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Fluid mechanics is a discipline with rich phenomena, with motions occurring over an
enormous range of length scales, and spanning a wide range of laminar and turbulent flows,
instabilities, and applications in industry, nature, biology, and medicine. The subfield of
complex fluids typically refers to those flows where the complexity is introduced, for
example, by the presence of suspended particles, multiple phases, soft boundaries, and
electrokinetic effects; several distinct multiphase flows of Newtonian fluids make up the
examples in this article. Interfaces play a significant role and modify the flow with feedback
that further changes the shapes of the interfaces. I will provide examples of our work
highlighting (i) new features of classical instabilities triggered by changes in geometry, (ii)
multiphase flows relevant to the design of liquid-infused substrates exhibiting effective slip
while retaining the trapped liquid, and (iii) unexpected dynamics in flow at a T-junction.
The interplay of experiments and mathematical models and/or simulations is critical to the
new understanding developed.
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I. INTRODUCTION

A. Beauty and surprises in fluid dynamics

All scientists and researchers like to think that their subject is more captivating and interesting
than the topics studied by others. We should all be so inspired to want to study and learn about the
many corners of our chosen field of intellectual inquiry. Nevertheless, one feature that characterizes
fluid dynamics is the breadth of subject areas to which the ideas apply: from geophysical studies of
oceans, atmospheres, and planetary interiors, which occur on length scales of thousands of kilometers
for Earth, to problems of swimming and flying, which occur on scales from fractions of a meter to
tens of meters (e.g. birds, fish, airplanes, satellites), to medical devices, which operate at the scales
of millimeters to fractions of a meter, and down to the scale of the cell (typically microns to tens of
microns) and micro- and nano-fluidic devices. This range from thousands of kilometers to smaller
than microns thus introduces challenges over more than 12 orders of magnitude in length scale, and
the subjects include practically every science and engineering department at a university. Of course,
this intellectual breadth often makes it challenging for fluid dynamicists from different disciplines
to talk with one another!

A further distinguishing feature of fluid dynamics is that the flows often make for beautiful
pictures and videos. Some of this beauty is captured every year by the Gallery of Fluid Motion at
the Annual Meeting of the Division of Fluid Dynamics (DFD) of the American Physical Society.
An early recognition of the role of visualization for understanding fluid motions was the impetus
for Milton van Dyke’s unique book An Album of Fluid Motion [1], which still plays an important
role in our education as a supplement to classroom discussions and lectures; a modern variant of
this book is now available that draws on many contributions to the Gallery of Fluid Motion [2]. If a
reader seeks inspiration, then these collections of still images are a great starting point (and videos
from the annual gallery at the 2016 DFD meeting are available at https://gfm.aps.org/).

As one elegant example of fluid dynamics in nature, which is certain to be of interest to scientist
and lay person alike, consider phalaropes, which are shore birds that have an unusual approach to
meals. Typically, they feed by spinning in circles as illustrated in Fig. 1, which displays still images
of the clockwise movements of a phalarope as it pecks at the surface [Fig. 1(a)], as well as the motion

2469-990X/2017/2(10)/100507(15) 100507-1 ©2017 American Physical Society

https://doi.org/10.1103/PhysRevFluids.2.100507
https://gfm.aps.org/


INVITED ARTICLES

HOWARD A. STONE

FIG. 1. Fluid dynamics and phalaropes. (a) A multiexposure image of a phalarope in three separate positions
as it spins. (b) A single spin of a phalarope with the body outlined. (c) Motion of the centroid of two phalaropes
during multiple spins. (d) Flow patterns imaged with fluorescein dye placed in a dish in the water below the
phalarope. (e) A phalarope feeding on a meal worm while spinning. Panels (b)–(d) are from Ref. [3], the
images in (a) and (c) were extracted by W. Hamner from a video he took, and the photos in (d) and (e) were
taken by National Geographic photographer Bates Littlehales (deceased). (b–d) Reprinted by permission from
Macmillan Publishers Ltd: Nature (London) 384, 121, copyright 1996. I thank W. Hamner for sharing photos
of the phalarope’s dynamics and information about their origin.

of a bird’s centroid [Figs. 1(b) and 1(c)] that highlights the circular motion [3]. This feeding strategy
succeeds because the circular movements produce a vortex, which is documented in Fig. 1(d), where
fluorescein dye is added to water; the vortex generates an up-flow, bringing food up to the surface
from the water below and so the phalarope enjoys its meal. The opening and closing of the shore
bird’s beak involves a surface-tension–induced transport of water drops that contain prey [4], which
is another fluid dynamics problem. It is tempting to ask what other fluid dynamics problems the
phalarope has solved!

B. A spectrum of challenges with complex fluids and multiphase flows

It is worth contrasting the very different ways that complexity can enter fluid mechanics problems.
At one end of the spectrum are single-phase, incompressible high-Reynolds-number turbulent flows,
which mathematically derive their complexity (and mystery) from the coupled nonlinear partial
differential equations that are the continuity and Navier-Stokes equations. Of course, there are
reacting or multiphase high-Reynolds-number flows, but not surprisingly they only add to the
complexity of an already complicated problem.

At the other end of the spectrum are low-Reynolds-number flows, where often the inertia terms
in the equations of motion are negligible and the fluid flow is typically laminar (and it is common
to think about the flow as simple), but the complexity comes through the need to understand a
dynamically evolving interface or suspended particles, which feed back to alter the flow. Thus, the
subject of “complex fluids” refers to flows where the complexity is introduced by the presence
of suspended particles (e.g., cells, polymers) and multiple phases, and includes soft boundaries,
electrokinetic effects (flows influenced or driven by the presence of ions in solutions), etc.; several
such multiphase flow problems form the examples discussed in this article. These problems naturally
link the subject of fluid mechanics to many science and engineering disciplines, and span such
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problems as the flows of emulsions and foams [5] as is common in industrial processes, the impact
of the rheology of blood in studies of hemodynamics (which also is relevant at higher Reynolds
numbers), and the manipulation of particles using chemical gradients (the topic of diffusiophoresis)
in small devices [6–9]. With this definition, some problems are naturally very old, such as the
effective viscosity of a suspension of spheres, which dates back to Einstein’s pioneering work at the
beginning of the 20th century. Related questions now arise in studies of the effective viscosity or
the self-organization of an active suspension [10], such as swimming microorganisms or synthetic
versions of active particles. As a further example, it is now known that small amounts of polymer in
an otherwise Newtonian fluid in a Taylor-Couette flow introduce elastic instabilities [11] even when
the Reynolds number is small and the Newtonian solution is stable; when these effects are present
in common flow configurations, effectively turbulent velocity fluctuations are triggered, so-called
elastic turbulence, again even when the Reynolds number is small [12].

Flow problems involving complex fluids and/or multiphase flows often lead to puzzling initial
observations that require a variety of control experiments to identify the dominant or important
physical processes at play; typically theory, or more frequently modeling, is needed hand-in-hand
with the experiments to obtain qualitative understanding and, hopefully, quantitative descriptions.
For example, in recent years I have been fortunate to work with colleagues to study and understand:

(i) How the oscillations of a free surface are damped by the presence of a thin layer of foam
[Figs. 2(a)–2(c)] [13]

(ii) How the coalescence cascade, whereby a drop deposited on a bath of the same liquid
undergoes a sequence of coalescence and bouncing processes with the drop size progressively
decreasing, is modified to a single, rapid collapse process when surfactants, above a critical
concentration, are present in the drop [Figs. 2(d)–2(f)] [14]

(iii) How the motion of a bubble in a channel with circular cross section, where the continuous
phase is a suspension of small particles, is modified in time as the particles attach to the interface to
form an “armored shell,” which in turn influences the thickness and shape of the thin film between
the bubble and the wall [Figs. 2(g)–2(h)] [15]

(iv) How the dissolution of CO2 in a channel flow of water creates a transverse chemical (ion)
gradient that, via a process called diffusiophoresis, drives the particles to one side of the channel
and so a stream of particle-free water is obtained, which thus suggests “membraneless filtration”
[Figs. 2(i)–2(k)] [9]

(iv) How the viscosity variations in a fluid, due to presence of a sphere hotter or colder than the
surroundings, causes particle motions that modify typical textbook results in low-Reynolds-number
hydrodynamics, including the case of a “Janus” sphere, characterized by a thermal dipole ���, which
couples translation U and rotation ��� of the sphere [Figs. 2(l)–2(m)] [16].

The range of problems studied by the research community is of course much broader. The advances
in microfabrication, high-speed imaging, and imaging or microscopy more generally, along with
advances in computing and open-source software, including excellent software for solving the
Navier-Stokes equations and free-boundary problems, are allowing researchers to tackle ever more
complicated problems. Of course, I would like to believe that there is still a role for simplified models
that help identify dominant features that control a flow.

To appreciate the possible changes in the dynamics that can occur in the simplest versions of
the mechanics of multiphase flows, we note that the presence of an interface introduces the surface
tension γ , which represents a force/length or energy/area. When the gravitational acceleration (g)
matters, then the ratio of γ to ρg, where ρ is the fluid density, introduces a natural length scale,
�c = ( γ

ρg
)1/2, which is known as the capillary length. This length scale compared to a natural

geometric length scale, e.g., �, defines the Bond number, B = �2

�2
c
. Furthermore, dynamical processes

with typical speed v in a viscous fluid (viscosity μ) produce stresses that deform interfaces. The
ratio of viscous stresses, μv/� to typical capillary stresses γ /� associated with interfaces curved
on the scale � introduce the capillary number C = μv

γ
. Thus, even when flows are laminar and

the governing equations are linear, as occurs when the Reynolds number is small, there are two
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FIG. 2. A variety of problems involving complex fluids and multiphase flows. (a–c) An interface between
a liquid and air is perturbed and oscillates; the oscillations are damped by the presence of a thin layer of foam
at the interface. Joint work with Alban Sauret, François Boulogne, Jean Cappello, and Emilie Dressaire [13];
reprinted from A. Sauret, F. Boulogne, J. Cappello, E. Dressaire, and H. A. Stone, Damping of liquid sloshing
by foams, Phys. Fluids 27, 022103 (2015) with the permission of AIP Publishing. (d–f) The damped coalesce
cascade whereby a drop with surfactant coalesces almost immediately with a bath of the same liquid without,
in the absence of surfactants, undergoing a previously documented cascade of rebound-coalescence events.
The scale bars are 1 mm. Joint work with Suin Shim. Figure reproduced from Ref. [14]. (g–h) Translation
of a bubble in a tube with circular cross section, where the continuous phase contains a suspension of small
particles; the particles adhere to the liquid-air interface, alter the local film thickness relative to regions with the
particle armor, and so modify the speed of the bubble. Joint work with Estella Yu and Sepideh Khodaparast [15];
reproduced from Soft Matter with permission from the Royal Society of Chemistry. (i–k) Diffusiophoresis,
which refers to the movement of particles in a chemical gradient, here driven by dissolution of CO2 into water.
The flow is left to right, and the particles migrate to one side of a channel where they can be separated, thus
providing a route to “membraneless filtration” of the original solution. Each of the channels has a width about
100 μm. Figure reproduced from Ref. [9]. Joint work with Sangwoo Shin, Orest Shardt, and Patrick Warren.
(l–m) Translation and rotation of a particle in a fluid in a case where the particle modifies the temperature, and
so the viscosity, in the neighborhood of the particle. Here we show the case of a “Janus” sphere, characterized
by a thermal dipole ���, which couples translation U, and rotation ���. Joint work with Naomi Oppenheimer and
Shahin Navardi. Figure reproduced from Ref. [16].

dimensionless parameters B and C, which can each span a wide range of values depending on the
application, that are needed to understand the shapes of fluid-fluid interfaces, and, correspondingly,
the interface shape typically has a large affect on the fluid flow. Mathematically we can also expect
that the change in the shape of an interface, which impacts the flow and is itself influenced by the
flow, introduces nonlinearity into the problem.

Another area of fluid dynamics that brings new ideas is associated with the advances in
microfabrication. In this case, one can consider flows over surfaces with topography. This topic
has a small literature in part because of the significant complication associated with a complex
boundary, which is compounded if the flow is confined to a thin film (e.g., Refs. [17,18]). To
illustrate the surprises that can occur, we first remind the reader of a laboratory hydraulic jump, as
can be visualized in a kitchen sink when a water jet of sufficiently high speed impacts the smooth
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FIG. 3. Hydraulic jumps. (a) A water jet forms a hydraulic jump in a laboratory sink. (b) The hydraulic
jump formed by a water jet impacting a surface containing a microfabricated substrate with a hexagonal pattern
of circular posts (within the circular patch indicated) outside of which the surface is otherwise smooth. The
three images show the response as the flow rate is increased. The flow rate ranges from 0.5 to 2.5 liters/minute
and is supplied through a needle of 2 mm diameter. The cylindrical posts have radius 50 μm and height 52 μm.
The center-to-center spacing between posts is 200 μm. The region covered by the posts is a circular disk of
radius equal to 2.5 cm (E. Dressaire, personal communication). This problem was studied in Refs. [19,20].
Figure courtesy of E. Dressaire and L. Courbin.

boundary of the sink, as shown in Fig. 3(a). Typically, in these flows the thin film that forms on the
substrate has a large Reynolds number but the flow is laminar.

We asked how this flow might change when the substrate contains a micropattern, such as a
hexagonal pattern of circular posts where the micro texture was O(100 μm) (joint work with E.
Dressaire, L. Courbin, and J. Crest). In the experiments we placed a micron-scale pattern within a
circular patch that was flush with an otherwise smooth substrate. At low jet speeds the hydraulic
jump was nearly circular, but following a step change in flow rate the hydraulic jump increases in
radius and takes on an increasing hexagonal shape [Fig. 3(b)], and the jump even exists on the smooth
part of the substrate. The dynamics here combine flow within a “porous” microfabricated array of
posts with the rapidly flowing thin film above, which brings in the dynamics of the hydraulic jump.
This flow was analyzed by allowing for a macroscopic resistance to flow over the substrate, which
effectively introduces a heterogeneous friction that reflects the hexagonal micropattern [19,20]. The
fact that the hexagonally shaped jump exists outside the region where there is a pattern on the sub-
strate reflects the inertia of the fluid, which is the source of “memory” as the fluid flows over the
surface.

This introduction has strived to briefly provide one view of the nature of fluid dynamics problems
involving the flow of complex fluids and multiphase flows. The breadth of such problems is vast, and
they expose a researcher to a wide range of physics and physical chemistry themes. The dynamics
is rich, and often puzzling at first, and so provides a great training ground (in the view of the author)
for an education in fluid dynamics, especially with regard to the many applications that often arise
across the engineering and science disciplines, including many of relevance in industry.

II. A NEW ANGLE ON THE SAFFMAN-TAYLOR (VISCOUS FINGERING) INSTABILITY

A. Multiphase flows in small devices

One branch of multiphase flows that has exploded, at least in terms of the number of published
papers, if not also in terms of the diversity of ideas and potential applications, is the subject of
droplet microfluidics (e.g., Ref. [21]). Most commonly, a two-phase flow is used to make droplets,
which themselves are used as chemical containers, or measurement volumes for chemical reactions
or the growth of bacteria, or the droplets are solidified by polymerization or chemical reactions; the
two phases can also be used to create threads of various aspects ratios, shapes, and compositional
complexity (e.g., Ref. [22]). From a theoretical perspective the problems are complicated because
of the unknown shape of the fluid-fluid interface, and even numerical solutions are challenging as a
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consequence of the complicated three-dimensional geometries, the presence of thin films, the need
to determine the shape of the free boundary, the possible role of surfactants, etc. In this section,
we describe one such flow problem where a new phenomenon was recognized, a simplified model
proved useful for understanding the dynamics, and the ideas highlighted a new aspect of a classical
instability in fluid dynamics.

B. Historical remarks about viscous fingering

One of the most well-known instabilities in fluid dynamics occurs when a fluid of low viscosity,
often air or water, is injected into a fluid of higher viscosity, usually an oil [26]. In the laboratory
it is common to perform the experiment between two parallel, rigid, impermeable boundaries, and
a common application of the basic ideas is to oil recovery in the porous subsurface of Earth. The
two configurations are related mathematically since it is well-known that the average equations for
viscously dominated flow between two rigid planes, with depth-averaged velocity 〈u〉, are the Darcy
equations μ〈u〉

k
= −∇p + ρg, where k is the permeability, which describe the average motion of a

fluid in porous materials. The injection of a fluid might be anticipated to displace the fluid already
present in the gap or pores, and this is often the desire so as to remove the “in place” liquid, but
reality is different. Instead, the injection of a low-viscosity fluid forms narrows fingers that are the
paths of lower resistance, and the injected fluid flows through the system in a finger-like pattern,
leaving much of the high viscosity fluid in place.

The viscous fingering phenomenon, generally known as the Saffman-Taylor instability, which
derives from a 1958 paper by the named authors [23], had been identified already in the Chemical
Engineering literature in 1952 by Hill [24] in a paper including a one-dimensional stability calculation
and complementary experiments. The Saffman-Taylor contribution was complemented a short time
later by a paper by Chouke et al. [25]. After giving a short calculation making clear the potential for
instability when the interface is displaced from the less viscous to the more viscous fluid, Saffman
and Taylor even commented in their paper that “It appears that this result is not essentially new
and that mining engineers and geologists have long been aware of it.” Homsy [26] provides a
discussion of these earlier papers in an excellent review of viscous fingering and notes that “the
phenomenon under discussion should almost certainly be called the ‘Hill Instability”’ in recognition
of the pioneering 1952 contribution [26, p. 277].

The viscous fingering phenomenon has been studied in a wide variety of systems, e.g., radial
configurations, viscoelastic fluids, etc. To the best of my knowledge prior to the work described next
in Sec. II C and II D there was no known stabilizing mechanism for the viscous fingering instability,
as it is normally discussed in relation to the work of Saffman and Taylor. We next highlight a role
for geometry in altering the traditional stability behavior, and we remark below about the similarity
of these ideas to coating flow problems involving thin films on rollers.

C. Experiments on drop breakup by an obstacle

The dynamics that inspired us were experiments performed by Suzie Protiére, who investigated
the influence of a fixed circular post on droplet motion in a microfluidic channel [27]. A large drop
filled the cross section of a channel containing a second immiscible liquid, and as the drop flowed
along the channel it encountered a post. Two distinct responses were recorded (Fig. 4). When the
drop was more viscous than the surrounding fluid, it was able to deform in such a way that it would
pass around the post through only one of the gaps between the post and the channel wall, and the
drop did not break. In contrast, when the drop speed was above a critical value, then the drop would
flow through both gaps and the drop would break, typically into two unequal volumes.

Extensive experiments convinced us that the key to understanding the dynamics was the motion
of the fluid-fluid interface as it passed through the two narrows gaps between the post and the channel
walls when the drop encountered the obstacle. The two different cases are illustrated in Fig. 5(a).
At sufficiently low speed one menisci appeared to get slightly ahead, and then all of the drop fluid
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FIG. 4. Experiments in a microfluidic channel of height w = 50 μm (into the page) and width b = 120 μm
showing a drop approaching a circular post (radius R = 40 μm). The drop is eight times more viscous than
the continuous phase. A capillary number is defined as C = μdropQ/(bwγ ), where Q is the total flow rate of
the continuous phase, μdrop is the drop viscosity, and γ is the interfacial tension. Images (a)–(e), C = 0.06: (a)
t = 0 ms, (b) t = 2.5 ms, (c) t = 5 ms, (d) t = 11.5 ms, (e) t = 17.5 ms. The drop has broken into two drops
downstream of the post. Images (f)–(j), C = 0.012: (f) t = 0 ms, (g) t = 20 ms, (h) t = 30 ms. (i) t = 70 ms,
(j) t = 82.5 ms. At this smaller value of the capillary number we observe that the drop does not break up.
Figure reproduced from “Droplet breakup in flow past an obstacle: A capillary instability due to permeability
variations,” Europhys. Lett. 92, 54002 (2010) [27].

followed. We refer to this case as an instability. When the drop speed was sufficiently fast, both
menisci moved nearly together and two drops formed downstream of the post, and we refer to the
dynamics of the menisci as stable.

If we simply considered the experiment of Fig. 4 as invasion of one fluid by a second fluid
of higher viscosity, and considered the dynamics as a variant of the viscous fingering problem,
then there should only be “stability” in the sense used above, as the more viscous fluid should
propagate displacing the low-viscosity fluid in front at any interface speed. However, with our focus
on the menisci, we noted that because the meniscus had to move through a gap that had a parabolic
shape there was necessarily a capillary pressure gradient as the motion occurred and the fluid-fluid
interface experienced this gradient of capillary pressure in the flow direction. We then developed
a one-dimensional model combining mass conservation and Darcy’s law for the dynamics of two
competing menisci (volume conservation links the motion of the two menisci), and the model had
the same features as the experiments, as displayed in Fig. 5(b) [27].

These results suggested to us that permeability gradients in the flow direction introduce a feature
that had not been previously investigated from the standpoint of altering the familiar viscous fingering
phenomenon and which could alter the conventional stability criterion. Nevertheless, we note that
there are related problems involving two-phase flows in channels and lubrication geometries that
vary in shape along the flow direction, and the influence of capillary effects on the stability of the
flow had been recognized [28–32]. For example, in the classic printer’s instability, where the thin
films on the surfaces of two closely spaced rotating rollers can experience a transverse or “ribbing”
instability, capillary pressure gradients associated with the position of the meniscus control the
dynamics.

D. Fluid displacement in a slanted Hele-Shaw cell

In order to better relate the observations of the menisci moving through the parabolically shaped
gap in Fig. 4, and to understand the link to the viscous fingering problem, with Talal Al-Housseiny
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FIG. 5. Position of the menisci as a function of time as a drop encounters an obstacle in a channel (as
in Fig. 4) [27]. (a) Experimental results for menisci in the lower (A and C) and upper (B and D) gaps;
μdrop/μcont = 8. C = 0.06 for curves A and B, where the drop breaks. C = 0.012 for curves C and D, where the
drop does not break. Each numbered image shows the position of the menisci. (b) Results of a one-dimensional
mathematical model with dimensionless position along the gap Z versus time τ , where Ceff is a capillary defined
in the model. Figure reproduced from “Droplet breakup in flow past an obstacle: A capillary instability due to
permeability variations,” Europhys. Lett. 92, 54002 (2010) [27].

and Amy Tsai we undertook systematic experiments in a Hele-Shaw configuration [33]. In this case,
however, we inclined the plates slightly (angle α), which introduces a capillary pressure gradient
as a meniscus propagates along the channel. The gradient is not present in the well-studied case of
parallel boundaries.

Experimental results pushing water (low viscosity) into silicone oil (high viscosity) with α < 0
showed that the displacement process was stable at sufficiently low speeds, or capillary numbers,
but that viscous fingers developed above a critical capillary number [Figs. 6(a)–6(d)]. Similarly,
if silicone oil (high viscosity) displaced water (low viscosity) with α < 0, which traditional ideas
would suggest is a stable displacement configuration, we found a critical capillary number below
which the flow develops fingers [Figs. 6(e)–6(h)]. Again, the gradient in geometry gives rise to a
capillary pressure gradient that causes a change in the stability characteristics of the flow.

The two main fluid parameters are the viscosity ratio λ and a capillary number C and they are now
supplemented by a geometric parameter α. We can now anticipate, by analogy with the results in
Sec. II C, that there is a critical capillary number Cc for the stability-instability transition and further
that the angle of the plates, which sets the capillary pressure gradient (proportional to γα), should
affect Cc. For a typical flow speed v, the systematic change in shape brings in the ratio of viscous
stresses to the change in the capillary stress, i.e., μv/(γα) = Cα−1. A linear stability calculation
in the spirit of the classical viscous fingering analysis (e.g., Ref. [26]) leads to the growth rate σ

versus wave number k relation (here θc is the contact angle, h0 is a typical gap height, and w is the
width) [33] (see also the review of coating flows in Ref. [30] where an analogous result is found):

(1 + λ)σ

u0/w
=

(
1 − λ + 2α cos θc

C

)
k − (h0/w)2

C k3. (1)

This result involves Cα−1, which was identified just above by balancing typical viscous and capillary
stresses. We note that the growth rate can change sign for some k when

1 − λ + 2α cos θc

C = 0, (2)
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FIG. 6. Inhibiting and triggering viscous fingering in a slanted Hele-Shaw cell. Figure from Ref. [33].
(a) Schematic of the side view of an experiment where air (nonwetting) displaces wetting mineral oil, μ1 =
25 × 10−3 kg/m/s. (b) Top view of experiment results where viscous fingering is inhibited at C = 6 × 10−3.
(c) Top view of experiment results where the interface is unstable at C = 1.6 × 10−2. (d) Stability diagram
for transitions from unstable (open circle) to stable (filled circle) at a critical capillary number Cc, determined
experimentally (half-filled circle) and predicted theoretically (red dashes). Note: For this viscosity ratio, the
interface is always unstable in a uniform Hele-Shaw cell. (e) Schematic side view of the experimental setup
where wetting silicon oil, μ2 = 25 × 10−3 kg/m/s, displaces nonwetting water, μ1 = 1 × 10−3 kg/m/s. (f)
Top view where fingering is triggered C = 4 × 10−4. (g) Top view for C = 1.6 × 10−3 and the system is
stable because disturbances decay in time. (h) Stability diagram showing transitions from stable (filled circle)
to unstable (open circle) at a critical capillary number Cc, determined experimentally (half-filled circle) and
predicted theoretically (red dashes). For this viscosity ratio, the interface is always stable in a uniform Hele-Shaw
cell. Figure reproduced from Ref. [33].

which identifies a viscosity-ratio–dependent critical capillary number Cc = 2α cos θc

λ−1 . This result is
consistent, at least qualitatively, with the experimental results shown above and highlights that there
is a critical speed or capillary number, dependent on α (geometry), for the transition from stable to
unstable displacements. As one other example, this physical idea of the role of a gradient of capillary
pressure impacting viscous fingering can be important in fluid displacement in a Hele-Shaw cell
with an elastic boundary (e.g., Refs. [34,35]).

III. RETENTION VERSUS FAILURE OF LIQUID-INFUSED SURFACES

In recent years it has become appreciated that making materials that expose a flow to a substrate
with an interdigitated set of liquid and solid boundaries offers the potential for an effective slip
boundary condition [36–39]. Such an interface can promote the sliding of drops along the surface,
which is advantageous for self-cleaning surfaces. The surfaces, as they can contain a liquid with a
chemistry different than the solid, have been shown also to be effective for minimizing icing and
adhesion of biomaterials.

A. An effective slip length

The presence of a fluid-solid boundary suggests decreased drag when the surface is adjacent
to a laminar or turbulent flow. Indeed, there is a large body of recent literature on this topic,
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including many numerical simulations, all of which implicitly assume that the fluid-solid boundary
is retained in the presence of the flow and which report some measure of an “effective slip boundary
condition.” I note that Eric Lauga and I reported in 2003 a theoretical study for the effective slip
length (a macroscopic characterization of a channel flow) for flow over surfaces with regions of
slip imbedded in a no-slip surface [40]; see also Ref. [41]. Our results highlighted the idea that
in channel flows the typical laboratory measurements that might suggest slip, e.g., pressure drop
versus flow rate measurements, are really probing macroscopic features, not the microscopic details
of a local slip length. In particular, a small fraction of a no-slip surface on an otherwise perfect
slip boundary has a significant effect in reducing the effective slip length of the macroscopic
flow.

In the Lauga-Stone paper we referenced two papers from 1972 by J. R. Philip, who had originally
posed similar boundary-value problems for flow past surfaces with periodic distributions of no-slip
and perfect slip boundaries, such as those studied in our paper [42,43]. As I recall, I found these
papers by accident while browsing research journals in a library, which I suppose happens only
rarely now. Amusingly, in the 30 years prior to 2003, Philip’s two papers had been cited only five
times and one time, respectively, while in a little more than the 10 years since we brought these
nice results to the attention of the fluid dynamics community, Philip’s papers have been cited more
than 140 times and 70 times, respectively. Of course, one reason for this fact is the relatively recent
interest in near-surface fluid dynamics because of the ability to fabricate and image at the submicron
scale.

B. Flow over liquid-infused surfaces

In recent years my research group tackled the question of whether or not such liquid-infused
surfaces can retain the liquid when exposed to a shear stress. Thus, we chose to study how these
materials might fail when exposed to flow, and if so what design strategies might be invoked to retain
the fluid. Jason Wexler and Ian Jacobi led this work, developed the experimental setup illustrated in
Fig. 7, and reported experiments and a first mathematical model for understanding our results [44].
In particular, one side of a channel contains many long narrow grooves, typically about 10 microns
× 10 microns in cross section [Fig. 7(d)]. These grooves are filled with a fluid of one viscosity
and are then exposed to a channel flow. The flow tends to drain the trapped immiscible fluid until
a steady state configuration is established whereby a length L∞ of liquid is retained in the grooves
[Fig. 7(c)].

In the notation commonly adopted in the literature, the fluid in the groove has viscosity μ

and the external phase has viscosity μext = Nμ, where the viscosity ratio N is one dimensionless
parameter. We worked in conditions of low Reynolds numbers and for the flow rate in the channel
Q, which is a natural control variable, we observed that for any N , the retention length L∞ ∝ Q−1

[Fig. 8(a) [45]]. Effectively the applied shear stress τ∞ acting on the interface, which is proportional
to Q for a viscously dominated flow, drags trapped liquid along the length of the channel (the pressure
gradient along the channel also plays a role), and for these viscous flows, all the data collapse with
L∞ ∝ τ−1

∞ [Fig. 8(b)] and the prefactor is a function of N and ratios of geometric parameters that
describe the channel cross section. The interface between the two liquids is curved, and so a capillary
pressure gradient is established in the trapped liquid and generates a back flow, which maintains
some trapped liquid; a quasisteady state is established balancing capillary effects (proportional to
the surface tension γ ) with the applied stresses, i.e., L∞ ∝ γ /τ∞. In further work with Ying Liu and
Clarissa Schonecker, we developed a detailed model to rationalize our measurements for all N [45]
[Fig. 8(c)].

Our results allow us to develop design strategies for retaining the trapped lubricant in a
liquid-infused substrate, at least if a maximum surface shear stress can be estimated. My Princeton
colleagues Marcus Hultmark and Lex Smits have been applying these ideas in turbulent channel
flows, where the Reynolds numbers are obviously much larger, but the local near-surface flow is
characterized by the (turbulent) shear stress.
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FIG. 7. Experiments with flow over a liquid-infused substrate. (a) Cross section of the microfluidic channel.
One fluid fills the main channel, and a second immiscible fluid fills the grooves on one side. (b) Planform view
showing the device before drainage begins. Here the 50 longitudinal grooves at the center of the device fluoresce
green. (c) Snapshots of a shear-driven drainage experiment subject to an aqueous flow rate Q = 2 ml/min. (d)
Micrograph of the micropattern used to mold the grooves, which appear dark gray while walls appear light
gray. Figure reproduced from Ref. [44].

IV. VORTEX BREAKDOWN AND FLOWS IN COMMON T-JUNCTIONS

As a final example of a “complex” flow, I describe single-phase and multiphase studies we have
performed in recent years in a common engineering configuration of a T-junction [see Fig. 9(a)]
and other simply branched junctions at other angles. This geometry is typical of a wide range of
fluid distribution systems. In particular, for a channel with cross-sectional dimension �, average
flow speed 〈u〉, density ρ and viscosity μ, our interest is in high-Reynolds-number laminar flows,
typically Re < 1000, where Re = ρ〈u〉�

μ
. It is natural for a reader to expect that this flow is well

studied, both numerically and experimentally, and well understood. As I will now explain, the former
is true and the latter is false, at least as far as I have been able to learn for the range of Reynolds
numbers and the flow details that have been the focus of our work.

To describe how we (joint work with Daniele Vigolo and Stefan Radl) stumbled on this problem,
I show in Fig. 9(b) experimental observations of the flow of bubbles (in a water flow) through a
T-junction when Re = 980 [46]. Naturally, one expects that the flow should transport the bubbles
through the T-junction. To our surprise bubbles get trapped in the junction and accumulate. Gravity
does not matter, but the density difference between the bubbles and the liquid is important. We have
found no reference in the literature to this phenomenon and in fact now understand it as primarily (for
a low number density of bubbles) controlled by a single-phase flow phenomenon, and bifurcation,
in this channel configuration.

From three-dimensional numerical simulations of a single-phase flow at comparable Reynolds
numbers we were able to understand structural features of the flow and systematic changes to the
flow as the Reynolds number is increased. The flow structures are surprising and help us rationalize
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FIG. 8. Measurements of the retention length as a function of the control parameters for flow over liquid-
infused surfaces (as in Fig. 7). Figure from Ref. [45]. (a) Retention length L∞ versus channel flow rate Q for
different viscosity ratios N (viscosity of the external phase, μext, relative to viscosity of the trapped lubricant).
(b) Rescaled steady-state length L∞, normalized by a function of N and geometric parameters (see [45]) as a
function of the shear stress τ∞, where τ∞ = 6μextQ

WH 2 and W and H are, respectively, the width and height of the
main channel. The symbols are defined as in (a). (c) Normalized steady-state length L∞τ∞w/(γ h), where w

and h are, respectively, the width and height of the grooves, as a function of N . The solid and dashed curves
are models described by Ref. [45]. Figure reproduced from Ref. [45].

our experimental observations. To illustrate these features we show in Fig. 10 results obtained with
Kevin Chen and Clancy Rowley that highlight the appearance of internal stagnation points as the
Reynolds number increases [47], as recognized also by Ref. [46]. Above a critical Reynolds number,
which is about 300 for the T-junction, and is approximately independent of the radius of curvature
of the corners (e.g., see Fig. 2 in Ref. [47]), the flow develops internal circulation zones that are
responsible for trapping of low-density objects, such as the bubbles in Fig. 9(b).

It is well known that when inertia matters, such as occurs at finite Reynolds numbers, flow around
a bend as in Fig. 9(a), similar to flow in a gently curved pipe (first studied by Dean [48]), involves
streamlines that have approximately helical paths and streamwise vorticity. There is axial vorticity
and the streamlines throughout the flow begin and end at infinity. When the swirl speed is sufficiently
fast relative to the axial flow speed, it is also known in simpler geometries that internal stagnation
points can appear so that there are regions of closed streamlines; a bifurcation occurs in the flow. This

FIG. 9. Flow in a T-junction, with flow entering at the top and leaving out both sides (approximately
symmetrically), where small air bubbles appear black. (a) A schematic of our use of electrolysis to generate
bubbles in the flow. (b) A time sequence, with images taken every 125 μs, of the bubbly flow showing bubble
trapping during flow of water in a T-junction; lateral size L = 4.8 mm, Re = 980. Figure reproduced from
Ref. [46].
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FIG. 10. Vortex breakdown in a T-junction. (a) A numerical study of flow in a T-junction geometry. (b)
Streamlines of the flow where color indicates speed(white is high and black is low) for Re = 560, with radius
of curvature of the corners R = 0.4L. Yellow illustrates regions of significant vorticity as determined by
the Q criterion. (c) For the conditions of (b), the streamlines illustrate the four recirculation regions (cyan),
which indicate stagnation points in the flow so that there are effectively regions of closed streamlines. Figure
reproduced from Ref. [47]. Reprinted from K. K. Chen, C. W. Rowley, and H. A. Stone, Vortex dynamics in
a pipe T-junction: Recirculation and sensitivity, Phys. Fluids 27, 034107 (2015), with the permission of AIP
Publishing.

phenomenon is known as vortex breakdown, which has its own somewhat specialized, and indeed
apparently somewhat controversial, literature, e.g., ideas based on reorientation of vortex lines [49]
versus subcritical to supercritical transitions of inertial waves [50–52]. Given the geometry, the
Reynolds number is sufficient to characterize both the flow as the mean flow speed varies and the
bifurcation in the flow structure where vortex breakdown occurs.

In work continued by Jesse Ault, Francois Gallaire, and Andrea Fani we have argued, as first
suggested by Ref. [46], that the vortex breakdown phenomenon occurs in the ordinary T-junction
flow when the Reynolds number exceeds a critical value and is responsible for the trapped bubbles
as well as similar multiphase flow phenomenon in angled junctions [53]. Our interpretation of
the detailed numerical simulations showed that above the critical Reynolds number the subcritical
character of the flow set the recirculation that highlights the closed streamline region of vortex
breakdown. Also, we reported the variation of the critical Reynolds number Rc with the angle of
the junction α, and it is an open question whether there is a simple functional form, analogous to
an effective Dean number, for the curve Rc(α). It seems that no one had previously observed or
documented, in experiments or even single-phase flow simulations, these systematic changes with
Reynolds number in these common flow configurations. I would like to think that these observations
and ideas might be relevant in some practical situations.

V. CONCLUDING REMARKS

It is reasonable to ask what is the driving force for the different problems discussed in these pages.
In my case I will admit to finding continual fascination with the kinds of questions, and applications,
that arise in topics represented broadly in the multiphase and complex fluids areas. Talking with
colleagues from all over the world is a continual source of education, joy, and surprises, as the
topics in complex fluids touch so many disciplines. I suppose one might seek a unifying principle
or set of principles (beyond the basic ideas of mechanics and fluid dynamics), but I can only find an
enthusiastic approach for tackling, usually in collaboration, the problems in this area. I recognize
that there can be underlying simple balances and scaling laws, sometimes already anticipated in
classical problems available in the field, that perhaps can be identified with new experiments and
models, and that asking good questions, which often happens in my case accidentally, is the key to
moving forward.
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