the Kolmogorov timescale (ν〈ε̃〉)1/2 [42].
Therefore, the rapid decay of ε due to buoyancy effects can be related to the observed t0-dependence
of the deformation rate.

0 10 20 30 40 500

0.2

0.4

0.6

0.8

1

:t0/η = 130 ( ),  170. ( ),   230 ( )
:t0/η = 130 ( ),  170. ( ),   230 ( )

FIG. 20. The averaged shape evolution of tetrahedra with r0 = 4η in Re20Ri06, where the shape is
characterized by elongation E and planarity P defined with the eigenvalues of the volumetric tensor [56].
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FIG. 21. Alignment statistics among the elongation and planarity-normal directions (a, c) of tetrahedra,
the density gradient ( ĝ = g/|g|), and the vorticity vector (ω̂ = ω/|ω|) for the tetrahedra with r0/η = 4
released at t0 = 170. (a) PDF of |cosθag| = |a · ĝ| and |cosθcg| = |c · ĝ|. (b) PDF of |cosθaω| = |a · ω̂| and
|cosθcω| = |c · ω̂|.

Figure 21 shows the alignment characteristics of the vorticity vector ω, the density gradient g, and
the elongation and planarity-normal directions (a and c). The PDFs show that the planarity normal
c tends to align with the local density gradient (|c · ĝ| ≈ 1) while the direction of the elongation
given by a tends to align with the vorticity direction (|a · ω̂| ≈ 1), in agreement with the results
for nonstratified flows [42]. In stratified mixing layers, buoyancy effects cause the density gradient
to point in the vertical direction, and therefore, the entrained tetrahedra are flattened in the vertical
direction during entrainment. This shape evolution is related to larger kinetic energy in the relative
horizontal motion than in the vertical motion, and thus the entrained fluid volume is diffused mostly
in the horizontal direction, without penetrating into the turbulent core region, especially after the
mixing layer begins to become layered.

V. CONCLUDING REMARKS

Using direct numerical simulation, the entrainment process in a temporally-evolving stably-
stratified mixing layer is investigated in relation to the TNTI defined in terms of the vorticity field.
The buoyancy Reynolds number Reb at an initial stage of the decay is large enough for small scale
turbulence to exist in the stratified mixing layer. Reb decreases with time due to the rapid decay of the
kinetic energy dissipation rate; this results in the layering of the flow without significant small-scale
fluctuations. The statistics in Eulerian and Lagrangian frames are presented for these different stages
of the decay.

The mean vorticity profile near the TNTI confirms that the thickness of the TNTI is approximately
12η, even after the flow begins to become layered, consistent with nonstratified flows and stratified
flows at higher Reb. The overturning motions are more frequently observed in the turbulent core
region than within the TNTI layer because Reb is small near the interface, even if the turbulent
core region has higher Reb. Once the flow begins to become layered, the overturns are absent near
the TNTI.

The entrained fluid movement in relation to the TNTI layer is dominated by the small dissipative
scales. Therefore, the rapid decay of ε due to buoyancy causes the entrained particle movement to
become slow in relation to the interface. Once the layered structures with small ε form, the entrained
particles remain within the TNTI layer over a long period of time. In contrast, particles are able to
penetrate into the turbulent core region when Reb is large enough for small-scale turbulence to exist
in the turbulent regions.

The change in the flow structures affects the vorticity dynamics near the TNTI layer except for
the viscous superlayer, where viscous diffusion dominates the vorticity growth. When small-scale
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turbulence exists, inviscid vortex stretching dominates the enstrophy evolution within the turbulent
sublayer [31]. However, once the flow begins to become layered, the baroclinic torque, which
tends to reduce the enstrophy, becomes important. Furthermore, the baroclinic torque has a stronger
influence for fluid being entrained than for the existing turbulent fluid, and causes the vorticity
growth to become slow during entrainment. There exists turbulent fluid with strong vorticity or with
large buoyancy frequency near the TNTI. However, the particles being entrained within the TNTI
layer circumvent these regions, and they pass through the TNTI in the strain-dominant regions or
the regions with small buoyancy frequency.

Multiparticle statistics are used for investigating the fluid volume evolution during entrainment.
The entrainment causes the increase of the kinetic energy in the horizontal motion relative to
the tetrahedral particles’ center, and the fluid volume is diffused in the horizontal direction. This
horizontal relative motion causes the entrained fluid volumes to deform and to be flattened in the
density gradient direction, which mostly aligns with the vertical direction. Once the layer structures
begin to be formed, the entrained fluid volumes hardly penetrate into the turbulent core region
because of the suppression of vertical motion. Therefore, the entrained fluid volume remains near
the outer edge of the turbulent region and forms a stably stratified layer without significant vertical
overturning motions.
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