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From strings to coils: Rotational dynamics of DNA-linked colloidal chains
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We investigate the dynamical behavior of deformable filaments experimentally using
a tunable model system consisting of linked paramagnetic colloidal particles, where the
persistence length lp , the contour length lc, and the strength and frequency of the external
driving force are controlled. We find that upon forcing by an external magnetic field, a
variety of structural and conformational regimes exist. Depending on the competition of
forces and torques on the chain, we see classic rigid rotator behavior, as well as dynamically
rich wagging, coiling, and folding behavior. Through a combination of experiments,
computational models, and theoretical calculations, we are able to observe, classify, and
predict these dynamics as a function of the dimensionless Mason and magnetoelastic
numbers.
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I. INTRODUCTION

The response of stiff and semiflexible filaments in fluids to driving forces is the basis for naturally
occurring and practically relevant phenomena, from flagellar motion [1–3] and microfluidic fluid
manipulation [4,5] to gelation and bulk polymer properties [6,7]. Starting from the theoretical orbits
derived by Jeffery for rigid filaments [8], the dynamics of rigid and flexible non-Brownian fibers
[9,10] and Brownian filaments like DNA and actin [11–13] have been systematically investigated.
Lang et al. point out that there is currently a wealth of knowledge in both rigid and highly flexible
polymer regimes, with good agreement between experimental results and scaling laws. However, in
the intermediate semiflexible polymer regime, where practically useful fibers such as actin, carbon
nanotubes, and cilia reside, many questions remain unanswered, from subperiod dynamics and their
effects on fluid propulsion to the existence and significance of self-entanglement, entanglement, and
other topological effects on bulk properties.

Despite revolutionary experimental work on fibers such as actin and microtubules, the limited
resolution makes it difficult to study subperiod and subchain dynamics. Many have turned to
computational models to supplement their studies, which has yielded a wealth of information [14–
18]; however, these are still limited by the unfavorable scaling of complex hydrodynamic interactions.

Here we utilize colloidal particle chains as an experimental model with which to probe semiflexible
chain dynamics, as this model system has the tunability, control, and resolution of computational
models, while avoiding the size-dependent scaling of numerical force calculations. Previously, others
have shown that magnetically controlled particle chains can be actuated by externally controlled
magnetic fields. When a rotating magnetic field is used, the particle chains can rotate synchronously
or asynchronously with the external field [19], with the latter often leading to fragmentation in
unlinked chains [20] and collapsed hairpins in linked chains [19,21]. These dynamics have begun to
be harnessed for use in swimmers [1], biomimetic cilia systems [21], and cargo capture and transport
[22], among others.

We seek to demonstrate the application of this colloidal model to the study of semiflexible
filaments under a rotational force field. It has been shown previously in shear fields that even
in the case where rigid objects yield predictable closed orbits [23], the addition of flexibility
yields complicated dynamics such as orbit drift, irreversible deformations, and coil-stretch dynamics
[11,12,14,24,25].

In a simpler rotational force field, filament flexibility also generates nonsteady motion, such as
stick-slip dynamics [21,22], even in relatively short and stiff chains. Here we explore the dynamics
under a steadily rotating magnetic field, as we push into longer, semiflexible filaments, and observe
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everything from steady dynamics to persisting deformations to unsteady but reversible deformations,
even if filament persistence length is held constant. Through numerical simulation and analytical
predictions, we look to predict the dynamics and confirm our understanding of the forces responsible
for our experimental results.

II. METHODS

A. Colloidal particle chains

The colloidal spheres used in this work have ferrite grains embedded in a polystyrene matrix,
giving it paramagnetic properties; they are also surface functionalized with streptavidin, providing
a simple linking chemistry. They are purchased from Life Technologies (Dynabeads R© MyOne
Streptavidin C1, 10 mg/mL), have a diameter of 1.07 μm, and have a magnetic susceptibility
χ = 1.377. They are washed three times with distilled water before being resuspended to 0.01 wt. %
in deionized water [26].

Chains are synthesized in a 40-μL flow cell (20 mm × 20 mm × 100 μm) between two coverslips
(Ted Pella, microscope glass coverslips, # 1.5), using double-stick tape as a spacer, and epoxy
(Hardman R© Double/Bubble) to seal against evaporation. The coverslips are cleaned using oxygen
plasma and suspended in a concentrated potassium hydroxide solution for 30 min to prevent beads
from adhering to the glass. The linking solution consists of paramagnetic beads, biotinylated DNA,
and a phosphate buffer at final concentrations of 0.0425 wt. %, 5 nM, and 10 nM, respectively,
in distilled water. The colloidal spheres are more dense than water and therefore sediment to the
bottom plane of the flow cell. Upon applying a constant magnetic field, the beads self-arrange into
linear structures to minimize their energy. When held under this field, the beads are in close enough
proximity for the DNA linkers to chemically bind neighboring beads together.

The linker length, the strength of the constant linking field, the time held under this field, and
the temperature of the chamber can be varied to tune both the length N and persistence length lp of
the final chains; full details can be found in [27]. Here the linking DNA used is a 2000-base-pair
segment of λ-DNA (New England Biolabs, Ipswich MA) biotinylated on the 5’ ends, the constant
linking field is 146 G, and the flow cell is held at 60 ◦C for 45–90 min (for lower to higher N ). Unlike
the previous work, flow cells are only partially sealed with epoxy and placed in a humidity chamber
during the linking period to minimize evaporation. At the end of the linking time, approximately
5 μL of biotin (0.6 μM) is flowed into the cell to replace the lost volume, capping any unbound
streptavidin sites and quenching the linking reaction. Otherwise, chains in nonlinear conformations
can permanently bind to themselves during the course of our experiments, impacting the dynamics.

Chains are imaged on an Olympus IX71 inverted microscope (Olympus, Tokyo) using a 100× oil
immersion objective and captured using an attached ORCA-ER digital camera (Hamamatsu Corp.,
Japan) and the program SIMPLEPCI. Image conversion and analysis is conducted using IMAGEJ and
MATLAB, using a modified particle tracking package [28].

Our resulting chains have lengths from N = 2 to N > 200, although we study chains from N = 5
to N = 70 in this work, due to difficulties in imaging the longer chains. The chains closely follow
a discrete wormlike chain approximation, justifying their use as a semiflexible chain model; we
find that there is an average spacing of 0.3 μm between each bead in the chain such that l0 ≈ 1.3d

and the persistence length is measured to be lp ≈ 1.3 mm. These measured values are used in our
computational model as well.

To actuate our chains, magnetic fields are applied using two pairs of orthogonally placed solenoids.
Using a power supply (Hewlett-Packard 8904A) to run sinusoidal currents through each pair of
solenoid coils, we generate the magnetic fields Hx = H0 sin(2πf t) and Hy = H0 sin(2πf t + π/2),
which rotate in plane with frequency f and magnitude H0.

B. Bead-spring model

The resulting experimental system strongly resembles a bead-spring system of N spheres of
radius a, separated by N − 1 springs of equilibrium length l0, resulting in a chain of length
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FIG. 1. Colloidal particle chain aligned at a phase lag θ from the external magnetic field Hext = Hx + Hy .
This can be described by a bead-spring model of N beads and total length L = l0(N − 1), where the position
of bead i is ri . The scale bar is 5 μm.

L = l0(N − 1) and persistence length lp, as seen in Fig. 1; the chain parameters N , a, l0, and lp, as
well as the input parameters f and H0, can be measured and tuned experimentally. We implement
a numerical model to verify our understanding of the forces present in the colloidal model and their
subsequent effect on the dynamics. These Brownian dynamics simulations were carried out on the
DAVinCI cluster at Rice University and the Stampede cluster at the Texas Advanced Computing
Center.

We confine the chain to the x-y plane such that gravity has no influence. For the ith bead along
the backbone of the chain, we can write the equation of motion

mi

d2ri

dt2
= Fchain

i + Fmagnetic
i + Fhydro

i + FBrownian
i , (1)

where Fchain
i is the extensional spring and bending forces governing the chain, Fmagnetic

i accounts
for forces due to the external field, Fhydro

i is the hydrodynamic drag force, and FBrownian
i is a

stochastic term accounting for thermal fluctuation; due to the magnitudes of our magnetic fields
and velocities, we posit that the first three force terms drive the dynamics of this system and as such
a simpler uncorrelated Brownian fluctuation is sufficient to capture the dynamics that we observe
experimentally. Beads are numbered from i = 1 to N , with position ri , and between each bead we
draw a connecting vector ti = ri − ri−1, which has magnitude li = |ti |.

At the low-Re limit, the beads have negligible inertial effects. An integration scheme to handle
this scenario was proposed by Ermak and MacCammon [29], where the position of each bead i after
a time �t , ri(t + �t) is calculated from the current position ri(t) by

ri(t + �t) = ri(t) +
∑

j

Dij (t)Fj (t)

kbT
�t + Ri(�t), (2)

where Dij is the Rotne-Prager diffusion matrix, kbT is the thermal energy, and Ri(�t) is a
random displacement following a Gaussian distribution with zero mean and variance, covering
the hydrodynamic and Brownian contributions. The remaining forces are encompassed by Fj (t),
which is the sum of magnetic, bending, and stretching contributions between beads, i.e.,

Fj = Fspring
j + Fbend

j + Fmagnetic
j . (3)
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The extensional force between beads is treated with a linear spring

Fspring
j = −∇jU

spring = −k[lj − l0]t̂j + k[lj+1 − l0]t̂j+1, (4)

where k is a linear spring constant, tj is the center-to-center vector between bead j − 1 and bead
j , lj = |tj | is the distance between the two beads, and l0 is the equilibrium distance between
beads. To describe the bending energy of the chain, we use a discretized version of the bending
force, where the energy is written as a function of the angle between any three adjacent beads
U bend = A

l0

∑N
j=1 fj [1 − t̂j+1 · t̂j ]. The force is then [1]

Fbend
j = A

l0

(
fj−1

lj
t̂j−1 −

[
fj−1

lj
t̂j−1 t̂j + fj

lj+1
+ fj

lj
t̂j t̂j+1

]
t̂j

+
[

fj

lj+1
t̂j t̂j+1 + fj

lj
+ fj+1

lj+1
t̂j+1 t̂j+2

]
t̂j+1 − fj+1

lj+1
t̂j+2

)
, (5)

fj =
{

1 for 2 � j � N − 1
0 for 1,N.

(6)

Note that A = kbT lp and as such we can input experimentally determined persistence lengths.
In addition to spring and bending forces, there are magnetic forces acting on the particles as well.

Each colloidal particle is paramagnetic and as such acquires a dipole when subjected to an external
field

m = 4
3πr3χHext, (7)

where χ is the magnetic susceptibility of the particle and Hext is the externally applied field.
Using the simplest dipolar model [30], the resulting magnetic force between any two dipoles is

Fmagnetic
j = −∇jU

magnetic
j = 3|m|2

4πμ0r4
[3 cos2 θ − 1]t̂ + 3|m|2

4πμ0r4
sin(2θ )θ̂, (8)

where θ is the angle between tj and Hext, r is the distance between the particles, θ̂ is the polar angle
coordinate, and μ0 is the permeability of free space. We approximate the cumulative magnetic force
on a given bead by summing the magnetic force contribution on each pair of beads in the system.

Combined, we can calculate Fj at a given time step and use Eq. (2) to step our simulation forward
in time, starting from an initial condition of a linear chain aligned along the x axis. A full description
of the parameters used in the system can be found in Appendix A.

III. THEORY

The primary forces that govern the dynamics are the driving magnetic force, the hydrodynamic
drag resisting the motion of each particle, and elastic forces due to the DNA linkers between adjacent
beads, which act as a restorative force. Having defined the forces, we seek analytical predictions of
the dynamics various rotational dynamics that we observe. To do so, we must understand the balance
of forces on the chain, which we describe using two dimensionless numbers: the Mason number Ma
and magnetoelastic number Mn.

A. Magnetic and viscous forces

When a chain is driven to rotate by an external magnetic field, the Mason number describes the
relative magnitudes of the driving magnetic force and the counteracting viscous drag [31]

Ma = 144πηf

μ0χ2H 2
0

, (9)
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where η is the fluid viscosity, μ0 is the vacuum permeability, and χ is the magnetic susceptibility
of each particle. When the torques applied by these two forces are in balance, the chain rotates at
a constant angular velocity synchronous with the period of the external field [19,31–33]. In order
to overcome viscous drag, the chain may rotate with increasing phase lag θ from the external field,
thus increasing the magnetic torque to balance. If more magnetic torque is required than is available,
unlinked chains will fragment [32,33]. However, DNA-linked chains will instead deform to form
metastable and collapsed structures [19].

The viscous torque on a chain of beads rotating about its center can be described by a shish-kebab
model, i.e., a bead model that is locked into a linear configuration with l0 = d [34],

�v = 8πba3N3ηω

3 ln
(

N
2

) . (10)

Here b scales the viscous torque, as it drops rapidly with increased bead spacing [1], from a value of
b = 1 for a shish kebab (l0 = d), dropping to about b = 0.36 for our measured values of l0 ≈ 1.3d

[35].
For a pair of point dipoles, the magnetic force can be approximated by taking Eq. (8) with r = 2a.

Under the assumption of a linear chain at constant lag angle θ from the external field, each pair of
dipoles has magnetic forces that cancel out exactly [20,33] such that only the first and last beads,
with a single neighbor each, have nonzero net forces. The torque is then simple to calculate

�m = 2Fθ [2ai]i=N/2 = 12πa3Nηω

Ma
sin 2θ. (11)

Balancing this magnetic torque with the viscous torque, using the maximum magnetic torque at
sin 2θ = 1, we find

Mac = 9

2

ln
(

N
2

)
bN2

. (12)

Below this critical curve, torques can be balanced and rigid rotation achieved. Above the curve, a
balance cannot be achieved even with a maximum phase lag of θ = π/2.

B. Magnetic and elastic forces

In between synchronous rotation and rotational equilibrium we see a rich dynamical regime:
Magnetic, viscous, and elastic forces all compete as a chain undergoes asynchronous rotation. To
identify the critical values of Ma and Mn at which these behaviors occur, we calculate torque balances
on the chain.

In this deformation regime, we use the critical values of Mn to predict the specific behavior. These
critical values correspond to buckling instabilities: For example, the first mode (n = 1) corresponds
to a hairpin, the second mode (n = 2) to an S curve, etc. [36].

If a chain is in stationary rotational equilibrium, the magnetic force has radial components that are
resisted by the elasticity of the chain. The magnetoelastic number describes the relative magnitude
of these two forces [37], i.e.,

Mn = πμ0a
2H 2

0 L2

6A

χ2/4

(1 − χ/6)(1 + χ/12)
. (13)

This dimensionless group is used to predict the buckling instabilities that result from the competing
magnetic and elastic forces; critical values of the buckling instability can be calculated to be
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FIG. 2. Snapshots at selected times of (a)–(d) experimental and (e)–(h) numerical examples of rigid rotators,
wagging chains, coiling chains, and folded chains in the course of their dynamics. In each series, the magnetic
field is rotating counterclockwise across time and all scale bars are 5 μm. The magnetic field is rotating with
f from 0.1 to 1 Hz, with H0 varying from 39 G to 70 G. See [42] for videos of the various rotational regimes.

Mnc = (2nπ )2, as derived in Appendix B, corresponding to increasing numbers of bending modes
[2,37–41].

We are interested in the eigenvalue for n = 2, as this mode corresponds to the stability of an S
curve:

Mnc = (2nπ )2 = 16π2. (14)

We then substitute Eq. (13) into Eq. (9), yielding

Mas = 1

Mnc

24π2ηf a4N2

A(1 − χ/6)(1 + χ/12)
, (15)

above which the S curve is stable and below which higher modes of buckling instability should take
precedence.

IV. RESULTS AND DISCUSSION

Throughout the course of our experiments and simulations, we find that despite the persistence
length being kept constant, four distinct rotational modes are observed: rigid rotation, wagging,
coiling, and folding. For rigid rotation, the semiflexible chains maintain a close to linear conformation
and rotate at a constant angular velocity, synchronous with the rotation of the external field, as can
be seen in Fig. 2. In this mode, the chain has minimal bending energy and behaves as expected for
an object in perfect rotational equilibrium.

As the driving forces compete to balance with the hydrodynamic drag, the chain may rotate
asynchronously with the external field, leading to new, nonrigid rotational modes. In one that we
term wagging, the two tail ends will periodically wag back and forth with a beating frequency that
appears to be uncorrelated with the angular motion. The tail ends deform in the direction of rotation
while the center of the chain is relatively stationary; afterward, the center of the chain rotates as the
tail ends relax, resulting in a time-dependent bending energy. There is some evidence that this mode
is unstable and sensitive to perturbations.
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FIG. 3. State diagram of rotational regimes as the chain length and driving magnetic field is varied. Rigid
(black �), wagging (green �), coiling (purple �), and folded (red •) chains are observed in both simulation
(closed symbols) and experiment (open symbols). The theoretical balances on the limits of rigid rotation [1]
[Eq. (12)] shifts to [2] when b = 0.36. The expected stability of S curves [3] [Eq. (15)] is also shown for
f = 0.1, falling between the wagging and coiling regimes.

Additional dynamics are observed with increasing N , such as coiling events that are comparable
to those seen in the literature [9,10,19]. The initial dynamics appear similar to the first beat of a
wagging period, but instead of relaxing at the end of the beat, the tails fold over to deform further.
The second fold leads to the chain coiling on itself and appears to eventually reach a state of rigid
rotation, albeit in a more compact, lower drag configuration.

Longer chains can fold upon themselves to reduce the drag on the chain. After folding, the chain
has several linear lengths, which align roughly parallel to each other. The folded configuration then
behaves as a rigid rotator of a shortened length.

We combine our experimental, numerical, and analytical results in a state diagram, as shown in
Fig. 3, where the choice of axes compares the input force parameters, as encompassed by the Mason
number, with the length of the chain N , the chain parameter being varied. When plotted according
to their dynamics, we see that the four behaviors (rigid, wagging, coiling, and folding) separate into
distinct regimes, with remarkable agreement between experimental and computational results.

First, we note that Eq. (12) with b = 1 appears to underestimate the actual limit of the rigid
rotator regime by a factor of about 2.5. This is corrected when the bead spacing l0 is accounted for,
indicating that the differences in drag between the analytical shish-kebab model and real bead-spring
models are non-negligible.

Below this curve is the low-Ma regime, where the magnetic torque is large enough to dominate,
leading to rigid rotation. In this context, we can interpret the existence of folded rotators, where the
magnetic torque is not large enough to overcome the viscous drag. By folding, the chains effectively
lower N and, by extension, its viscous drag, maintaining a constant Ma until they enter the rigid
regime.

Above this curve, the viscous and elastic forces compete with the magnetic force, resulting in
more complicated dynamics. We then plot the balance predicting buckling instabilities. Equation
(15) with n = 2 successfully demarcates wagging and coiling behavior, which is indeed the transition
from an S curve to higher-mode buckling. Increasing n further lowers the curve, which is consistent
with the location of the high-mode coiling regime on this diagram.
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V. CONCLUSION

In this work, we have demonstrated the application of colloidal chains to study the effect of
flexibility on filament dynamics in a steadily rotating magnetic force field. We have identified
parameter ranges that can yield both expected dynamics, such as steady rigid rotation, as well as
new dynamics, in the reversibly deforming wagging region. Through simple physical arguments, we
are able to predict the parameter space in which each dynamical regime should reside.

There are a number of questions still to be addressed. For example, we experimentally observe
asymmetrical coiling behaviors that we cannot predict with our torque balances, but which are
certainly useful to harness for practical application [22]. We have also observed chains move
between wagging and coiling before settling, which suggests that some rotational regimes may
be metastable and sensitive to perturbation. In particular, there is some overlap in Fig. 3 between
the wagging and coiling regimes, which may be indicative of state transitions or coexistence and
warrants further study. Finally, the beating frequency of the wagging modes, and whether it has a
regular cycle of competing forces or falls into chaotic behavior, is still an open question, and a firm
grasp of the dynamics is critical to development of artificial cilia and other microswimmers.

In summary, we have demonstrated the use of a colloidal chain model and its application in
identifying and predicting the detailed rotational dynamics of semiflexible filaments at backbone-
level subperiod resolution. We found that our colloidal particle chain compares favorably with
a computational bead-spring model and that its resemblance to theoretical models allows us to
analytically predict the rotational dynamics knowing the applied external force and the length of the
chain. With such a controllable experimental model at our disposal, we can begin to explore force
regimes where simulations become prohibitively costly, such as at high N or with multiple fiber
interactions, where such detailed resolution has implications ranging from the complicated topology
of a single self-entangled fiber to the origin of bulk properties of more concentrated solutions.
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APPENDIX A: SIMULATION PARAMETERS

A summary of our experimental and simulation parameters is given in Table I. Note that the
experimental parameters are measured from experiment and the simulation parameters are inputs,
with the exception of the spring constant k, which is set high with an appropriately small �t to
approximate an inextensible fiber.

APPENDIX B: STABILITY OF AN S CURVE

In Ref. [37], the authors derive the inextensibility and equations of motion for a viscous and
elastic filament. For small, steady deformations away from orthogonality to the field, the system is
linearized to

0 = −∂4θ

∂s4
− Mn

∂2θ

∂s
(B1)
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TABLE I. Summary of experimental and simulation parameters in
Secs. II A and II B.

Parameter Experiment Simulation

N 5–75 5–75
a 0.535 μm 0.535 μm
l0 1.4 μm 1.366 μm
lp 1.3 mm 1.325 mm
T 298 K 298.15 K
η 0.0022 kg/m s 0.0022 kg/m s
χ 1.377 1.377
ω 0.1–1 Hz 0.1–1 Hz
H0 10–70 G 10–70 G
�t 2.0 × 10−6 s
k 12000 N/m

with boundary conditions

∂θ

∂s

∣∣∣∣
s = ±1/2

= ∂2θ

∂s2
+ Mnθ

∣∣∣∣
s = ±1/2

= 0 (B2)

for free ends and

θ

∣∣∣∣
s = 0

= ∂θ

∂s

∣∣∣∣
s = 0

= 0 (B3)

for a reference frame pinned to rotate about the center. The solution yields the eigenvalues
√

Mn 1
2 = nπ (B4)

for the modes. We are interested in the mode n = 2, as this corresponds to the stability of an S curve:

Mnc = (2nπ )2 = 16π2. (B5)
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