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The motion of a rigid spherical particle in a sheared polymeric fluid is studied via
experiments and numerical simulations. We study particle mobility in highly elastic fluids,
where the deformation due to the sphere’s movement and the shear flow both result in
significant stretching of the polymer. The shear flow is imposed in a plane perpendicular
to the sphere’s movement, resulting in regions of high polymer tension in the wake of the
sphere that can extend well into the shear flow and gradient directions. We observe that
these viscoelastic wake structures, resembling wings, are linked to an increase in the form
drag, providing a mechanism for a dramatic decrease in the particle mobility.
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I. INTRODUCTION

Particle mobility is a critical factor in physical processes involving the transport of suspended
particles. Particles suspended in liquids are ubiquitous in engineered processes, biological systems,
and natural settings. Engineering examples can be found in oilfield applications, separations,
microfluidics, and three-dimensional (3D) printing. In these applications, it is crucial to control
and predict the mobility of the particles. Often, this task is complicated by the complex nature of the
fluid phase, which may exhibit a nonlinear relationship between the fluid stress and an applied strain
rate. This non-Newtonian behavior is often a result of fluid viscoelasticity, in which the fluid response
to a deformation includes both viscous and elastic contributions. Viscoelasticity is observed across a
wide range of fluids and applications [1]. In some cases, these fluids are designed with viscoelasticity
specifically to control the movement of a dispersed particle phase [2,3].

For a rigid, spherical particle moving in the limit of a vanishingly small Reynolds number Re in an
infinite Newtonian fluid, the particle mobility, Mij , i.e., the tensor of proportionality between applied
force and particle velocity, Ui = MijFj , is given by the well known Stokes law, Fi = 6πηaUi , where
Fi is the applied force, η is the fluid viscosity, a is the sphere radius, and Ui is the steady particle
velocity [4]. When fluid inertia is negligible in Newtonian fluids, the governing equations of motion
become linear and thus linear superpositions of simple solutions are also solutions of the Stokes
equations. Thus, for a settling sphere, a simple shear flow imposed in a direction perpendicular
to gravity, termed orthogonal shear (or cross shear), will not affect the particle mobility in the
gravitational direction and the settling rate will remain unchanged, although the particle will rotate
about the axis aligned with gravity. However, even at vanishing inertia, fluid viscoelasticity breaks
the linearity (and reversibility) of the Stokes solution. In this paper, we address why and how the
mobility of such a particle changes in a viscoelastic fluid with an imposed orthogonal shear flow.

As is well known, viscoelasticity is a characteristic commonly found in polymeric solutions
and melts [5,6]. Polymers in solution favor a coiled isotropic structure due to constant thermally
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driven bombardment, for example, by solvent molecules. A mechanical deformation of a polymeric
fluid stretches the polymer molecules anisotropically while entropic forces act to bring the polymer
back to its preferred coiled state, imparting elasticity to the fluid. The restoring force or tension
on the polymer molecule results in an extra stress in the fluid and the relaxation mechanism of the
polymer molecule introduces a characteristic polymer relaxation time scale. In addition to elasticity,
polymeric fluids often exhibit a shear thinning viscosity. To decouple the often competing effects of
elasticity and shear thinning, we use model elastic (or Boger) fluids in our study [7].

The sedimentation of spherical particles in viscoelastic fluids without shear has been studied
extensively [8–10]. A dimensionless Weissenberg number, which relates the polymer relaxation
time scale to the flow time scale, can be defined as the product of the relaxation time λ and a
characteristic deformation rate, e.g., U/2a, where U = |Ui |. It has been shown that the mobility
of the particle depends on this sedimentation Weissenberg number, defined here as � = Uλ/2a.
Interestingly, for model elastic fluids, the functional dependence can change based on the regime of
sedimentation Weissenberg number [10]. For sedimentation Weissenberg numbers larger than unity,
the deformation of a polymer is dominated by the flow caused by the motion of the sphere and
significant extension of the polymer can occur. It is therefore in this regime that elastic effects in the
wake of the sphere become most pronounced, often resulting in enhanced drag [11–13]. The effect
of viscoelasticity on a sphere’s rotation in a simple shear flow has also been studied with experiments
[14], theory [15], and numerical simulations [16,17]. These results exhibit good agreement, showing
a reduction in the sphere’s rotation rate relative to the Newtonian result.

This paper will also investigate the effect of particle confinement on the mobility, or, inversely,
on the drag, experienced by the particle. In practical applications, especially with shearing flows,
often the particle is confined by walls. The effect of particle confinement on particle mobility has
been studied in Newtonian fluids, with the earliest theoretical work performed by Faxén [18], who
used the method of reflections and showed a decrease in mobility due to confinement. A number
of authors since have performed similar calculations of the drag enhancement on a particle moving
parallel to confining walls [19–21]. An experimental study was later performed [22], producing an
empirical prediction for the wall-corrected drag on a particle translating between two parallel walls
in a viscous fluid. Studies of the effect of particle confinement on the drag in a viscoelastic fluid are
more limited, particularly for a particle moving parallel to confining walls [10].

The study of particles settling in a viscoelastic fluid under an imposed orthogonal shear flow
involves the combination of two canonical flow fields: uniform flow past the sphere and an orthogonal
simple shear flow. This type of flow was first examined experimentally and it was observed that the
particle settling rate may be significantly reduced in elastic fluids [23]. A theoretical basis for this
result was not proposed until 20 years later, when a perturbation expansion for weakly elastic fluids
showed decreased mobility for particles moving in orthogonal shear [24–26]. A simplified model
force balance was presented for weakly elastic fluids [27], proposing that elastic tension acting
along the streamlines, deformed by the particle sedimentation, was responsible for the enhanced
drag. Later, a perturbation theory addressed the effect of the orientation of forcing relative to the
shear flow on the particle mobility [28]. Further experiments showed that a shear-thinning viscosity
and fluid elasticity can have opposing effects on the settling rate of particles under orthogonal shear
[29–31]. Thereafter, numerical simulations of this phenomenon were performed and compared to
the experiments and theory [32] and subsequently the effects of confinement and shear thinning were
examined [33]. To summarize then, both numerical simulations [32] and a perturbation theory [27]
have been used to propose mechanisms for the decrease in particle mobility in weakly elastic fluids.
In this context, we define weakly elastic as meaning that the motion associated with the applied
force (e.g., gravity) alone creates a very small deformation of the polymers in the fluid and thus
the polymer deformation is dominated by the shear flow. In dimensionless terms, the sedimentation
Weissenberg number � is small while the shear Weissenberg number Wi = γ̇ λ, where γ̇ is the
shear rate, is finite. All previous studies of particle mobility in orthogonal shear have considered this
range of parameters. However, in this paper, we consider the mobility of a rigid spherical particle
moving under vanishing inertial forces in a highly elastic fluid, i.e., one in which the sedimentation

103302-2



GROWTH OF VISCOELASTIC WINGS AND THE . . .

Weissenberg number is not small, under orthogonal shear. The regime where the sedimentation
Weissenberg number is O(1) is notably less explored and yet it is important for a number of reasons.
First, this parameter regime is relevant to any application where a particle moves an O(1) particle
diameter per polymer relaxation time, achievable, for example, in oilfield applications or industrial
separation processes. Second, as discussed above, the motion of the sphere in this parameter regime
can result in significant extension of the polymer and elastic effects in the wake of the sphere become
most pronounced. We show that in a highly elastic fluid (as defined above), there is an even more
pronounced decrease in the particle mobility at increasing orthogonal shear rates. This reduction in
particle mobility is directly related to the formation of winglike wake structures of high polymer
tension that form around the particle when subjected to this fully 3D flow. We propose a mechanism
for why these viscoelastic wings form and how their structure affects the mobility of the particle.

The paper is organized as follows. In Sec. II, the problem is defined, including the governing
equations of motion and the boundary conditions, and the numerical scheme for simulations is
outlined. In Sec. III, the experimental setup is described, including the fluid rheology and the
experimental apparatus. In Sec. IV, the results of the experiments and numerical simulations are
presented and the model for the coupling drag is explained. In Sec. V, the results are discussed and
analyzed. A summary is given in Sec. VI.

II. PROBLEM FORMULATION

A. Problem definition

In this paper, we consider the sedimentation of a sphere in an orthogonal shear flow in a viscoelastic
fluid. In our experiments, a shear flow in the plane perpendicular to gravity is imposed while a dense
sphere is released in the fluid and allowed to settle, reaching a steady-state (terminal) velocity. In our
simulations, we solve the equivalent problem but in a reference frame translating with the sphere.
The governing equations of motion for the polymeric fluid flow are described, including the choice
of a constitutive model, in Sec. II B. We discuss the implementation and boundary conditions for
our simulations, as well as the computational mesh used, in Sec. II C.

B. Equation of motion and dimensionless parameters

In order to model the results of these experiments, we need to develop conservation of momentum
in the fluid surrounding a given particle, including the viscoelastic fluid stress. Thus, the governing
flow equations in dimensionless form are

∂ui

∂xi

= 0, (1)

∂ui

∂t
+ uj

∂ui

∂xj

= − 1

Re

∂p

∂xi

+ β

Re

∂2ui

∂xj ∂xj

+ 1 − β

Re

α

Wi

∂σP
ij

∂xj

+ fi, (2)

where ui is the fluid velocity, p is pressure, β is the solvent contribution to viscosity, σP
ij is the

stress due to the elasticity of the polymers, and fi is the body force (gravity, for example). The shear
Weissenberg number Wi is defined as Wi = λγ̇ , the product of the polymer relaxation time scale λ

and the shear deformation rate γ̇ . The ratio of the shear and sedimentation Weissenberg numbers
is given by α = Wi/�. We define the sedimentation Weissenberg number as � = λUsed/2a, i.e.,
the product of the polymer relaxation time and a characteristic deformation rate due to sphere
settling Used/2a. The definition for the sedimentation Weissenberg number is the same as that used
by Padhy et al. [32,33]. Other authors have used a similar dimensionless parameter, the Deborah
number De = λUsed/a [8,11–13,24]. As we show later, the value of � depends partially on Wi due to
enhanced drag caused by the orthogonal shear flow; thus, we also define a sedimentation Weissenberg
number in the absence of shear, i.e., �0 = �(Wi = 0), which indirectly represents the forcing of
the sphere. In order to close the system of equations, we use the finitely extensible nonlinear elastic

103302-3



MURCH, KRISHNAN, SHAQFEH, AND IACCARINO

constitutive model with Peterlin closure (the FENE-P model) to describe the polymer stress [5,6]:

σP
ij = cij

1 − ckk/L2
− δij , (3)

∂cij

∂t
+ uk

∂cij

∂xk

− cik

∂uj

∂xk

− ckj

∂ui

∂xk

= − α

Wi
σP

ij , (4)

where cij is the dimensionless polymer conformation tensor and L is the dimensionless maximum
polymer extensibility, with both quantities scaled appropriately by the equilibrium Hookean spring
length. In the FENE-P model, an individual member of a dilute concentration of polymers is
approximated as a single dumbbell connected with a finitely extensible nonlinear elastic spring.
Although a simplified molecular description, the FENE-P model captures the essential qualitative
behavior of polymer chains in steady motion, as the modeled elastic dumbbells are both orientable and
stretchable up to a finite extension [5,6]. This makes the FENE-P model appropriate for describing
fluids that exhibit elasticity with modest shear thinning. This constitutive model is also useful in
scenarios with high rates of deformation, as the polymer stress remains bounded.

Although the FENE-P dumbbell model captures the essential qualitative behavior of polymer
chains in steady motion, we do not expect this constitutive model to be able to quantitatively
predict hydrodynamic quantities for polymeric fluids. As will be discussed in Sec. III A, a single-
mode FENE-P model is fit to shear rheology data to obtain model parameters for our numerical
simulations. Clearly, the sedimentation of a sphere under orthogonal shear contains local regions
of shear-dominant and extensional-dominant flow. In the case of a sphere settling in a quiescent
viscoelastic fluid, the extensional region in the wake of the sphere becomes particularly important
at higher sedimentation Weissenberg number, as discussed in Sec. I. The extensional rheology
of these polymeric fluids may be inadequately captured by fitting only to shear rheology data.
Additionally, polymeric fluids will exhibit multiple modes of relaxation, the dynamics of which
may be only approximated by fitting to a single relaxation mode. Further to the point, Yang and
Khomami [34] performed a thorough analysis of molecular-based constitutive models, comparing
simulation data to the experimental data [13] for a sphere settling in a cylindrical tube. They reached
the conclusion that single-mode dumbbell models, even when fit to extensional rheology data, do
not contain the underlying physics required to quantitatively predict the drag on a sphere, although
qualitative prediction of trends is possible. In their study, even multimode models were inadequate
for quantitative prediction. Later, it was shown that a multiscale approach [35] or the inclusion of
dissipative stress contributions [36] is needed for better quantitative description of the drag. There
is little reason to believe that the complex 3D flow studied here will be better captured than in the
pure settling problem. In this work, we therefore aim to explain qualitatively the mechanism for drag
increase in sheared viscoelastic fluids.

C. Numerical scheme and boundary conditions

The schematic of the simulation is shown in Fig. 1 with the boundary conditions. Simulations
were performed in a frame of reference translating with the sphere. The simulation domain is of
length Lx = 20a along the sedimentation direction and Lz = 60a along the periodic direction. The
lengths are chosen such that the results are domain converged at the highest Wi and �. The domain
mesh was a boundary-fitted mesh and did not move or stretch during the simulation; translation and
rotation of the sphere were achieved through modification of the appropriate boundary conditions.
The orthogonal shear flow was applied by enforcing a no-slip boundary condition at the upper
and lower plates and moving them with equal velocity Ushear in the opposite directions. Periodic
boundary conditions were applied in the shear flow direction. We solved the mobility problem,
where the external force acting on the sphere (gravity) was specified and we solved for the settling
velocity Used and the rotational velocity iteratively using the force and torque acting on the sphere,
respectively. The sphere did not translate but was allowed to freely rotate through modification of
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FIG. 1. Computational domain and boundary conditions used for the simulation.

the velocity boundary condition. At steady state, the hydrodynamic force balances the gravitational
force and there is no net torque on the sphere. The velocity at the inlet is specified as a combination of
the settling velocity and shear flow in orthogonal directions. The polymer conformation components
at the inlet are specified using the analytical solution for a FENE-P fluid in a shear flow [37].
There is no need to specify boundary conditions for cij at the walls, since for control volumes
on the boundary there is no flux through the faces coinciding with the walls and hence cij at the
boundary is completely determined by fluxes through other faces in the control volume and source
term contributions. A convective outlet boundary condition is used for both ui and cij at the outflow
boundary.

The calculations were accomplished using a massively parallel, three-dimensional code, based on
an unstructured finite-volume formulation for the numerical calculations. The details of the solver,
as well as extensive validation tests, can be found in prior studies by Richter et al. [38], Padhy et al.
[32,33], and Yang et al. [39].

A tetrahedral discretization of the domain shown in Fig. 1 is used for the simulations. The mesh
contains between 2.6 × 106 and 6.7 × 106 elements, with smaller elements near the surface of the
sphere (of resolution a/20 to a/40) in order to resolve the stress gradients accurately. The results
presented in this paper are converged in both domain size and the mesh resolution.

III. EXPERIMENTAL SETUP

A. Fluid rheology

Two fluids were used in this study, both of which were aqueous, polyacrylamide-based polymeric
fluids. In order to isolate the effect of fluid elasticity, these fluids were designed to have a low
concentration of a high-molecular-weight polymer in a viscous solvent, with the intent to have high
fluid elasticity with a minimally shear thinning viscosity. This class of fluids is referred to as model
elastic or Boger fluids [7,40,41], as mentioned in Sec. I. The two fluids utilized the same components,
but with different viscosity solvents and different formulations. We will refer to the fluids as BF1
(Boger fluid 1) and BF2 (Boger fluid 2).

For BF1, the Newtonian solvent component was a 7:3 mass ratio mixture of a relatively-low-
viscosity corn syrup (Fisher Scientific) to glycerol (Sigma-Aldrich, �99%). The non-Newtonian
polymer component was a 2 wt. % polyacrylamide (Sigma-Aldrich, Mw ≈ 5 × 106 g/mol) solution.
The Newtonian solvent and polymer solution were mixed at a 10:1 mass ratio. In summary, the final
concentration of each component was 63.64 wt. % corn syrup, 27.27 wt. % glycerol, 0.18 wt. %
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(a) (b)

(c) (d)

FIG. 2. Rheological measurements for BF1 and BF2 (symbols) and the FENE-P model fits (lines) from (a)
steady-shear BF1, (b) steady-shear BF2, (c) transient stress relaxation following a step strain (strain equal to
500%), and (d) small-amplitude oscillatory shear experiments.

polyacrylamide, and the balance deionized water. The density of the fluid was ρf = 1302.6 kg/m3.
For BF2, the Newtonian solvent component was a 7:3 mass ratio mixture of a relatively-high-viscosity
corn syrup (Frey Scientific) to glycerol (Sigma-Aldrich, �99%). The non-Newtonian polymer (or
solute) component was the same 2 wt. % polyacrylamide solution as for BF1. The Newtonian solvent
and polymer solution were mixed at a 200:1 mass ratio. In summary, the final concentration of each
component was 69.64 wt. % corn syrup, 29.85 wt. % glycerol, 0.010 wt. % polyacrylamide, and the
balance deionized water. The density of the fluid was ρf = 1357.8 kg/m3.

The fluid was characterized using a rotational rheometer (ARES-G2, TA Instruments) with a
25-mm-diam 0.1 rad cone-and-plate geometry. The temperature was fixed at 22 ◦C. The steady-shear
viscosity, first normal stress difference, and first normal stress coefficient measurements are shown
for BF1 in Fig. 2(a) and for BF2 in Fig. 2(b). Results from the transient stress relaxation of the first
normal stress difference following a step strain are shown in Fig. 2(c). In Fig. 2(d), the complex
viscosity measurement during a small-amplitude oscillatory shear test is shown. The rheological fit
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TABLE I. FENE-P model parameters.

Fluid η0 (Pa s) β λ (s) L2

BF1 0.97 0.34 0.90 250
BF2 8.70 0.90 1.20 450

of our polymeric fluids using the FENE-P constitutive model is also shown in Fig. 2 and the model pa-
rameters are summarized in Table I. The methodology for fitting the FENE-P model to the rheological
measurements is as follows. From the small-amplitude oscillatory shear tests [Fig. 2(d)], estimates
for the zero-shear viscosity η0 and solvent viscosity ηs were obtained by looking at the plateau values
of the complex viscosity at low- and high-frequency regimes, respectively. The zero-shear viscosity
is defined as η0 = ηs + ηp, where ηp is the polymer viscosity. The value for η0 was confirmed
from the steady-shear data. For BF2, ηs was measured from a steady-shear test on a fluid mixture
comprised of the same ratio of corn syrup, glycerol, and water, but without the polyacrylamide. The
solvent contribution to the viscosity β = ηs/η0 could then be calculated for both fluids. To estimate
a characteristic polymer relaxation time, the decay in the primary normal stress [Fig. 2(c)] was fit
to a single-exponential curve at long times to characterize the fluid’s longest relaxation time. The
remaining fitting parameter L2, which represents the finite maximum extensibility of the polymer
[6], was fit by minimizing error between the model and the steady-shear data.

B. Experimental apparatus

In our experiments, we examine the sedimentation of a dense rigid sphere in a concentric cylinder
apparatus (or Taylor-Couette flow cell), shown in Fig. 3. The inner cylinder had an outer radius of
Ri = 75 mm and the outer cylinder had an inner radius Ro = 85 mm, for a gap size of W = 10 mm

(a) (b)

FIG. 3. (a) Experimental Taylor-Couette flow cell used to study the sedimentation of spheres undergoing
orthogonal shear flow. (b) Cross-sectional view of the sphere injector that enabled precise release of the spheres
along the centerline of the concentric-cylinder gap.
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and a radius ratio of κ = Ri/Ro = 0.88. The height of the cylinders was h = 150 mm. Rotation
of the cylinders was controlled via PC-operated motor drives (Compumotor CPHX106-220). In
these experiments, the outer cylinder was rotated while the inner cylinder remained stationary.
The volume between the two cylinders was filled with the viscoelastic fluid discussed in Sec. III A.
Spheres of varying radius a and density ρs = 2790 kg/m3 (aluminum spheres) and ρs = 4430 kg/m3

(titanium spheres) were then released directly at the center of the gap. A confinement ratio ε can be
defined based on the sphere diameter and cylinder gap width ε = 2a/W . The outer cylinder, made of
transparent acrylic, allowed for video observation of the sphere trajectory and subsequent calculation
of its settling rate. For higher shear rates, two cameras were used (facing the front and back sides
of the cell) as the sphere translated with the shear flow. Settling rates were calculated once spheres
reached their terminal velocity. Each reported settling rate is the average of three measurements,
with standard deviations in the measurement for all trials within 7% of the mean (error bars shown
on plots of the sphere settling rate, shown later in Sec. IV, represent one standard deviation). Note
that for these experiments, the particle Reynolds number Rep = ρf Used2a/η was less than 0.15 and
the elasticity number El = λη0/ρf a2 was greater than 100 and we anticipate that inertial forces are
negligible compared to viscous and elastic forces.

To ensure that spheres were released directly at the centerline of the concentric-cylinder gap with
minimal downward momentum, a sphere injector was constructed as shown in Fig. 3(b). A tube of
radius atube ≈ a(1 − δ), where δ � 1, held the spheres, while a plunger was slowly depressed using
a micrometer screw, releasing the spheres gently into the fluid. Special caution was taken to avoid
bubble attachment to the spheres; the tube was prefilled with fluid and the spheres were released
beneath the surface of the fluid. The sphere injector was held stationary in the sphere injector port,
at the centerline of the gap W/2. Migration of spheres suspended in viscoelastic fluids in cylindrical
Couette flow has been well described by D’Avino et al. [42,43]. These authors, using experiments
and numerical simulations, showed evidence for sphere migration in shear thinning fluids but did not
observe significant migration in Boger fluids with large solvent contributions to the overall viscosity.
For BF1, although the fluid is modestly shear thinning with a significant polymer contribution to the
viscosity (β = 0.34), the sedimentation velocities from our experiments were much larger than the
migration velocities observed by D’Avino et al. [42], so we would not expect significant cross-stream
migration to occur during the course of the sedimentation trials. For BF2, the solvent contribution
to the viscosity is very high (β = 0.90), so we would again not expect significant cross-stream
migration to occur.

The Taylor-Couette flow cell was not temperature controlled so the fluid temperature varied
during experiments by up to 2 ◦C. To account for this, the viscosity of the fluid was measured
as a function of temperature within this range and a viscosity-temperature relationship η = η(T )
was generated. Results for the sedimentation velocity at a given T = Tmeas were adjusted to their
assumed sedimentation velocity at T0 = 22 ◦C based on a Stokes law correction, using the expression
U (T0) = U (T )η(T )/η(T0). We neglect the effects of any change in the fluid’s elastic properties in
this small temperature range.

IV. RESULTS

A. Sedimentation velocities and drag

The terminal settling velocities, shown in dimensionless form as the sedimentation Weissenberg
number � = Usedλ/2a, are compared in Fig. 4 between experiments and simulations for different
confinement ratios (ε = 2a/W ). The simulations predict the reduction in settling velocity and
mobility, or increase in drag, with increasing shear Weissenberg number Wi = λγ̇ (where γ̇ is the
shear rate). At Wi = 0, the fluid is quiescent, and increasing Wi represents an increasing orthogonal
shear rate, since we assume that at all shear rates the longest fluid relaxation time remains constant.
The increase in sphere drag is observed across a range of sphere sizes (ε = 0.16,0.32,0.48) and
sphere densities (ρs = 2790,4430 kg/m3). The sphere density dictates the body force on the sphere
and so Figs. 4(a) and 4(b) show a range of forcing on the sphere, which is indirectly represented by
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(a) (b)

FIG. 4. Experimentally measured settling velocities (open symbols) with corresponding simulation results
(lines with closed symbols) plotted versus shear Weissenberg number for BF1, across a range of particle
confinement ratios ε = 2a/W for (a) aluminum spheres and (b) titanium spheres.

�0 = �(Wi = 0). Note that both the sedimentation Weissenberg number � and the shear
Weissenberg number Wi, which are ratios of the polymer relaxation time scale to the flow time
scale in the settling direction and the shear direction, respectively, are O(1). We observe reasonable
agreement between the numerical simulations and experiments. These numerical simulations thus
allow us to explore the mechanism that is responsible for the increase in drag.

In Fig. 5(a), we show the sphere’s rotation rate, made dimensionless by γ̇ , as a function of Wi. The
results shown are from numerical simulations. In an unbounded Newtonian fluid, a rotational velocity

(a) (b)

FIG. 5. Rotation rate from simulation plotted versus shear Weissenberg number for BF1: (a) effect of
viscoelasticity on the rotation rate of a settling sphere and (b) effect of confinement ratio ε and forcing �0 on
the rotation rate of a settling sphere. The inset of (b) shows the rotation rate of confined spheres at �0 = 0
(neutrally buoyant spheres).
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of ω/γ̇ = 0.5 is expected. As observed in Fig. 5(a), we see an overall decrease in the normalized
rotational velocity ω/γ̇ , signifying an increasing deviation from the Newtonian prediction, as Wi
increases. Note that the rotational velocity of the sphere ω (in dimensional terms) increases as a
function of Wi. This qualitatively matches the results observed in Boger fluids for neutrally buoyant
spheres in a viscoelastic shear flow [14,17].

In Fig. 5(b), the sphere’s rotation rate is plotted again as a function of Wi for Wi � 1 and is shown
for a range of confinement ratios ε and sphere forcing �0 obtained from simulation. Interestingly, we
observe an increase in the sphere’s rotation rate as ε and �0 are increased at a fixed Wi. Previously,
it has been shown that confinement decreases the rotation rate of a neutrally buoyant sphere in a
viscoelastic shear flow [44]. However, recall that in our experimental design, the confinement and
sphere forcing (or body force) are confounded, since they both increase with sphere radius for a
fixed sphere density. In the inset of Fig. 5(b), the rotation rate of a neutrally buoyant sphere (� = 0)
at Wi = 1 is shown, which recovers the trend observed previously [44]. Thus, it appears as though
a confined sphere’s rotation rate is coupled with its settling motion such that a forced sphere can
rotate more quickly than an equivalent neutrally buoyant sphere in this parameter regime. This
coupling effect on the torque is perhaps unsurprising, as the remainder of this paper highlights how
the coupling between the shear flow and uniform flow past a sphere affects the drag on the sphere.

We return to the sphere’s settling motion to better describe the origin of the increased drag on the
sphere. For vanishing fluid inertia, a coefficient relating the steady-state settling velocity to the drag
force can be written as

C = Fd

η0aUsed
, (5)

where Fd is the drag force on the sphere and the Stokes law predicts C = 6π for Newtonian fluids. To
further study the mechanism of drag increase, we decompose the drag force into contributions from
the form (or pressure) drag, viscous drag, and polymer drag. The contributions to this coefficient of
drag, as defined in Eq. (5), can be found from simulations by integrating the stress over the surface
of the sphere. In dimensionless terms, we can write the total drag as [32,33]

C = −2
∫∫

S

pn1dS + 2β

∫∫
S

(
∂u1

∂xk

+ ∂uk

∂x1

)
nkdS + 2

1 − β

�

∫∫
S

σP
1knkdS, (6)

where the three terms above correspond to the form, viscous, and polymer drag, respectively. We
have broken down the drag force for different sphere forcing and confinement ratios and plotted the
corresponding drag as a function of the shear Weissenberg number in Fig. 6. With increasing shear
Weissenberg number, the viscous and form drag components increase, with the form (or pressure)
drag dominating at high Wi. The component of drag due to the form drag increases roughly fourfold
at Wi = 9 for ε = 0.48 [Figs. 6(e) and 6(f)], relative to the case with no shear. We observe in this
study that for all parameter regimes where �0 ∼ O(1), the form drag is the dominant contribution
to the total drag. This is in contrast to the mechanisms proposed for weakly elastic fluids (�0 < 1),
reported previously, where either the viscous drag [32] or polymer tension [27] is suggested to be
primarily responsible for an increase in the total drag.

From Fig. 6 it is clear that the form drag is the dominant contribution to the total drag in this
parameter range, but it is difficult to discern the effects of Wi, �0, and ε. In the next section, we will
introduce a model to isolate and quantify the coupling drag, i.e., the drag from the coupling of the
orthogonal shear flow and the uniform flow past the sphere. This will allow us to study the coupling
drag consistently across a range of �0 and ε and estimate their effects on the coupling drag. This
will also allow us to observe how the coupling drag scales with Wi.

B. Coupling drag

In this section, we introduce a model force balance in order to elucidate the effect of orthogonal
shear on particle sedimentation in a viscoelastic fluid. Assuming a sphere of radius a and density
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(a) (b)

(c) (d)

(e) (f)

FIG. 6. Drag components (force normalized by η0aUsed) versus Wi from simulations for BF1: �, form drag;•, viscous drag; and �, polymer drag. The total dimensional drag force is equal in magnitude to the gravitational
body force (minus buoyancy) at steady state and constant for all Wi within a plot. Results are shown across a
range of ε and �0, corresponding to (a), (c), and (e) aluminum spheres, ρS = 2790 kg/m3, and (b), (d), and (f)
titanium spheres, ρS = 4430 kg/m3: (a) ε = 0.16 and �0 = 1.02, (b) ε = 0.16 and �0 = 2.09, (c) ε = 0.32
and �0 = 1.70, (d) ε = 0.32 and �0 = 3.58, (e) ε = 0.48 and �0 = 2.17, and (f) ε = 0.48 and �0 = 4.65.
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ρs is sedimenting in a quiescent viscous fluid of viscosity η and density ρf , then at steady state the
force balance is simply the Stokes drag force balanced with the gravitational force (minus buoyancy)
6πηaU = 4π

3 (ρs − ρf )a3g. In a quiescent viscoelastic fluid, a correction to the drag may be added
to account for the effect of fluid elasticity. In the following expression, Ce(Wi = 0,�0) represents
the effect of fluid elasticity on the fluid drag in the absence of shear:

6πηaU + Ce(Wi = 0,�0)U = 4
3π�ρa3g. (7)

Other studies have expressed this equivalently as a viscoelastic correction to the drag coefficient
KVE6πηaU = 4

3π�ρa3g, where KVE = 1 + Ce/6πηa. This correction may be measured from
simple sedimentation in quiescent fluids and has been studied experimentally, theoretically, and via
numerical simulation [8–10]. Interestingly, Ce(Wi = 0,�0) may be of either sign and it may vary
nonmonotonically as a function of �0 [8,10] (other authors denote KVE by X or Y ). For certain
(mostly unconfined) Boger fluids, Ce has been shown to be negative for �0 < 1, eventually becoming
positive and growing at higher �0, as elastic effects in the wake become dominant, as alluded to in
Sec. I. Additionally, it can change based on the fluid properties, including the solvent quality [45].

For a sphere now sedimenting in a viscoelastic fluid under orthogonal shear, we introduce a
further correction to the drag, where we have allowed the viscosity (and settling velocity) to vary
with orthogonal shear rate,

6πη(γ̇ )aU + Ce(Wi = 0,�0)U + Cc(Wi,�0)U = 4
3π�ρa3g. (8)

The first term on the left-hand side represents the effect of shear in the absence of elasticity on the
viscosity via a modified Stokes law, the second term represents the effect of elasticity in the absence
of shear, i.e., the extra drag due to elasticity with no orthogonal shear, and the third term is defined as
the coupling drag associated with shear and sedimentation. The focus of this work is on the coupling
drag, where we seek to find the functionality of Cc on Wi and �0. Rearranging our expression,

C̄c = Cc(Wi,�0)

6πη(γ̇ )a + Ce(Wi = 0,�0)
∼ f (Wi,�0). (9)

Perturbation theory suggests scaling in the form

C̄c ∼ f
(
k1Win,k2�

m
0

)
, (10)

where Housiadas and Tanner [24] have shown n = m = 2 and |k1| � |k2| for small �0 � 1. This
theory was later taken to O(Wi4,�4

0) by Housiadas [25], showing better prediction of the drag
increase compared to numerical simulations by Padhy et al. [32] up to Wi ≈ 1. A simplified model
force balance was performed by Tanner et al. [27], showing that the drag should scale quadratically
in Wi for small �0 and proposing a mechanism based on tension from normal stresses that act along
the streamlines deformed around the sedimenting sphere.

The analysis thus far has considered the case of a sphere sedimenting under orthogonal shear in
an unbounded viscoelastic fluid. In both our experiments and numerical simulations, the sphere is
confined by the shearing walls. We therefore can modify Eqs. (8) and (9), taking into account the effect
of confinement. We define our confinement based on the confinement parameter ε = 2a/W = d/W ,
where W = Ly is the distance between our shearing walls. Furthermore, we reintroduce a correction
to the Stokes drag KN (ε), which is known for Newtonian fluids [18,21,22]. We rewrite our force
balance in Eq. (11) and rearrange to define a dimensionless form of the coupling drag C̃c in Eq. (12),

6πKN (ε)η(γ̇ )aU + Ce(Wi = 0,�0,ε)U + Cc(Wi,�0,ε)U = 4
3π�ρa3g, (11)

C̃c = Cc(Wi,�0,ε)

6πKN (ε)η(γ̇ )a + Ce(Wi = 0,�0,ε)
=

4
3π�ρa3g

6πKN (ε)η(γ̇ )aU + Ce(Wi = 0,�0,ε)U
− 1. (12)

In Fig. 7, we show the dimensionless elastic drag C̃e = Ce(Wi = 0,�0,ε)/6πKN (ε)ηa versus
sedimentation Weissenberg number �0 from experiment and simulation. Also plotted in Fig. 7 are
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FIG. 7. Elastic drag components C̃e plotted versus �0, from simulation: �, form contribution to the elastic
drag; •, viscous contribution to the elastic drag; �, polymer contribution to elastic drag; �, overall elastic drag;
and �, overall elastic drag (experiment).

the contributions to the total elastic drag from the form drag, viscous drag, and polymer drag, as
calculated from the simulations. It should be noted that these results are obtained across a range of
confinement ratio ε = 0.16,0.32,0.48. The elastic drag remains roughly constant and small (C̃e � 1)
across the range of �0 and confinement tested in this study. To calculate the components of the drag,
the contributions to the total drag are found by integrating the stress over the surface of the sphere,
similar to Eq. (6). The force balance (in dimensional form) then becomes

(
F

f

d

F
f

d + Fv
d

)
Wi=0

6πKN (ε)η(γ̇ )aU + C
f
e (Wi = 0,�0,ε)U + C

f
c (Wi,�0,ε)U = F

f

d , (13)

(
Fv

d

F
f

d + Fv
d

)
Wi=0

6πKN (ε)η(γ̇ )aU + Cv
e (Wi = 0,�0,ε)U + Cv

c (Wi,�0,ε)U = Fv
d , (14)

C
p
e (Wi = 0,�0,ε)U + C

p
c (Wi,�0,ε)U = F

p

d , (15)

where the superscripts denote form (f ), viscous (v), or polymer (p) contributions. Thus, for example,
F

f

d is the form contribution to the total (dimensional) drag force and Cv
e is the viscous contribution

to the elastic drag. At Wi = 0 (e.g., to calculate the elastic drag components for Fig. 7), the coupling
drag terms are equal to zero.

The coupling drag is shown in Fig. 8 versus shear Weissenberg number for a range of particle sizes,
from both simulation and experiment. The coupling drag is positive and increases monotonically as a
function of Wi, up to a factor of over 2 at the highest tested Wi (recall that C̃c is normalized by the sum
of the wall-corrected Stokes drag and the elastic drag). This trend is observed at ε = 0.16,0.32,0.48,
across a range of �0. For finite Wi > 1, the coupling drag becomes a significantly larger effect than
the elastic drag (shown previously in Fig. 7). We observe that for the highly elastic fluid investigated
here, the coupling drag is a strong function of Wi and a weaker function of �0 and ε. In fact, we see
only a small variation in the trend of the coupling drag across a wide range of sphere forcing and
particle confinement ratios from the simulations. Experiments show a small but inconsistent effect
of �0 at various confinement ratios and a stronger effect of confinement ratio.
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(a) (b)

(c)

FIG. 8. Coupling drag C̃c versus shear Wi for (a) ε = 0.16, (b) ε = 0.32, and (c) ε = 0.48 for various
values of �0, from experiment (open symbols) and simulation (lines).

The coupling drag can also be further broken down into the components of drag corresponding to
form, viscous, and direct polymer contributions, as shown in Eqs. (13)–(15). The results are shown
in Fig. 9 for ε = 0.16 and ε = 0.48. We observe that the qualitative trends in the coupling drag are
consistent across the range of parameters studied here, similar to what was observed for the overall
coupling drag. The viscous and form drag contribute most strongly to the coupling drag, with both
growing monotonically as a function of Wi. For all parameter ranges studied here, the form coupling
drag was the dominant contribution to the overall coupling drag, more than doubling the contribution
from the viscous coupling drag at high Wi. The direct polymer contribution to the coupling drag
grows only slightly as the orthogonal shear rate increases. Thus, as originally described by Padhy
et al. [32], the polymers in the fluid indirectly result in an enhanced coupling drag by modifying
the flow past the sphere such that the form and (solvent) viscous drag are increased, although the
direct polymer contribution to the drag is proportionally diminished. This indirect effect was also
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(a) (b)

(c) (d)

FIG. 9. Coupling drag components versus shear Wi, from simulation, for (a) ε = 0.16 and �0 = 1.02,
(b) ε = 0.16 and �0 = 2.09, (c) ε = 0.48 and �0 = 2.17, and (d) ε = 0.48 and �0 = 4.65 for BF1: �, total
coupling drag; �, form drag; •, viscous drag; and �, polymer drag.

suggested from perturbation theory [24,26]. Later, in Sec. V, we will examine how the flow field
around the settling sphere is modified by the presence of the polymers.

We have thus far described the coupling drag as a function of at least the shear and sedimentation
Weissenberg numbers and the confinement ratio C̃c ∼ f (Wi,�0,ε). For �0 ∼ O(1), we have shown
that C̃c is most strongly a function of the shear Weissenberg number Wi and a weaker function of
�0 and ε. In Fig. 10, we show C̃c vs Wi for a particular value of �0 and ε, now shown on a log-log
plot to examine the scaling behavior. We observe quadratic growth of C̃c at low Wi, transitioning
to linear growth at high Wi. This trend is observed for the overall coupling drag, as well as the
form and viscous contributions to the coupling drag. The quadratic growth in the coupling drag at
lower Wi may be related to the growth in normal stress and the associated tension acting along shear
flow streamlines, as suggested previously for �0 � 1 [24,27]. However, this would assume that the
resistance to flow due to the growing normal stress in the fluid shows up indirectly as increasing
form and viscous drag. Further discussion of a mechanism for the increase in the form coupling
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FIG. 10. Coupling drag scaling from simulation for BF1, showing quadratic growth at low Wi and linear
growth at high Wi for �0 = 2.09 and ε = 0.16.

drag, particularly at high Wi, will be discussed in Sec. V. First, in the following section, Sec. IV C,
we will present the results for the settling rate and drag on a sphere settling in a weakly elastic fluid
under orthogonal shear and compare it to the results presented here.

C. Weakly elastic fluids

Thus far, we have addressed the drag on a sphere settling in a highly elastic fluid under orthogonal
shear. By highly elastic we mean that the motion associated with the applied force on the sphere
creates a large deformation of the polymers, i.e., �0 ∼ O(1). In this section, we present results
from a sphere settling in a weakly elastic fluid under orthogonal shear (�0 < 1), using BF2 as our
model fluid. We show results for the settling rate, total drag, and coupling drag. We discuss the
primary contributions to the coupling drag and compare to the contributions presented above for
highly elastic fluids. In this manner, we connect the present work to previous work performed for
�0 < 1 [24–27,32,33].

Figure 11 shows results for the steady-state velocity of spheres settling in BF2, from experiments
and numerical simulations. Both experiments and simulations predict a decrease in the dimensionless
settling rate � as the orthogonal shear rate Wi is increased. There is reasonable agreement between
the simulation and experiment at Wi = 0, with error of O(10%), in line with comparisons shown in
Sec. IV A and in the literature [34]. The discrepancy between simulation and experiment grows at
increasing Wi, particularly for the higher-�0 trial. This may be due to the challenges in modeling
this fluid with a single longest relaxation time as measured from shear rheology experiments.

The components of drag on a sphere settling in BF2 are shown in Fig. 12, as calculated from
Eq. (6). For BF2, the solvent contribution to the total viscosity is relatively high (β = 0.90). Thus, at
Wi = 0 and low �0, we see a small contribution from the polymer drag, and viscous and form drag
contributions that are close to that for a Newtonian fluid: Cv ≈ 4π and Cf ≈ 2π (once correcting
for the confinement). With increasing shear Weissenberg number Wi, the viscous and form drag
increase, with the viscous drag increase becoming dominant at high Wi; this is in contrast to what
was observed previously for highly elastic fluids, where the form drag was the dominant component.
Further insight is achieved by looking at the coupling drag, as introduced in Sec. IV B.
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FIG. 11. Experimentally measured settling velocities (open symbols) with corresponding simulation results
(lines with closed symbols) plotted versus shear Weissenberg number for BF2.

The overall and componentwise coupling drag is shown in Fig. 13. We see that at low-shear
Weissenberg number Wi < 1, the viscous and form drag contributions to the coupling drag are
roughly equivalent. This is in qualitative agreement with the predictions for the components of
drag made by Housiadas and Tanner [26] for low-Weissenberg-number regimes where �0 � 1
and Wi < 1. However, we do not see a drop in the viscous drag above a critical Wi, but rather a

(a) (b)

FIG. 12. Drag components (force normalized by η0aUsed) from simulations for (a) ε = 0.16 and �0 = 0.14
and (b) ε = 0.16 and �0 = 0.30 for BF2: �, form drag; •, viscous drag; and �, polymer drag. The total
dimensional drag force is equal in magnitude to the gravitational body force (minus buoyancy) at steady state
and constant for all Wi within a plot. Results are shown for (a) aluminum spheres, ρS = 2790 kg/m3, and (b)
titanium spheres, ρS = 4430 kg/m3.

103302-17



MURCH, KRISHNAN, SHAQFEH, AND IACCARINO

(a) (b)

(c)

FIG. 13. Coupling drag components versus shear Wi for (a) ε = 0.16 and �0 = 0.14, (b) ε = 0.16 and
�0 = 0.30, and (c) ε = 0.16 and �0 = 0.66 for BF2: �, total coupling drag; �, form drag; •, viscous drag;
and �, polymer drag.

further increase in the viscous drag at increasing Wi. In fact, the viscous drag continues to grow
and becomes the dominant contribution to the coupling drag at increasing Wi. At lower �0, e.g.,
Figs. 13(a) and 13(b), the form drag appears to plateau. At higher �0, e.g., Fig. 13(c), the form drag
increases nearly with the viscous drag at increasing Wi, contributing to a higher total coupling drag
relative to lower-�0 trials. The increasing contribution from the form drag at increasing �0 and Wi
appears to be in accord with the observations above for a highly elastic fluid, where the form drag
was the dominant contribution to the drag.

V. DISCUSSION

In the following section, we start by summarizing our results in Sec. V A. In Sec. V B, we discuss
a mechanism for the observed coupling drag in highly elastic fluids [�0 ∼ O(1)]. In doing so,
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we delve into the microstructural origins of the coupling drag and we investigate the viscoelastic
wake structure that forms behind a sphere settling under orthogonal shear in a viscoelastic fluid. We
examine how this wake structure changes the flow field around the sphere and propose an explanation
for the enhanced coupling drag. Finally, in Sec. V C, we compare our discussion in Sec. V B to the
physical mechanism for the increase in the drag in orthogonal shear in weakly elastic fluids (�0 < 1).

A. Summary of findings

In Sec. IV, we introduced a model force balance to describe the coupling drag, a drag associated
with sedimentation and an orthogonal shear in a viscoelastic fluid. We proposed that the coupling
drag was a function of at least the shear and sedimentation Weissenberg numbers and the confinement
ratio C̃c ∼ f (Wi,�0,ε). For all parameter regimes studied here, the coupling drag monotonically
grew with Wi. It was shown that although the coupling drag is enabled by the presence of polymers
in the carrier fluid, it is not directly due to polymer stress on the sphere surface. Instead, we observe
that the coupling drag is primarily driven by the growth of either the form or viscous drag on the
sphere, suggesting that the polymers contribute to an off-surface modification of the flow around the
sphere. For highly elastic fluids, where �0 ∼ O(1), we observe that the coupling drag at increasing
Wi was dominated by the form drag. The effects of sphere forcing and confinement on the coupling
drag were relatively small compared with the effect of Wi. For weakly elastic fluids, where �0 < 1,
we observe that the coupling drag growth at increasing Wi was driven by growth primarily in the
viscous drag.

In order to study �0 ∼ O(1) and �0 < 1 regimes, we used two separate Boger fluids with different
rheological properties. Our discussion of the results would be incomplete without addressing the
effect of the solvent contribution to the viscosity β = ηs/(ηs + ηp) on our results. Previously,
Housiadas and Tanner [24] showed with perturbation theory (�0 � 1) that the drag increase due to
an orthogonal shear flow is enhanced at lower β (i.e., for higher polymer contribution to the viscosity)
in an Oldroyd-B fluid. Padhy et al. [32] discussed the effect of β on the drag in shear thinning guar
gum fluids at low �, showing that a small enough β can reduce the total drag due to a shear thinning
viscosity. However, by accounting for the reduction in bulk viscosity due to shear thinning, they
concluded that β did not change the fundamental mechanism for the elasticity-induced drag increase
due to an orthogonal shear. Clearly, we must consider C̃c ∼ f (Wi,�0,ε,β). In our study, we used
Boger fluids with only modest shear thinning in the range of shear rates tested, but the values of β

were dissimilar for the two fluids. We showed that in BF1, with a low solvent contribution to the
total viscosity β = 0.34, the form drag was the dominant contribution to the total drag for all values
of �0 tested. In BF2, with a high solvent contribution to the viscosity, β = 0.90, the viscous drag
was the dominant contribution to the total drag at low �0. However, as �0 was increased, the form
drag contribution to the coupling drag grew and we expect that at high enough �0, the form drag
would become the dominant contribution to the coupling drag. Thus, we propose that either a low
solvent contribution to the viscosity (low β) or a high sphere forcing [�0 ∼ O(1)] can be sufficient
for the coupling drag to be dominated by the form drag. In the following section, we will discuss
the wake structures that form around a sphere settling in a sheared viscoelastic fluid and how they
can contribute to the growth of the coupling form drag.

B. Mechanism in highly elastic fluids

In this section, we study the mechanism for the reduction in particle mobility. First, we look
at the case of the largest, most strongly forced sphere (ε = 0.48 and �0 = 4.65). We examine the
polymer stretching in the vicinity of the sphere in Fig. 14, which shows the isosurfaces of the trace of
the conformation tensor at 30% of maximum extensibility. These surfaces represent regions of high
polymer deformation and tension exceeding that caused by the background shear flow alone. In a
simple shear flow at Wi = 9, the trace of the polymer conformation tensor is approximately 27% of
maximum extensibility and thus these isosurfaces were chosen to highlight the interaction between
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FIG. 14. Isosurface plots of the trace of the conformation tensor at 30% of maximum extensibility, viewed
from the y direction, for �0 = 4.65, and ε = 0.48.

the fluid flow and the sphere. At Wi = 0, the isosurface is that of a viscoelastic flow past a sphere,
with a thin region of stretched polymers in the wake of the sphere, extending from the rear stagnation
point along the outgoing (downstream) streamlines [11,13]. At increasing Wi, we observe that the
polymer stretching broadens in the direction of shear. At Wi > 5 these structures resemble wings
and we refer to these as viscoelastic wings. We choose to describe the wake structures as wings to
describe their geometric shape. However, unlike wings, these structures are not mirror symmetric
but rather symmetric about an 180◦ rotation around the x axis. Owing to this symmetry, these wings
do not generate lift. Instead, we observe that the increase in the drag is linked to the development of
these viscoelastic wings through the deflection of fluid.

In Fig. 15(a), the wake structures for spheres with the confinement ratio ε = 0.48 and across a
range of sphere forcing are shown. It is observed that as �0 is increased, the wake is progressively
stretched and angled back into the +x direction, resembling the wings discussed above. At
progressively lower �0, the viscoelastic wake structures flatten and stretch further into the shear
direction as the deformation due to the shear flow becomes dominant. In Fig. 15(b), we show that

(a) (b)

FIG. 15. Isosurface plots of the trace of the conformation tensor at (a) 30% of maximum extensibility, as
a function of �0 at Wi = 9 and ε = 0.48, and (b) 16% of maximum extensibility, at �0 = 2.17, Wi = 5, and
ε = 0.48.
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FIG. 16. Isosurface plots of the trace of the conformation tensor at 30% of maximum extensibility, viewed
from the z direction, for �0 = 4.65 and ε = 0.48. A contour plot slice of Ux/Ux,max at z = 2a (at 40%
translucency) is shown. Streamlines of (Ux,Uy,0), where Uz has been set to zero, are shown in the x-y plane of
the slice. The streamlines are seeded at z = 2a and x = 1.1a across a range of y.

this wing shape can be observed at lower Wi for a lower sphere forcing. In this case, at Wi = 5, an
isosurface of the trace of the conformation tensor is shown at 16% of maximum extensibility (the
background shear flow is approximately 14% of maximum extensibility). By looking at regions of
polymer stretch slightly above the background stretch, we can observe qualitatively similar structures
across a wide range of O(1) values of Wi and �0, as well as across the range of ε studied here
(an example of ε = 0.16 wake structures is later shown in Fig. 20). It should be mentioned that
these values for the Weissenberg number are not extreme cases of deformation in an applied setting.
Indeed, this high-Weissenberg-number regime is easily accessible in engineering applications with
elastic fluids, including oilfield applications, microfluidics, and 3D printing, where the Weissenberg
number can reach O(1)–O(10) values or higher. We next investigate how the development of these
viscoelastic wake structures affects the flow past the sphere.

FIG. 17. Contour plots of pressure [minus the hydrostatic pressure and made dimensionless with Used(Wi =
0)η0/a] on the surface of the sphere and in a slice at z = 0 surrounding the sphere, viewed from the z direction,
for �0 = 4.65 and ε = 0.48.
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FIG. 18. Contour plots of pressure (as shown in Fig. 17, now with semitranslucent isosurface plots of the
trace of the conformation tensor at 30% of maximum extensibility overlaid).

Figure 16 shows a plot of the streamlines in a plane two radii away from the sphere center in
the shear flow direction, with the fluid velocity along the shear direction set to zero. At Wi = 0,
the streamlines are essentially parallel. The streamlines are deflected at higher Wi, particularly
near the wings. Thus the wings, depicting areas of high polymer tension, provide a mechanism for
flow deflection. This results in regions of high fluid velocity in the x direction above and below the
wing and a region of low fluid velocity near the wing (as seen from the contour plot slices). In other
words, the flow is modified in the region around the surface of the sphere such that it creates an
additional blockage for the fluid, which ultimately contributes to an increase in the pressure drag.

Figure 17 shows the contours of pressure in the vicinity of the sphere. At increasing Wi,
we observe the development of a high-pressure region on the front side of the sphere (note that
the sphere is sedimenting from right to left). A low-pressure region can also be seen on the back side
of the sphere, which shifts slightly to the sides of the sphere at increasing Wi. These low-pressure
regions exist near the rear stagnation points and represent the roots of the viscoelastic wings on the
sphere surface. As described in Sec. IV, we have examined the drag components (from pressure or
form drag, viscous drag, and polymeric drag contributions) on the sphere, considering both the total
drag (Sec. IV A) and later isolating the coupling drag (Sec. IV B). For all parameter regimes where
�0 ∼ O(1), the form drag is the dominant contribution to the total and coupling drag.

FIG. 19. Contour plots of Ux/Ux,max (at 40% translucency) at y = 0 and on the surface of the sphere,
viewed from the y direction, for �0 = 4.65 and ε = 0.48. Semitranslucent isosurface plots of the trace of the
conformation tensor at 30% of maximum extensibility are shown. Streamlines of (Ux,Uy,Uz) are shown and
were seeded at the inlet of the computational domain at y = 0.
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FIG. 20. Comparison of the viscoelastic wake structures that form for a sphere (ε = 0.16) settling in BF1
with �0 = 2.09 (top) vs in fluid BF2 with �0 = 0.14 (bottom) at Wi = 5. The sphere is settling into the −x

direction and is viewed from two different angles (left and right). Contours of pressure [minus the hydrostatic
pressure and made dimensionless with Used (Wi = 0) η0/a] are shown on the surface of the sphere, as well as
in a slice with 40% translucency at x = 0 (right). Streamlines are seeded at x = z = 0 across a range of y.
Semitranslucent isosurfaces of the trace of the polymer conformation tensor are shown at 40% of the maximum
trace.

The viscoelastic wake structures that develop around the sphere and modify the flow are not
limited to the winglike portions that extend into the shear direction. From Fig. 16 it is evident that
these structures grow around the sphere surface in the sedimentation and gradient directions, in
addition to the shear direction, at high Wi. These regions likely also contribute to the deflection of
fluid flow and consequently to the increase in pressure drag on the sphere. In Fig. 18, we see that
the high-pressure region that develops on the front side of the sphere is locally correlated with the
region of high polymer stretch that develops around the sphere at high Wi. In Fig. 19, we show that
streamlines originating at the stagnation line at the inlet of the computational domain at y = 0 are
deflected around a region containing the sphere and an extended region of high polymer stretching.
This is seen from the streamlines and the contour plots of velocity, which show that the x direction
velocity disturbance extends well into the shear direction (which was also seen in Fig. 16).

In this section, we showed that at O(1) values of �0 and high Wi, regions of high polymer stretch
and tension extend into three dimensions, deflecting streamlines, and ultimately retarding motion of
the sphere. The decrease in particle mobility from orthogonal shear is primarily due to the increase
in the form drag, although the viscous drag also increases with the same scaling, as shown in Fig. 10.
In essence, the effective body in motion, at high Weissenberg number, becomes the rigid sphere plus
an extended region of stretched polymer.
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C. Comparison to weakly elastic fluids

In Fig. 20, we compare visualizations of a sphere settling in BF1 at �0 = 2.09 (top) and a sphere
settling in BF2 at �0 = 0.14 (bottom) for ε = 0.16 and Wi = 5. For the lower �0, more weakly
elastic fluid flow, viscoelastic structures do form around the sphere, as in the case of the highly elastic
fluid. However, since the flow is dominated by the shear flow rather than the uniform flow past the
sphere, these structures grow predominately in the shear direction, like viscoelastic tongues. These
structures were observed previously by Padhy et al. [33] for shear-dominated flows at � = 0.1.
Nearly symmetric regions of high and low pressure are observed on the sides of the sphere from
the strong viscoelastic shear flow. This is in contrast with the highly elastic fluid case, where a
high-pressure region develops on the front side of the sphere. From analysis of the streamlines in the
case of the weakly elastic fluid, we see that the fluid that comes close to the sphere surface can rotate
with the sphere for several rotations before moving past the sphere. For these flows, the coupling
drag can be dominated by the viscous drag at high Wi, as shown previously by Padhy et al. [32,33]
and in this work.

VI. CONCLUSION

We have examined the mobility of a particle moving in a highly elastic fluid under confined
orthogonal shear. We have presented results from experiments and numerical simulations showing
a significant decrease in particle mobility at increasing orthogonal shear rates. Using the simulation
results, we have observed the formation of viscoelastic wake structures, which develop into
viscoelastic wings at high shear Weissenberg number and O(1) values of the sedimentation
Weissenberg number. We have proposed that the form drag created by these viscoelastic wake
structures in orthogonal shear accounts for decreasing particle mobility when the fluid is highly
elastic, i.e., when the polymer deformation created by the motion associated with the applied force
on the particle is significant. Because these regions of high polymer tension act to deflect streamlines
and enhance drag, the effective body in motion becomes the particle plus an extended region of
stretched polymer. This result has broad implications for applications involving the movement of
particles in deformed viscoelastic fluids and suggests a method for enhanced control of particle
mobility, namely, through the modification of the wake structures, by tuning the particle shape and
size, the elastic fluid properties, and the fluid deformation.
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