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The settling velocity of inertial particles falling in homogeneous turbulence is investigated
by making use of direct numerical simulation (DNS) at moderate Reynolds number that
include momentum exchange between both phases (two-way coupling approach). Effects
of particle volume fraction, particle inertia, and gravity are presented for flow and particle
parameters similar to the experiments of Aliseda et al. [J. Fluid Mech. 468, 77 (2002)].
A good agreement is obtained between the DNS and the experiments for the settling
velocity statistics, when overall averaged, but as well when conditioned on the local
particle concentration. Both DNS and experiments show that the settling velocity further
increases with increasing volume fraction and local concentration. At the considered particle
loading the effects of two-way coupling is negligible on the mean statistics of turbulence.
Nevertheless, the DNS results show that fluid quantities are locally altered by the particles.
In particular, the conditional average on the local particle concentration of the slip velocity
shows that the main contribution to the settling enhancement results from the increase of
the fluid velocity surrounding the particles along the gravitational direction induced by
the collective particle back-reaction force. Particles and the surrounding fluid are observed
to fall together, which in turn results in an amplification of the sampling of particles in
the downward fluid motion. Effects of two-way coupling on preferential concentration are
also reported. Increase of both volume fraction and gravity is shown to lower preferential
concentration of small inertia particles while a reverse tendency is observed for large inertia
particles. This behavior is found to be related to an attenuation of the centrifuge effects
and to an increase of particle accumulation along gravity direction, as particle loading and
gravity become large.

DOI: 10.1103/PhysRevFluids.2.104302

I. INTRODUCTION

Numerical and experimental studies [1–6] have shown that heavy particles falling in homogeneous
isotropic turbulence settle faster than in a quiescent fluid. This phenomenon is explained by the
inertial bias mechanism, responsible of the migration of heavy particles to the periphery of turbulent
vortical structures in zero-gravity conditions and which, under gravity effects, preferentially sample
the side of descending fluid motions of such structures. The understanding of the mechanisms
underlying preferential concentration under gravitational acceleration is thus central to the settling
problem. Some examples of its relevance in natural and industrial flows are as diverse as aerosol
transport in the atmosphere or mixing of sprays in combustors. In a previous study [7] we
examined the preferential concentration and settling issues by making use of the Voronoï diagrams
method to analyze data extracted from Eulerian-Lagrangian direct numerical simulation (DNS)
that do not include the effect of particles on the carrier fluid (referred to as “one-way coupling
simulation approach”). In agreement with earlier findings, both preferential concentration and
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settling enhancement were found maximum when the particles have a response time τp close to
the Kolmogorov time scale τη, and the statistics of the particle velocity conditioned on the local
concentration showed a clear correlation between the particle accumulation and the increase of
the falling velocity. In addition, we identified a further contribution to the settling increase due
to a preferential sampling by the particles of regions of descending fluid acceleration (beside the
preferential sampling by particles of regions of descending velocity, referred to as “preferential
sweeping” by Wang and Maxey [2]).

In the present study we address the preferential concentration and particle settling mechanisms
by including back-reaction force of the particles on the carrier flow in our DNS: the so-called “two-
way coupling” simulation approach. Two-way coupling simulations are usually used to study the
alteration of mean turbulence statistics by the presence of the particles in a zero-gravity environment
[8–11] and marginally in the presence of gravity [5,12,13]. The experiments [1] and numerical
simulations on particle settling in turbulence [4,14] have mainly focused on the particle mean
statistics and shown that two-way coupling further increases the falling velocity. Here we propose
a local analysis of gravitational settling under two-way coupling based on both particle and fluid
statistics conditioned on the local particle concentration. Our main objective is to get further insights
into the local interplay between preferential concentration and turbulence, and the resulting effects
on the particle settling. Effects of volume fraction �, Stokes number St = τp/τη, and Rouse number
R (being defined as R = vt/u

′, the ratio of the terminal velocity of the particle vt to the turbulence
intensity u′) are examined.

The paper is organized as follows. First, we describe in Sec. II the numerical simulations and
the postprocessing of flow and particle data. In Sec. III we analyze effects of particle inertia,
Rouse number and particle volume fraction on settling velocity, preferential concentration, and fluid
quantities. This includes mean and conditional statistics for particle and fluid fields. Finally, Sec. IV
provides a discussion of the presented results by highlighting the most relevant conclusions.

II. NUMERICAL SIMULATIONS AND POSTPROCESSING

A. Numerical simulations

The homogeneous and isotropic turbulence is described in the Eulerian reference frame by the
incompressible Navier-Stokes equations:

∂ui

∂t
+ ∂ujui

∂xj

= − 1

ρ

∂p

∂xi

+ ν
∂2ui

∂xj ∂xj

+ fi − f
(p)
i + F 0

i , (1)

where i = 1,2,3 refers to the three Cartesian directions (gravity is along the third one denoted z in
the following), xi is the spatial coordinates, ui the fluid velocity, p the pressure, and ρ and ν the fluid
density and kinematic viscosity, respectively. The statistically steady turbulence is achieved through
the external energy source term, fi , that injects energy at low wave numbers such that turbulence
energy dissipation is balanced. Also, to avoid further acceleration of the particles induced by nonzero
net volume flux along the gravity direction [4,15], the mean flow (integrated over the computational
domain) is imposed to be zero. This is equivalent to apply a constant mean pressure gradient, F 0

i ,
that balances the net weight of the particle phase; see Eq. (1) and below for its definition.

The term −f
(p)
i represents the force per unit mass exerted by a number of np particles within the

integration control fluid volume vcell and is computed according to the particle-in-cell (PIC) method
[4,12,13,16]:

f
(p)
i = 1

mvcell

np∑

j=1

fi(pj ), (2)

where mvcell is the mass of fluid within the integration control volume and fi(pj ) is the drag force
acting on the particle pj in the i direction [see Eq. (3)].

The particles, with density ρp much larger than the fluid density ρ, are described in the
Lagrangian reference frame by a simplified version of the equation of motion (Maxey and Riley [17],
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TABLE I. Unladen turbulence: numerical and flow parameters. Microscale Reynolds number Reλ, number
of computational nodes N3, viscosity ν, box side length Lbox, integral length scale Lo, large-eddy turn-over
time To, Kolmogorov length and time scales ηo and tηo

and maximum wave number kmax = √
2N/3.

Reλ N 3 ν Lo/Lbox Lo/ηo To/tηo
kmaxηo

40 643 0.0178 0.211 31.56 15.85 1.32

Gatignol [18]) where only the Stokes drag and buoyancy forces remain:

mpj

dvi(xpj
,t)

dt

= mpj

(ui(xpj
,t) − vi(xpj

,t))

τp︸ ︷︷ ︸
fi (pj )

+(mpj
− m)gi, (3)

where vi(i = 1,2,3) are the particle velocity components, ui(xpj
,t) the instantaneous fluid velocity

at the particle location xpj
, mpj

the particle mass, and m the mass of fluid one particle displaces. The
response time of the particles, τp, is given by τp = d2ρp/(18νρ) with d being the particle diameter.
The gravitational acceleration gi is such that g1 = g2 = 0 and g3 = −|g|x3 where |g| satisfies
vt = τp|g|(1 − ρ/ρp), vt being the terminal velocity of the particles in the still fluid. Note that, for a
prescribed value of the Reynolds and Rouse numbers, the effects of gravity and inertia can be tuned
independently. Indeed, these effects can be analyzed for a given Froude number Fr = a

1/2
o (η/t2

η )/|g|
[where a

1/2
o (η/t2

η ) is the fluid acceleration variance and is close to unity in our DNS], or for a given
particle response time τp.

The Navier-Stokes equations are solved on a cubic fluid box of side length Lbox = 2π , discretized
into N3 computational nodes, with periodic boundary conditions. A fully pseudo-spectral algorithm
with a dealiasing truncation technique (referred to as the “2/3 rule”) is used with a second-order
Runge-Kutta time stepping for the nonlinear terms and an analytic integrating factor for the viscous
terms. The forcing is realized by distributing the power input fi over a narrow band of wave numbers
k that satisfy kp − 1 � k � kp + 1, where kp defines the peak forcing mode (see Refs. [19,20] for
further computational details). Note that the above-mentioned condition of a net zero-volume flux
along gravity leads to F 0

i = −(ρp/ρ − 1)gi × NpVp/Lbox where Np is the total number of particles
and Vp the particle volume.

A fourth-order Lagrangian polynomial interpolation is used to evaluate the fluid velocity at
the particle position required for the computation of the drag force exerted by the fluid on the
particle, fi(pj ). The particles are homogeneously introduced in the fluid once the turbulence shows
a statistically stationary state, and the statistics of the particle fields are initiated over several integral
time scales (∼20To) after their injection.

The numerical and turbulence parameters for the unladen flow are identical to the ones used in
our previous study [7] and recalled in Table I. Table II provides the values of the Stokes number St,
Rouse number R, total number of particles Np, and volume fraction � = NpVp/L3

box, considered
in the two-way coupling simulations. This table provides the parameter values based on prescribed
Stokes numbers (i.e., gravity varying according to R), but the main reported characteristics are
similar to the ones found for a given Froude number (i.e., particle inertia varying according to R).
In all simulation cases, Np refers to real particles and not to computational particles [13], and � is
small enough to discard “four-way coupling” (particle-particle interactions) [21]. All the particles
have a density ρp = 5000ρ. Whatever the parameter values we are considering, the computational
domain is large enough to avoid artificial periodic boundary condition effects (see Woittiez et al.
[22]). This is illustrated in Fig. 1, which represents an instantaneous view of the particle position in
a two-dimensional (2D) plane containing gravity for St = 1, � = 7 × 10−5, and R = 1. Large-scale
particle clusters crossing the full computational domain are not observed.
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TABLE II. Particle-laden turbulence: particle and turbulence parameters. Stokes number St, volume fraction
�, total number of particles Np . See Table I for definition of the turbulence parameter. Parameters with subscript
“o” refer to the unladen flow. The error of the reported statistics does not exceed 2%.

Sto Ro 105� Np u′/u′
o η/ηo St/Sto

(vt/u
′) (Ro/R) (εo/ε) (tηo

/tη)

1 0 1.5 446080 0.99 1 1
1 0 3 892032 0.97 0.98 1
1 0 7 2 083 200 0.95 0.96 1
1 0.25 1.5 446 080 0.99 1 1
1 0.25 3 892 032 1 0.98 1
1 0.25 7 2 083 200 1 0.88 1.25
1 0.5 1.5 446 080 1 0.97 1
1 0.5 3 892 023 1 0.9 1.2
1 0.5 7 2 083 200 1.30 0.8 1.53
1 1 1.5 446 080 1.13 0.90 1.2
1 1 3 892 032 1.35 0.71 1.57
1 1 7 2 083 200 1.72 0.64 2.64
0.36 0.25 1.5 2 060 800 0.98 0.95 1
0.36 0.25 3 4 121 600 1 0.95 1.13
0.36 0.25 7 9 617 024 1.2 0.85 1.38
2 0.25 1.5 154 880 0.99 1 0.99
2 0.25 3 309 760 0.95 1 0.9
2 0.25 7 722 752 0.94 0.97 1
6 0.25 1.5 29 762 0.97 1 0.94
6 0.25 3 59 616 0.95 1 0.9
6 0.25 7 139 104 0.93 1.1 0.83

Table II includes ratios of particle-laden to unladen turbulence mean quantities to supply an
overview of the flow modulation by the particles. For the volume fractions considered, � = O(10−5),
the mean statistics of turbulence are not significantly altered by the particles, the stronger modulation
being observed for large R and �. The slight tendency indicated by the values reported in Table II is in
agreement with previous studies on modification of homogeneous turbulence by two-way coupling
effects (see details in Refs. [5,8,9] for the zero-gravity and [12–14,23] for the non-zero-gravity
condition). We recall that the present numerical study aims to investigate local two-way coupling
effects to get further insight into the mechanisms underlying the increase of particle settling velocity,
discarding overall two-way coupling effects on turbulence, in the prolongation of the experimental
work of Aliseda et al. [1]. The moderate Reynolds number, Reλ = 40, we consider in our simulations
matches the one examined in Ref. [1], allowing direct comparisons between our DNS and the
experiments. It also permits us to explore a sufficient large range of particle parameters to extract
relevant effects of Stokes and Rouse numbers and of volume fraction, while consuming reasonable
computational memory and CPU times. The considered particle parameters here correspond to
particles with diameter smaller than the Kolmogorov length scale η. Taking as reference η = 1 mm
for the atmospheric boundary layer, they can be representative of droplets with diameter in the range
0.08–0.3 mm or very small heavy aerosols with diameters in the range 0.03–0.1 mm.

B. Postprocessing

To analyze, locally, the interplay between settling enhancement and preferential concentration of
particles, the computation of the concentration field at each particle location is required. This can be
efficiently achieved by making use of the Voronoï diagrams analysis [24]. This method associates to
each particle a unique polyhedron, defined as the subset of the three-dimensional (3D) space that is
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FIG. 1. Particle position in a 2D plane containing gravity for St = 1, � = 7 × 10−5 and R = 1. The red
arrow represents the gravity vector, and the blue line is the integral length scale Lo.

closer to this particle than to any other. According to this definition, the corresponding polyhedron
volume is exactly the inverse of the local concentration defined at the intrinsic interparticle distance
scale. The mean Voronoï volume associated to Np particles being trivially equal to L3

box/Np, the
Voronoï volumes are normalized to achieve unit mean and are denoted by V . Note that a quantitative
comparison between different sample sizes is possible as long as the statistical posttreatment is
performed over data sets presenting similar average of the interparticle distance. This condition is
carried out by applying the subsampling procedure fully described in Ref. [25] and more detailed in
Sec. III B.

Following Monchaux et al. [26], we define a cluster of particles as connected components of
Voronoï cells whose individual volume is below a given threshold. This threshold can be simply
defined as the intersection of the preferentially concentrated particle PDF ofV with the corresponding
uniform random distribution PDF.

For each simulation case, the statistical analysis is performed over 20 snapshots regularly sampling
eight integral time scales (after statistical stationary convergence is achieved). The overall average
operator denoted by an overbar, X, represents the average operator over time and space of the
quantity X, and its associated standard deviation is denoted as σX. The local concentration, C,
measured as the inverse of the normalized Voronoï volume is used to perform the statistical analysis
conditioned on the local concentration. By reference to the average concentration, C0 = Np/(2π )3,
we define six ranges of relative concentration: C/C0 � 1, C/C0 � 0.3, C/C0 � 0.7, C/C0 � 1.3,
C/C0 � 2.2, and C/C0 � 6.7.

III. RESULTS

A. Settling velocity

Figure 2(a) displays the mean rate of particle settling velocity as a function of R. It provides a
comparison between our two-way and one-way coupling DNS, the experiments of Aliseda et al. [1],
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FIG. 2. Rate of the settling velocity �v = vz − vt normalized by u′, for low �: (a) as a function of R

for Fr � 1, (b) as a function of St. Data from Aliseda et al. [1], Good et al. [6], and our one-way study [7]
are given for comparison. In (b) solid lines represent the DNS performed with R = 0.25 (corresponding to
0.38 < Fr < 6.1 for the prescribed range of St values) and the dashed lines the DNS performed with Fr ∼ 1
(corresponding to 0.1 < R < 1 for the prescribed range of St values). Data at Reλ = 46 and Reλ = 72 are
experiments by Aliseda et al. [1].

performed at a low Reynolds number, and with the experiment and one-way coupling DNS results
of Good et al. [6], performed at a much higher Reynolds number. All data correspond to Froude
numbers close to unity and to low volume fractions (� � 1.5 × 10−5) for which two-way coupling
effects are weak. It is interesting to observe that experimental data of Aliseda et al. and Good et al.
exhibit very similar behaviors, though Reλ varies from 46 to 160. Similarly data from both one-way
coupling DNS performed at different Reynolds numbers collapse for R � 0.3, where Stokes numbers
correspond to particles interacting with the small turbulence scales. At larger R, the settling rate
obtained in the low Reynolds number DNS is smaller than the one found at high Reynolds numbers;
nevertheless, the decay slope of the settling velocity is similar for both simulations. For a given
Froude number, increasing R is equivalent to increasing particle inertia. The interaction between
particles and turbulence is thus expected to be more subject to Reynolds number effects at large
R since the range of turbulence scales interacting with large particle inertia extends more as Reλ

increases. The behavior of the settling rate displayed by our two-way coupling DNS is comparable
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FIG. 3. Rate of the settling velocity �v = vz − vt normalized by u′ as a function of �. (a) For prescribed
values of R (with Fr ∼ 1). (b) For prescribed values of St. Continuous lines correspond to our two-way coupling
data at R = 0.25, dash-dotted lines and symbols to data extracted from Aliseda et al. [1] for corresponding
values of �. Note that � = 0 represents the corresponding one-way coupling DNS data.

to the one observed in the experimental work [1]: an increase of the settling velocity up to R � 0.4
and then a decay for larger R. The value of R at which maximum of settling velocity increase occurs
and the decay rate for larger R compares well. The experimental enhancement of the settling rate
for small R is also well captured by our DNS. However, the absolute values are underestimated,
a feature shared by all the presented DNS data when compared with corresponding experiments.
Comparison between our one-way and two-way coupling DNSs shows that even for the smallest
volume fraction, � = 1.5 × 10−5, momentum exchange between particles and fluid enhances the
settling rate. The effects of volume fraction effects will be further discussed below. Note that the
largest values of R explored in our two-way coupling DNS and in the experiment of Aliseda et al.
is around unity. Thus, the hindering effect (reduction of the settling velocity) found by Good et al.
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FIG. 4. Conditional average of settling velocity enhancement given as a function of the local concentration
C/C0 for St = 1, R = 0.25 and various values of �. For comparison, our one-way coupling DNS work [7] and
data from Aliseda et al. [1] are included.

at large R cannot be recovered. Further investigation of this phenomenon requires a supplementary
exploration of the flow and particle parameters and is not considered in the present work.

Figure 2(b) displays the mean rate of particle settling velocity as a function of St for the present
two-way coupling DNS and Aliseda et al. experiments. For the DNS, we draw both the results
obtained for Fr = 1 [gravity is fixed and R varies with particle inertia as in Fig. 2(a)] and for R = 0.25
(Fr varies with particle inertia). For both experiments and two-way coupling DNS, two volume
fractions are considered, � = 1.5 × 10−5 (open symbols) and � = 7 × 10−5 (filled symbols). All
data sets show a maximum increase of the settling velocity reached for St around unity. This
maximum, in agreement with previous numerical and experimental studies [1–3,5,7], is consistent
with the peak of the settling rate observed in Fig. 2(a) for R ∼ 0.4, which corresponds to St ∼ 1.5
in our DNS. This peak was first explained in one-way coupling DNS by Wang and Maxey [2]
as being the result of both preferential concentration (due to centrifuge effects that are effective
on particles with time response close to the Kolmogorov time scale) and preferential sweeping
(preferential aglomeration of particles in descendant fluid region under gravity). The alteration of
these mechanisms by two-way coupling effects will be more discussed in Secs. III B and III C.

Also shown in Fig. 2(b) is that, at the low � = 1.5 × 10−5, the DNS results do not exhibit
significant influence of the Froude number on the mean settling rate, and both sets of DNS data
(with Fr = 1 or R = 0.25) are close to the experimental data. For � = 7 × 10−5, the DNSs show
that effects of Fr are very weak for small St but become large for St � 1. In this range of particle
inertia, the DNS recovers better the data of Aliseda et al. when Fr is similar to the experimental one,
i.e., Fr = 1. Note that the tendency of the DNS in underestimating the settling rate for small St is
reminiscent of the previously and similar trend observed in Fig. 2(a) for small R.

Figure 3 shows that, for a given R or a given St, the mean settling rate velocity increases with the
volume fraction both in our two-way coupling DNS and in experiments. By comparing Figs. 3(a)
and 3(b), it appears that influence of R is much weaker than that of St.

The correlation between particle concentration and settling velocity is further illustrated in Fig. 4
that displays the evolution of the settling velocity deviation from its mean value with the local relative

104302-8



SETTLING VELOCITY AND PREFERENTIAL . . .

FIG. 5. Top: standard deviation of the normalized Voronoï volume as a function of St given for each volume
fractions � considered at R = 0.25. The two sets of curves correspond to the two sample sizes used (29 762
and 320 000 particles). Data presented in red (light gray) are extrapolated; see text for details. Bottom: Standard
deviation of the normalized Voronoï volume as a function of R at St = 1 for each volume fractions � considered.
One-way data from Dejoan et al. [7] are given as a reference.

concentration C/C0. When the local relative concentration is higher than about 2.5, particles settle
faster than on average, and the opposite is observed when C/C0 � 2.5. Obviously, averaged over
C/C0, all the data reduce to zero, and the main relevance from one curve to another one is how
much the relative particle settling is increased at high local concentration. The present results, shown
for St = 1 and R = 0.25, are compared with our one-way coupling DNS [7] and the experimental
data [1]. At high local concentrations, the two-way coupling simulations exhibit a larger slope of
settling enhancement than one-way coupling simulations. The slope increases as � becomes larger
and quantitatively matches the data of Aliseda et al. for � = 7 × 10−5.
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FIG. 6. PDFs of the angle between the main axis of the 2D Voronoï cells and the gravity direction for
St = 1. Positive and negative angles have been averaged to increase convergence and improve readability.
Corresponding PDF in the plane perpendicular to gravity is perfectly flat (not shown).

Alteration of preferential concentration and relevant fluid quantities by two-way coupling effects
are next analyzed to get further insight in the additional increase of settling velocity when compared
to one-way coupling DNS.

B. Preferential concentration and clustering

As briefly mentioned in Sec. II B, consistent comparisons between statistics of the Voronoï
diagrams performed over different data sample require us to maintain as close as possible the
interparticle distance, �dp = Lbox/N

1/3
p , of the data sets considered for the statistical posttreatment.

This is illustrated in Fig. 5(a) that displays the evolution of σV as a function of St (for R = 0.5
and the three considered �) computed from two different present DNS data sample sizes. The
subsampling procedure [25] was applied to the each simulation particle data set by selecting as the
reference sample the one corresponding to our previous one-way coupling DNS, which contains a
total number of 320 000 particles (or equivalently with �dp ∼ 0.09). Moreover, we have used the
relation of proportionality of σV with �dp demonstrated in Ref. [25] to extrapolate the values of σV
for the sample size smaller (29 762 particles) than the reference case. Note that this subsampling
procedure has also been recently used by Sumbekova et al. [27].

The maximal preferential concentration for St � 2 observed in Fig. 5 has been commonly reported
in experiments [26] and in one-way coupling simulations [7,25]. This maximum is shown to be
independent of particle loading in the present simulations. By comparison to our former one-way
coupling DNS, the level of preferential concentration tends to be lower for St � 2 and higher for the
larger particle inertia, St = 6. The dependence in R and � of σV presented in Fig. 5(b) for St = 1
shows a decrease of preferential concentration as both R and � increase.

We further analyze the two-way coupling effects on the particle concentration field by performing
Voronoï analysis on 2D slices aligned with the axis of the simulation. We define three slice
orientations: two of them contain gravity, the other one does not. We consider as well two quantities:
on the one hand, the aspect ratio of the 2D Voronoï cells defined as λ1/λ2 (with λ1 and λ2 the two
principal moments of inertia of the considered cells) and, on the other hand, the angle between the
longer axis of inertia of the Voronoï cell and the simulation box axis ( �ex , �ey , �ez).

Not shown here, the probability density functions (PDFs) of λ1/λ2 show that the most
probable shape of the Voronoï cells corresponds to elongated ellipses whose characteristics
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FIG. 7. Typical cluster size distribution in a 2D plane containing gravity for St = 1 and various values of
R. Similar results are obtained for the other considered St values but are not shown for the sake of clarity.

depend mainly on St (as already found in our previous one-way coupling DNS [7]) and are not
significantly influenced by R and �. However, Fig. 6 clearly shows that, as R and � increase,
the Voronoï cells tend to align perpendicular to gravity, the particles preferentially agglomerating
along the falling direction than along the transverse directions. The increase of anisotropy of the
particle field with increasing R, previously reported in our one-way coupling DNS study, corroborates
more recent one-way coupling DNS results [28,29]. In particular, the DNSs by Ireland et al. [29]
have shown that, as gravity is increased, particles with low St fall faster and thus pass through flow
structures, leading to a lower degree of preferential concentration (the particles being less subject
to centrifuge and preferential sweeping effects [2]); on the other hand, for particles with large St,
they observe an increase of clustering in relation with the reduction of the past-history effects along
the downward direction. Indeed, the particles tend to concentrate along gravity instead of being
more homogeneously dispersed. The present simulations show that momentum exchange between
the phases further amplifies the preferential orientation of particles along gravity as � and/or R

increase. Following Ref. [29], this, in relation with the settling enhancement reported in Sec. III A,
can explain the decrease of preferential concentration for St � 2 and the reverse tendency observed
for larger St in Fig. 5. Nonetheless, the amplified alignment of particles along the downward direction
found here, when compared to our one-way coupling DNS, is obviously a result of the back-reaction
of the particles on the fluid. This aspect is further examined in Sec. III C.

As explained in Sec. II B, clusters can be identified as connected components of particles whose
Voronoï cell has a volume below a given threshold. We have performed 2D and 3D analysis of the
cluster size. For the 2D analysis, we have worked with slices aligned with the simulation axis as
explained above. In this case, we find clusters whose sizes (areas) are algebraically distributed as
power laws with exponents of about −2 as already reported by former numerical and experimental
studies [7,26,30]. This is illustrated in Fig. 7 in which the cluster area distribution obtained for
� = 3 × 10−5 and St = 1 in a plane containing gravity is presented. Cluster area PDFs also present
a most probable value located in the range of turbulent scales [2η − 4η]. This feature slightly differs
from the one provided by the 2D cluster size analysis in the experiments of Aliseda et al. where a
box counting method pointed to cluster typical sizes distributed around [7η − 16η]. Not explicitly
shown, the cluster size distribution is found to be independent of �, R, St and to not depend on
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FIG. 8. Conditional average of the (a) slip velocity �Vz|C/C0 , (b) fluid velocity uz|C/C0 , and (c) net force
exerted by the particles on the fluid Fz|C/C0 , given as a function of the local concentration C/C0 for R = 0.25
and � = 7 × 10−5. In (a), the horizontal dot-dashed line is the terminal velocity vt , and the dashed lines are
the corresponding one-way coupling DNS slip velocities [7].

the orientation of the plane with respect to gravity. The independence with the Stokes number was
already observed in experiments [26]. The 3D analysis reveals that, in the presence of two-way
coupling, the Voronoï cells are all interconnected. According to the definition of cluster we use, this
interconnection is representative of a single cluster with an entangled 3D structure that is reminiscent
of the complex 3D interconnected tunnels of particles found by Calzavarini et al. making use of the
Minkowski functionals [31] for analyzing clustering in homogeneous turbulence.

C. Fluid statistics at particle position

A direct consequence of the model used for the computation of the Stokes drag [see Eq. (3)],
is the matching between mean average slip velocity �vz and the terminal velocity vt . Thus, the
mean increase of the settling velocity comes from the local mean contribution of the fluid velocity.
It is interesting to observe in Fig. 8(a) that, when considering conditional statistics on the local
particle concentration, the slip velocity remains equal to the terminal velocity regardless of the
local concentration. This behavior differs from the one reported in our one-way coupling DNS
study recalled in Fig. 8(a) by the dashed lines. Under one-way coupling, particles are observed
to settle faster than the mean downward velocity in regions of high-local-particle concentration,
in relation with a preferential sampling along the fluid downward acceleration in addition to the
preferential sweeping [2]. The matching between the conditional average of slip velocity and terminal
velocity found in two-way coupling (in regions of small and large particle density) indicates that
the enhancement of the particle settling rate results essentially from the modified fluid velocity
uz. Figures 8(b) and 8(c) show that the fluid velocity uz|C/C0 and the net force Fz|C/C0 exerted
by the particles on the fluid have similar behavior, namely, a pronounced decrease with increasing
C/C0. As C/C0 becomes larger, the local but collective particle force accelerates the fluid along
the gravitational direction, resulting in the enhancement of the downward velocity. This in turn
significantly increases the settling velocity. Particles thus fall with the fluid surrounding them.
Not shown here, the fluid velocity contribution increases with increasing �. Note that the fluid
acceleration contribution from pressure and viscous forces (not presented) was found to essentially
oppose to particle back-reaction force such that the preferential sampling along fluid acceleration
reported in our one-way coupling simulations is not observed anymore in the two-way coupling
simulations.

One can wonder about the robustness of the centrifuging mechanism [2] of heavy particles away
from the high-vorticity region when particles back-reaction force on the carrier phase is accounted
for. Previously mentioned in Sec. III A, this mechanism, associated with particle preferential
concentration and commonly observed maximal for St ∼ 1, and the related preferential sweeping of
particles under gravity are invoked to explain the faster settling of particles in absence of two-way
coupling [2].
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FIG. 9. Joint PDF of S2 and 
2 for St = 1. The black dash-dotted line is the first diagonal.

To figure out how far the volume fraction and gravity alter the centrifuge mechanism, we present
in Fig. 9 the joint PDFs of the fluid vorticity, 
2, and fluid shear, S2, defined by 
ij = 1

2 ( ∂ui

∂uj
− ∂uj

∂ui
)

and Sij = 1
2 ( ∂ui

∂uj
+ ∂uj

∂ui
), respectively, both computed at particle location for St = 1. As 
2 and S2

are widely distributed with very asymmetric PDFs, their mean values are not meaningful, while
the joint PDF representation provides a clear illustration of our purpose. Figure 9 shows that, in
zero gravity (R = 0), whatever the value of � considered, the most probable values of S2 are twice
those of 
2, which in turn reflects persistence of the centrifuge effects. This is also featured for low
values of the couple R/�. However, as R/� further increase, most probable values deviate to
large values of 
2, meaning that the centrifuge effects are attenuated or even suppressed (see
� = 7 × 10−5 and R = 1).

IV. SUMMARY AND CONCLUSIONS

In this study, we have presented two-way coupling DNS of turbulent flow laden with heavy inertial
particles at moderate Reynolds number in presence of gravity. We have quantified the modification
of the settling velocity addressing the effects of particle inertia, gravity, and particle volume fraction.
We have analyzed these effects on preferential concentration and fluid statistics (at particle position)
to understand the mechanisms responsible for the observed alteration. We have presented as many
comparisons as possible with the reference experimental work of Aliseda et al. [1] whose parameter
space covers one of the simulations. The qualitative (and often the quantitative) agreement between
our simulations and experiments suggest that the minimal ingredients used in the present DNS are
enough to capture the physical mechanisms at work in actual turbulent flows laden with inertial
particles at least with respect to settling velocity enhancement. The main conclusions follow.

The present study confirms that the settling velocity of particles falling in a homogeneous turbulent
flow is further increased by momentum exchange between both phases, as previously reported in
experiments [1] and DNS [4]. This is observed for all the examined Stokes numbers, ranging from
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0.36 to 6 when based on the Kolmogorov time scale. At the considered volume fractions, the
effects of two-way coupling are negligible on the overall statistics of turbulence. Nevertheless, the
statistics conditioned on the local particle concentration reported here show that the collective force
of particles accelerates, locally, the fluid and increases the fluid velocity surrounding the particles in
the gravitational direction. The resulting modified fluid downward velocity is identified as the main
contribution of settling enhancement in the presence of two-way coupling. Particles and fluid thus
fall together, their relative velocity actually vanishing. This behavior is reminiscent of the model
proposed by Aliseda et al. [1] in which groups of particles were considered as “meta-clusters” whose
settling velocity is higher than the one of individual particles. In such a model, the slip velocity
between fluid and particles should be very weak as we observe.

The maximum preferential concentration is still found for St around unity. The effects of gravity
and particle volume fraction on σV , analyzed for particles with St = 1, display a monotonous
decrease of preferential concentration with increasing R, this decrease being stronger as � is larger.
For a given R, a similar effect of � is observed for particles with St � 2, while larger inertia
particles exhibit a reverse tendency. The reduction of preferential concentration for St ∼ 1 is shown
to be in relation with a local modification of the flow structure by the particles. In particular, a
significant increase of vorticity is observed at particle position as � and/or R increase. This leads
to an attenuation or even suppression of centrifuge effects. In addition, for all the considered St,
the preferential sampling of particles in downward fluid motion is observed to be amplified by the
particle back-reaction force, as particles and fluid mutually entrain each other.

The anisotropy of the particle concentration field (previously observed in one-way coupling DNS
[7,28,29]) is further increased under two-way-coupling. This manifests as a denser accumulation
of particles in the downward direction with increasing R and �. It can explain the increase of
preferential concentration observed for St = 6 in the presence of momentum exchange, and also
suggests a further reduction of the past-history effects along gravity compared to one-way coupling
simulations [29].

The 2D Voronoï analysis of the particle field shows that cluster sizes are algebraically distributed
with a power around −2. This indicates the self-similar nature of preferential concentration in
particle-laden flows as already reported [26,30,32]. The cluster sizes distribution displays a peak
within the small turbulence scales, consistently with former experimental observations [1]. The
corresponding 3D analysis reveals a unique complex interconnected structure reminiscent of the
results obtained by Calzavarini et al. [31]. The emergence of this structure deserves further
investigations.

The reported local effects exerted by the collective force of particles on the fluid quantities
(vorticity and shear) are expected to locally alter the turbulence scales. The increase of particle
field anisotropy under increasing R and � can also be inferred to alter turbulence anisotropy
(previously suggested in Refs. [5,13,14]). A scrutinized investigation of these local interaction
requires a separate study accounting for effects of gravity and particle loading on turbulence scale
and flow anisotropy-related quantities.
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