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Stability of solutal advective flow in a horizontal shallow layer
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This paper presents an experimental and numerical study on the structure and stability
of a solutal advective flow in a horizontal shallow layer. The flow is induced by the initial
longitudinal steplike density distribution caused by inhomogeneous solute concentration.
It is shown that, when the density difference or the channel thickness increases, the main
flow instability in the form of longitudinal convective rolls occurs in the near-wall region.
This phenomenon originates from the Rayleigh-Taylor instability, which develops near
both the upper and lower horizontal boundaries, where the unstable density stratification
occurs due to no-slip boundary conditions. It is established that the solutal Péclet number,
a measure of the relative strength of advection and diffusion, must exceed the critical value
Pe∗ ≈ 300 for the instability to set in. Moreover, the Péclet number uniquely determines the
spatiotemporal characteristics of the secondary flow, namely, its wavelength and formation
time. The results of the laboratory experiments are in good agreement with the numerical
predictions.
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I. INTRODUCTION

Advective flow arises in liquids and gases in a gravity field in the presence of a horizontal
density gradient. This type of flow has attracted attention because of a variety of applications in
meteorology, oceanography, geology, and crystal growth technologies. From a fundamental point of
view, the advective flow is interesting as an example of the hydrodynamic system exhibiting a wide
range of instabilities, which depend on liquid parameters and problem geometry.

The density gradient which triggers the flow can be caused by an inhomogeneous temperature
or concentration distribution in binary liquids. A thermal problem for the case when an advective
flow appears due to the presence of a longitudinal temperature gradient has been investigated in
a large number of theoretical [1–11] and experimental [12–15] works. In a horizontal shallow
layer, the main flow becomes unstable with respect to two different types of instabilities, which are
related to the Prandtl number. The instability of hydrodynamic origin caused by the shear between
the counterflows develops at low Prandtl numbers corresponding to liquid metals. At high Prandtl
numbers the Rayleigh-Taylor instability becomes more dangerous, leading to the development of
longitudinal convective rolls near the horizontal boundaries, where the unstable density stratification
is formed due to no-slip boundary conditions.

A more complicated situation takes place when the temperature gradient is applied along a layer
of binary liquid, in which the cross effects arising from the interaction between temperature and
concentration fields can result in instability. It is shown [16–21] that, depending on the buoyancy
ratio (ratio of solutal and thermal Rayleigh numbers), either thermoconcentration (double diffusive)
or thermodiffusion (Soret effect) mechanisms are responsible for the onset of instability. The study
of the advective flow induced solely by a concentration gradient has received less attention, though
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FIG. 1. Scheme illustrating the transition zone shape some time after the formation of the advective flow.
Dashed rectangles denote the regions with stable (1) and unstable (2, 3) density stratification. Right frames
show convective cell formation in the near-wall region.

such a problem statement is not meaningless. Isothermal mixing of layers with different densities is
a frequent occurrence both in nature and in industry. This problem is not an analog to the problem of
thermal advective flow from a hydrodynamic point of view. Essential differences in the characteristic
times of heat and mass diffusion (Prandtl and Schmidt numbers differ by three orders of magnitude)
can result in different instability scenarios. The experimental study of a solutal advective flow involves
considerable difficulties because of the impossibility of maintaining a time-constant concentration
gradient. Owing to relatively slow mass diffusivity, any initial concentration heterogeneity will be
diffused rather fast through fluid motion. Only the nonstationary solutal advective flow can exist in
this case. The exchange flow with two miscible fluids of different densities moving towards each other
within a horizontal channel or a tube can be regarded as an example of this time-dependent situation.
Buoyancy drives the denser fluid along the bottom wall, while the lighter fluid flows in the opposite di-
rection at the top of the channel. This type of flow was studied in narrow channels [22,23] or in porous
media [24–26]. In the course of these investigations it was found that, some time after the formation
of the flow, the fluids spread as the square root of time when the viscous and buoyancy forces balance
one another. To the best of our knowledge, the stability of this type of flow was not investigated.

In this paper, we present the results of an experimental and numerical study on the structure
and stability of a solutal advective flow in a shallow horizontal layer. The flow is induced by the
initial steplike density distribution which is formed when the vertically oriented shallow channel
filled with a two-layer system of miscible fluids with stable density stratification is placed in a
horizontal position. This leads to the appearance of a longitudinal density difference resulting in the
development of advective flow (Fig. 1). The results demonstrate that the no-slip boundary conditions
along the upper and lower horizontal boundaries cause the formation of near-wall layers with unstable
density profile (see regions 2 and 3 in Fig. 1), which triggers the Rayleigh-Taylor instability in the
form of longitudinal convective rolls. We have found that the solutal Péclet number, which indicates
the relative strength of advection and diffusion, must exceed a critical value for the instability to
set in. The spatiotemporal characteristics of the secondary flow, such as wavelength and formation
time, are completely determined by the value of the Péclet number.

The paper is structured as follows. Section II contains the experimental part of the study. The
structure and stability of the main flow are studied in Sec. II B. In Sec. II C, we discuss the physical
mechanism of the observed instability and propose nondimensional parameters so that all the
experimental results obtained for different substances and cuvettes can be represented by unified
dependencies. The theoretical results and their comparison with the experimental data are presented
in Sec. III. In conclusion (Sec. IV), we analyze some previous studies with similar flow structure,
where the instability found is expected to take place.

II. EXPERIMENTAL PART

A. Experimental setup

The experiments were performed in a rectangular channel of 2.5 cm width and 10.0 cm length
which was formed by two glass plates separated by a thin spacer giving a gap thickness of 0.12, 0.24
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FIG. 2. Diagram illustrating the details of the experimental procedure. (a) The vertically oriented cuvette
was initially filled with a two-layer system of miscible liquids with a stably stratified density profile. Setting
the cuvette in a horizontal position resulted in a longitudinal steplike density distribution, which triggered the
advective flow. (b) Scheme of the cuvette with two inflow and two outflow ports. The lighter liquid and the
denser one entered from the upper and lower inflow ports, respectively. Two outflow ports located in the center
of the sidewalls serve to divert the liquid from the mixing zone.

or 0.40 cm. Initially, the channel was vertically oriented and filled with a stably stratified two-layer
system composed of water and an aqueous solution of well soluble substance [Fig. 2(a)]. To form
an even transition zone, we applied the technique described in [27]. First, the cell was filled with
water and then the lighter and denser liquids were flushed through the inflow ports located on the
upper and lower boundaries, respectively [Fig. 2(b)]. The liquid from the mixing zone exited the cell
through two central outflow ports. After the uniform, thin transition zone was formed, the inflow and
the outflow were stopped. The initial thickness of the transition zone was 0.20 ± 0.03 cm. Finally,
the channel was placed in a horizontal position with a wide side upwards, which resulted in the
development of an advective flow [Fig. 2(a)].

One layer was always a water layer, and the other was an aqueous solution of salt (sodium or
potassium chloride, copper sulfate), alcohol (ethanol or isopropanol) or acetic acid. The use of
different soluble substances and the change in their concentration allowed one to vary the density
contrast �ρ/ρ0 (ρ0 is the water density) from 0.003 to 0.080, the viscosity difference �η between
the layers from 0.01 to 2.22 cP, and the rate of diffusion of a solute through the water layer from 0.2
to 2.0 × 10−5 cm2/s. Some important characteristics of the solutions are given in Table I.

The parallel boundaries of the cuvette, illuminated by a collimated beam of monochromatic
light, formed a Fizeau interferometer for visualization of refractive index inhomogeneities caused
by the nonuniform distribution of the solute concentration. Additionally the interferometry allowed
us to visualize the fluid motion. Owing to a small diffusion coefficient (order of 1 × 10−5 cm2/s),
the concentration field is “frozen” in the moving fluid and so the evolution of the interference
fringes contains information about the velocity and structure of the flow. The interference pattern
observed through the wide side does not give us information about the concentration distribution
across the channel, i.e., along the light beam. To reconstruct a three-dimensional (3D) structure
of the concentration field, it is necessary to have a “side view” of the cuvette. Because of strong
light refraction caused by a long optical path along the transverse size of the channel, side view
interferometry in the main experimental cuvette is not possible. To visualize the concentration field
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TABLE I. The properties of the aqueous solutions of different solutes used in the experiments: Cmax is the
maximal mass concentration used in the experiments, βc is the solutal expansion coefficient, (�ρ/ρ0)max is the
density contrast (ρ0 is the water density) available at maximum concentration, ηmax is the viscosity at maximum
concentration, kη is the coefficient in the concentration dependence of viscosity η = η0 + kηC (η0 is the water
viscosity), and D(C) = D0 + kDC is the concentration dependence of the diffusion coefficient.

Solute Cmax βC (�ρ/ρ0)max ηmax (cP) kη (cP) D(C) (cm2/s)

NaCl 9 0.008 0.065 1.09 0.01 1.5
KCl 14 0.007 0.092 0.86 −0.01 1.9
CuSO4 6.7 0.011 0.068 1.34 0.05 0.7 − 0.03C

Ethanol 20 −0.002 0.030 2.00 0.05 1.0 + 0.003C

Isopropanol 40 −0.0015 0.067 3.40 0.06 1.2 − 0.03C

Acetic acid 20 0.0014 0.028 1.40 0.02 1.2 − 0.01C

and the flow structure in the second direction, an additional cuvette was made. Actually, it was the
vertical cross section of the main channel. Two glass plates separated by a thin spacer formed the
cavity of 9.0 cm length, 0.80 cm height, and 0.06 cm width. The experimental procedure was similar
to that applied to the main cuvette. Initially, the vertically oriented cuvette was filled with a two-layer
system, and further it was placed in a horizontal position with a wide side sidewards. The side view
of the concentration distribution was visualized using the Fizeau interferometer. Because of the
essential difference in the geometries of the main and additional cuvettes, the interference patterns
obtained for the latter were used for qualitative reconstruction of the 3D structure of a concentration
field rather than for measurements.

B. Structure and stability of the main flow

The interference pattern illustrating the concentration distribution some time after the channel
has been set into a horizontal position is presented in Fig. 3. The transition zone between the layers
which was initially oriented vertically is distorted by the flow. The form of this zone reflects the
velocity profile of the advective flow, as the concentration field is “frozen” into the moving fluid.
The inflection points of the transition zone, which correspond to a maximum velocity, are as well
the front edges of the propagating layers. The coordinates of the front edges of the top and bottom
layers correspond to the positions of the first interference fringe from the left and right side in the
top view projection [Fig. 3(a)]. The transition zone and, hence, the velocity profile have a Z-shaped
form, and the inflection points are appreciably shifted towards the horizontal boundaries due to the
action of the buoyancy force, which has different signs in the upper and lower halves of the channel.
The velocity profile is symmetric relative to the initial position of the interface. Unfortunately, the
part of the transition zone located near the horizontal boundaries is not fully visible owing to the
refraction [side view in Fig. 3(b)].

The typical time dependence of the front edge coordinate is presented in Fig. 4. The average of
the coordinates of left and right edges was used since the layers moved symmetrically. It is seen that
the flow is quasistationary as the front edge velocity becomes almost constant after a short transient
period.

The results of the experiments showed that the main advective flow, presented in Fig. 3, became
unstable when the density difference reached a certain threshold value, which depended on the solute
used. Some time after the beginning of the fluid motion, two systems of longitudinal convective
rolls appeared symmetrically relative to the initial position of the interface [Fig. 5(a)]. The side view
projection [Fig. 5(b)] allowed us to reconstruct the structure of the secondary flow. The system of
convective cells was formed in the areas adjacent to the upper and lower boundaries of the cavity.
Note that the narrow size of the additional cavity did not allow the cells to orient along the flow as
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(a)

(b)

FIG. 3. (a) Top view and (b) side view of the stable advective flow obtained in the main and additional
cuvettes, respectively. The same two-layer system composed of water and the aqueous solution of isopropanol
with density contrast �ρ/ρ0 = 0.009 was used in both cuvettes. The thickness of the main cuvette is h = 0.12
cm. The black mark indicates the initial position of the contact area of liquids (see Supplemental Material at
[28] for Movie V1.avi).

FIG. 4. Time dependence of the front edge coordinate for the system composed of water and the aqueous
solution of NaCl with density contrast �ρ/ρ0 = 0.041. The channel thickness is h = 0.12 cm. Two dashed
lines mark the moments of time at which instability appears [left line, t = 4 s; see Fig. 8(b)] and disappears
[right line, t = 32 s; see Fig. 8(d)]. The Péclet numbers shown near the lines were calculated for the mentioned
moments of time.
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(a)

(b)

FIG. 5. (a) Top view and (b) side view of the unstable advective flow obtained in the main and additional
cuvettes, respectively. The same two-layer system composed of water and aqueous solution of NaCl with
density contrast �ρ/ρ0 = 0.046 was used in both cuvettes. The thickness of the main cuvette is h = 0.12 cm.
The black label in the top view indicates the initial position of the contact area of liquids. Only the right front
edge is presented in the side view to show a close-up of the secondary structure (see Supplemental Material
[28] for Movies V2.avi and V3.avi).

in the main cavity. However, such an additional projection made it possible to localize the zones of
instability in order to understand its mechanism discussed below.

The analysis of the results has revealed that the advective flow velocity increases with increasing
density difference and cavity thickness and decreases when the viscosity of any layer increases.
The results of all experiments obtained for different liquid pairs and different cavity thicknesses
are described by the common dependence of the nondimensional coordinate on the nondimensional
time:

X = x

h
, T = t

τν

Gr.

Here, h is the cavity thickness, τν = h2/ν is the viscous diffusion time scale, Gr = g�ρh3/ρ0ν
2

is the Grashof number, ν is the maximal kinematic viscosity in the fluid pair, �ρ is the density
difference, and g is the gravitational acceleration. A generalized dependence on these nondimensional
coordinates is presented in Fig. 6(a). Open symbols refer to a situation when the main flow remained
stable throughout the experiment. Shaded symbols correspond to the case of unstable advective flow.
It is seen that the experimental points fall into two groups, which indicates different velocities of the
main flow in stable and unstable cases. The best approximation is X = A

√
T with A = 0.075 and

A = 0.115 for the cases of steady and unsteady advective flow, respectively.
The larger value of the coefficient A in the unstable case in comparison with the stable one can be

interpreted at first sight as decreased drag due to the secondary flow. However, in fact the instability
increases the drag, resulting in slowing down of the main flow. This is well seen from the front edge
position evolution presented in dimensional form in Fig. 6(b). The fact that the unstable curve is
located above the stable one in Fig. 6(a) is the result of nondimensionalization rather than decreasing
the drag. The time is scaled by the molecular viscous time for both stable and unstable flow. However,
in the latter case one needs to use an effective viscosity (like in the case of a turbulent flow) which
is higher than the molecular one when the secondary flow exists. If we use this effective viscosity
instead of the molecular one, then both curves (stable and unstable) will coincide, as they describe
the same main flow, but with different viscous drag. Unfortunately, there is no way to measure the
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(a)

(b)

FIG. 6. (a) Dependence of the nondimensional front edge coordinate on the non-dimensional time for the
water layer and the aqueous solution of (1) isopropanol, (2) NaCl, (3) acetic acid, (4) ethanol, and (5) copper
sulfate. The results of numerical simulation are denoted by right-pointing triangles (6). Open and shaded
symbols indicate the stable and unstable development of the advective flow, respectively. The dashed lines
correspond to the best approximation in the form of X = A

√
T with A = 0.075 and A = 0.115 for steady and

unsteady advective flows, respectively. (b) Time dependence of the front edge coordinate for the system of water
and aqueous solution of NaCl with density contrast �ρ/ρ0 = 0.019. The channel thickness is h = 0.40 cm. It
is seen that the appearance of the secondary flow at t ≈ 4 s results in deceleration of the main flow.

effective viscosity in our experiments, and so we use the molecular viscosity to nondimensionalize
the time in both cases.

C. Secondary flow: Characteristics and physical mechanism

Further we discuss the physical mechanism responsible for the advective flow instability and the
formation of the secondary convective structure in the near-wall region.

One of the possible mechanisms of the main flow instability might be viscous fingering [29]
since one liquid displaces another of different viscosity. However, the viscous fingering is hardly
the cause of the secondary flow observed. First, it should result in asymmetry of the structure; i.e.,
instability should arise only on one side, where the less viscous fluid displaces the more viscous
one. Second, the viscous fingering instability should develop directly on the front edge, whereas the
instability we observed arises far behind the front edge. Third, the typical wavelength of the viscous

103903-7



MIZEV, MOSHEVA, KOSTAREV, DEMIN, AND POPOV

fingering instability in the miscible case should be about five times the cuvette thickness, which is
much higher than what we found in the experiments.

The absence of viscous fingering in our experiments can be explained as follows. Unlike the
case of immiscible liquids, in which this instability develops at any viscosity ratio M = η1/η2

(here, η1 and η2 are the viscosities of the displaced and displacing fluids) more than unity [29], the
miscible displacement can remain stable even at higher values of this parameter. This was found
experimentally for both rectilinear [30] and radial [31] miscible displacements in a Hele-Shaw cell.
Lajeunesse et al. [30,32,33] and later Goyal et al. [34,35] revealed in their theoretical studies the
critical viscosity ratio Mc = 3/2 below which the interface is always stable. At large viscosity ratio
the flow rate should exceed a certain threshold for the instability to occur. The viscosity ratio for
most liquid pairs used in our experiments (see Table I) was less than the critical one. Exceptions
are related to the solutions of ethanol and isopropanol, in which the viscosity ratio can exceed the
critical one at high concentrations. However, the flow rate estimated by us for these experiments
was at least one order of magnitude smaller than that predicted theoretically for development of the
viscous fingering.

We offer here another instability mechanism. Figure 1 schematically shows a relative position
of the layers some time after the beginning of the experiment. Two characteristic regions of the
transition zone can be marked out: the first one is located between the inflection points in the middle
part of the cavity and characterized by a stable density distribution, and the second (regions 2 and 3
in Fig. 1) is disposed in the near-wall regions and characterized by unstable density stratification
(the denser liquid is situated above the less dense one). As a result, the Rayleigh-Taylor instability
develops, which leads to the formation of convective cells. In this situation, the cells are formed
against a background of the advective flow, which causes the secondary structure to occur in the
form of longitudinal spiral rolls oriented along the main flow.

The obtained instability arose in a threshold manner and developed when the density difference
between the layers reached a certain critical value, which was different for different solutes. This
threshold development of the secondary structure looks rather strange because of the well-known
fact that the Rayleigh-Taylor instability is not a threshold phenomenon. To explain this fact, it is
reasonable to mention that the denser liquid layer located near the upper wall (or that of the less dense
liquid located near the lower wall) is rather thin. If diffusion is fast enough, then these near-wall
layers can be diffused prior to the onset of the Rayleigh-Taylor instability. However, the area of the
transition zone increases and, therefore, the zone itself becomes thinner with time. Thus, there are
two competing mechanisms which are capable of changing the thickness of the transition zone with
different rates, thereby changing the conditions for the onset of the instability.

The ratio of the characteristic times of these two mechanisms is described by the solutal Péclet
number Pe = uh/D, where u is the velocity of the advective flow and D is the diffusion coefficient of
the solute. The higher the value of this dimensionless parameter, the lower is the contribution of the
diffusion mechanism to density distribution blurring. Figure 7 shows a stability map for the advective
flow in the Gr-Pe plane. The Péclet number is defined at the moment when the instability appears.
If the main flow remains stable during the entire experiment, then the Péclet number is calculated
from the maximum front velocity obtained in this experiment. It is seen that the instability (shaded
symbols) develops when the Péclet number is greater than the critical value Pe∗ ≈ 300 independently
of the Grashof number. The flow remains stable at Pe < Pe∗.

The mechanism described above is confirmed indirectly by the following observations. In
some experiments, the secondary structure developed in the beginning but disappeared later on.
The time series of interferograms which illustrates this transition regime is presented in Fig. 8.
The time evolution of the front edge position corresponding to this series is shown in Fig. 4. Such
behavior is explained by the mechanism proposed above. Because the main flow is not stationary, its
velocity is essentially varied, especially at the initial stage. This means that the Péclet number also
changes until the quasistationary flow regime is established. At the initial stage the advective flow
velocity (the local time derivative on the graph given in Fig. 4) and, therefore, the Péclet number are
maximal. In the case when it is greater than the critical value, the instability develops [Fig. 8(b)].
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FIG. 7. The map of the stability of the advective flow in the Gr-Pe plane for water and the aqueous solution
of (1) isopropanol, (2) acetic acid, (3) ethanol, (4) NaCl, and (5) KCl. The results of the numerical simulation are
denoted by down-pointing triangles (6). Open and solid symbols indicate the stable and unstable development
of the advective flow, respectively. The pairs of the experimental points connected by a line correspond to the
transition regime, within which the initially developed instability disappears as the advective flow slows down.
The data corresponding to the solid point in this pair are calculated for the moment when the secondary flow
first appears on the interferogram [as in Fig. 8(b)]. The experimental data obtained for the moment when the
secondary flow completely fades [as in Fig. 8(d)] were used to calculate the data corresponding to the open
point in the pair.

Later, the decrease of the flow velocity gives rise to the reduction of the Péclet number. If it becomes
smaller than the critical value, then the secondary structure will disappear [Fig. 8(d)]. In this case
the system passes from the unstable region to the stable one in the Gr-Pe plane. The pairs of data
points corresponding to such a transition regime are connected by the lines in Fig. 7. The right and
left points in the pairs correspond to the moments when the secondary structure first appears on and
fully disappears from the interferogram, respectively.

The analysis of the experimental data demonstrated that the wavelength λ of the secondary
structure decreased with an increase of the density difference between the layers and with a decrease
in the diffusion coefficient, but it almost did not change due to cavity thickness variation. All data
obtained were represented by the dependence of the dimensionless wavelength 	 = λ/h on the
Péclet number (Fig. 9). The best approximation is 	 ∼ Pe−1/3. Note that the flow velocity and,
therefore, the Péclet number decreased with time, which resulted in slow wavelength increase.

FIG. 8. Time series of interferograms illustrating the transition regime when the initially developing
instability disappears as the advective flow slows down. The images presented correspond to the time evolution
of the front edge coordinate shown in Fig. 4 (see Supplemental Material [28] for Movie V4.avi).
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FIG. 9. Dependence of the nondimensional wavelength on the Péclet number for water and the aqueous
solution of (1) isopropanol, (2) NaCl, (3) ethanol, (4) acetic acid, (5) KCl, and (6) copper sulfate. The results of
the numerical simulation are given by open circles (7). The dashed line corresponds to the best approximation
in the form of 	 ∼ Pe−1/3.

To avoid uncertainty, the dependence presented in Fig. 9 was obtained for the wavelength values
measured at the moment when the instability sets in.

The study of the instability formation process has shown that the secondary structure needs some
time to develop. To examine this in more detail, we measured the formation time tf under different
initial conditions. Formation time is the time measured from the moment when the channel was
placed in a horizontal position to the moment when the secondary structure was first detected in
the interferogram. The analysis of the experimental data demonstrated that tf decreased as the cell
thickness and the density difference increased and it increased as the viscosity grew (it refers to
the highest viscosity between the pair of layers). The dependence of the dimensionless formation
time Tf = tf /τν (here τν = h2/ν, viscous diffusion time scale) on the Péclet number is shown in
Fig. 10. The results of all experiments are described by the common dependence Tf ∼ Pe−1 in these
coordinates.

III. THEORETICAL PART

Let us consider a rectangular cavity (Fig. 11), the horizontal dimensions of which are much longer
than its thickness; i.e., L,H � d. The cuvette is filled with an aqueous solution of a substance.
The initial distribution of solute concentration provides a steplike density profile along the cuvette.
This leads to the development of an advective flow in a gravity field. Assuming the isothermal
conditions and small density changes due to concentration variations, the binary mixture convection
is described by the system of equations written in Boussinesq approximation:

∂V
∂t

+ (V∇)V = − 1

ρ
∇p + ν�V − gβcCγ ,

∂C

∂t
+ (V∇)C = D�C,

divV = 0. (1)
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FIG. 10. Dependence of the nondimensional formation time of the secondary flow on the Péclet number for
water and the aqueous solution of (1) isopropanol, (2) NaCl, (3) ethanol, (4) acetic acid, (5) KCl, and (6) copper
sulfate. The results of the numerical simulation are denoted by open circles (7). The dashed line corresponds to
the best approximation in the form of Tf ∼ Pe−1.

Here V, p, ρ, and C are the dimensional velocity, pressure, density, and mass concentration of an
admixture, respectively; βc is the solutal expansion coefficient; g is the gravity acceleration; and γ

is the unit vector directed vertically upwards. The coefficients of kinematic viscosity ν and diffusion
D are taken to be constant.

All the boundaries are rigid and impermeable:

V|� = 0,
∂C

∂n

∣
∣
∣
∣
�

= 0. (2)

Here n is the unit vector directed normally to the cavity boundary �.
Initially, the fluid is quiescent, and the solute concentration is given by

C = C0[erf((H/2 − y)/l) + 1]/2, (3)

where l is the parameter which describes the initial width of the transition zone considered in the
experimental part of the paper.

The problem defined by Eqs. (1)–(3) was solved by the finite volume method through direct
numerical simulations in dimensional form using the OPENFOAM package. The Euler implicit scheme

FIG. 11. Computational domain.
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FIG. 12. Vertical cross section of the concentration field in the y-z plane at x = L/2 obtained in numerical
simulations for the case of (a) no-slip and (b) free-slip boundary conditions on the upper and lower horizontal
boundaries.

of the first-order accuracy was used for time derivatives, and the Gauss linear scheme of the
second-order accuracy for spatial derivatives. A denser mesh was applied near the upper and lower
boundaries, where the instability was found experimentally (Fig. 11). The simulations were made for
the cavity with L = 0.24 cm, H = 8 cm, and d = 0.4 cm using the following medium parameters:
ν = 1 × 10−2 cm2/s, D = 1 × 10−5 cm2/s, and βc = 0.1.

In the case of small Péclet numbers, the advective flow is stable [see Figs. 6(a) and 7]. Figure 12(a)
presents the vertical cross section of the concentration field in the y-z plane at x = L/2. It is seen that
the flow spreads symmetrically in both directions. Because of the no-slip boundary conditions, the
denser liquid is above the less dense one near the upper and lower horizontal boundaries. Increase of
the Péclet number leads to instability development in these regions [see Figs. 6(a) and 7]. Two vertical
cross sections of the concentration field in the x-z plane at y = 2 cm and y = 6 cm symmetrically
located in relation to the initial position of the interface are presented in Figs. 13(a) and 13(b).
One can observe the formation of a cellular convective structure in the near-wall regions, where the
unstable density stratification takes place. The “top view” of the secondary flow structure is shown
in Fig. 13(c). To improve comparison with the experimental results, the concentration distribution
was averaged across the layer. It is seen that the cells are elongated in the flow direction, forming
the secondary flow structure in the form of longitudinal spiral rolls oriented streamwise.

To verify the instability mechanism proposed above, we repeated simulations assuming free-
slip boundary conditions on both horizontal rigid boundaries. The vertical cross section of the
concentration field in the y-z plane at x = L/2 is presented in Fig. 12(b). We found that the change
of the boundary conditions from no slip to free slip makes the formation of the instability impossible
due to the absence of the unstable density distribution in the near-wall regions. The main flow
remains stable even if the Péclet number exceeds the critical value by two orders of magnitude.

The comparison of the spatiotemporal characteristics of the main and secondary flows obtained
numerically and during the laboratory experiment are presented in Figs. 6(a), 9, and 10. The results are
in good quantitative agreement, which additionally supports the validity of the instability mechanism
proposed in this paper.
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FIG. 13. Structure of the secondary flow obtained in numerical simulations. Vertical cross section
of the concentration field in the x-z plane at (a) y = 2 cm and (b) y = 6 cm symmetrically located relative to
the initial position of the boundary between the fluids. (c) Top view of the flow structure obtained by averaging
the concentration field across the layer.

IV. DISCUSSION AND CONCLUSIONS

We have presented an experimental and numerical study of the structure and stability of the
solutal advective flow induced by the initial steplike density distribution caused by inhomogeneous
solute concentration along a horizontal channel. It has been found that the main flow becomes
unstable, which results in the appearance of longitudinal spiral rolls in the near-wall region. This
phenomenon is associated with the Rayleigh-Taylor instability which develops near both the upper
and lower horizontal boundaries. The unstable density stratification appears inside the transition
zone separating the solutions due to no-slip boundary conditions. The temporal evolution of this
zone is defined by advection, which stretches it, making it thinner, and by diffusion, which blurs
it. The analysis of the obtained results has revealed that the solutal Péclet number, a measure of
the relative strength of advection and diffusion, must exceed the critical value Pe∗ ≈ 300 for the
instability to set in. We have found that the Péclet number completely defines the spatiotemporal
characteristics of the secondary flow. This allows us to represent all the experimental results obtained
for different substances and cuvettes in the form of the unified dependence on this nondimensional
parameter.

The comparison with the results obtained earlier for thermal advective flows [5–7,9–11] shows
the universality of the instability found. In spite of different mechanisms of main flow generation
(temperature or concentration gradient) and different rates of dissipative processes (heat diffuses
two to three orders faster than mass), the same physical mechanism is responsible for the main flow
instability. As in the solutal case, the unstable temperature stratification caused by no-slip boundary
conditions in the upper and lower walls of a horizontal channel results in the Rayleigh-Taylor
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instability at high enough Prandtl numbers. Hence, the longitudinal spiral rolls similar to those
observed in the solutal case appear.

It is interesting to compare the results presented in the paper with the studies of the so-called
exchange flow mentioned in Sec. I. This type of flow is certainly a kind of a solutal advective flow,
and it is directly analogous to the flow studied here. Researchers usually focus on studying the shape
of a transition zone between two fluids and its temporal evolution. The authors of the works studying
the flow in Hele-Shaw cells [22,23] and in porous channels [24–26] have found that the front edges
of a zone between two fluids spread as the square root of time; this is exactly the same as that in our
study. The instability of the main flow has been only reported in [22]. The patterns observed there
are very similar to those considered here, and their occurrence is also associated by authors with
the formation of an unstable density profile due to no-slip boundary conditions (no detailed study
of these structures has been done). In all other works considering the exchange flow, the main flow
is found to be stable, which can be attributed to the fact that the values of the Péclet number are
not high enough in these studies. Rather high viscosity of the fluids used in Hele-Shaw cells [23]
or low permeability of porous media [24–26] resulted in very slow fluid motion which decreases
this nondimensional parameter. The analysis of the above mentioned studies shows that the Péclet
number is in the interval from 10−1 to 102, which is lower than the critical value Pe∗ ≈ 300 found in
our investigation and, therefore, is not enough for the development of the Rayleigh-Taylor instability.

Note that the instability found in this work should appear in all situations where a liquid moves
along a horizontal solid wall displacing another miscible liquid with different density. With the
no-slip boundary condition, the density gradient normal to the wall is generated. In the case when
the denser liquid displaces the less dense one near the lower boundary or the less dense liquid
displaces the denser one near the upper boundary, the density stratification is unstable, which creates
the conditions for the development of the Rayleigh-Taylor instability. The review of the literature has
shown that the situation described above takes place in intrusion flows [36,37], horizontal convection
[38–41], gravity currents [42], and miscible displacement in a horizontal Hele-Shaw cell [43–46].
Instability of the main flow in the form of cellular convective patterns elongated streamwise was
observed in all these studies. In miscible displacement, this instability can develop simultaneously
with viscous fingering in the case when the less viscous fluid is injected into the more viscous one. In
the reverse case when the system is viscously stable, the Rayleigh-Taylor mechanism is found to be
the only one responsible for the main flow instability. In all studies, the patterns appear in a threshold
manner. The velocity of the main flow and the channel thickness (in the case of displacement) must
be large enough for the instability development. This indicates the significance of the Péclet number,
which defines the conditions for instability occurrence and the spatiotemporal characteristics of the
secondary flow.
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