
INVITED ARTICLES

PHYSICAL REVIEW FLUIDS 2, 100503 (2017)

Transport of particles, drops, and small organisms in density stratified fluids
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Sedimenting particles and motile organisms are ubiquitously found in oceans and lakes,
where density stratification naturally occurs due to temperature or salinity gradients. We
explore the effects of stratification on the fundamental hydrodynamics of settling particles,
rising drops, and small organisms. The results of our direct numerical simulations of the
sedimentation of particles show that the presence of vertical density gradients in the water
column can substantially affect the settling dynamics of a particle, interaction between
a pair of particles, and settling rates and microstructure of suspension of particles. We
show that elongation of particles affects both the settling orientation and the settling rate
of particles in stratified fluids, which will have direct consequences on the vertical flux of
particulate matter and carbon flux in the ocean. We further demonstrate an unexpected effect
of buoyancy, potentially affecting a broad range of processes at pycnoclines in oceans and
lakes. In particular, stratification has a major effect on the flow field, energy expenditure,
and nutrient uptake of small organisms. In addition, the role of stratification in pattern
formation of bioconvection plumes of algal cells and in biogenic mixing is investigated.
In particular, the numerical approach allows for considering the effects of background
turbulence and hydrodynamic perturbations produced by swimming organisms, shedding
light on the contribution of organisms in the mixing process in aqueous environments.
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I. INTRODUCTION

Density stratification—due to salinity and/or temperature gradients—is a characteristic feature of
aquatic systems ranging from ponds to oceans [1,2]. The layers, O ∼ 1−1000 m in length, across
which there is a sharp change in the water density are called “pycnoclines.” These pycnoclines
are associated with intense biological activity (e.g., formation of algal blooms) and directly impact
carbon fluxes into the ocean by inhibiting the descent of marine snow particles (aggregates > 0.5 mm
in diameter) [3]. An increase in the vertical density stratification due to the climatic changes [4]
promotes further accumulation of marine snow [3] and, consequently, the formation of phytoplankton
blooms [5]. The latter leads to enhanced sequestration of carbon dioxide as the phytoplankton in
the ocean surface consume dissolved CO2 for photosynthesis, and some of them sink to the ocean
bed when they die. This “biological pump” is responsible for transferring about 300 million tons of
carbon from the atmosphere to the oceans every year [6,7].

Algal blooms formed in freshwater systems are detrimental, and they are known to significantly
disrupt water supply systems [8]. On an ecological level, harmful algal blooms (HABs) have an
adverse effect on the coastal biota. Toxins released from unicellular marine algae (e.g., dinoflagellates
and diatoms) accumulate in the tissues of fish and invertebrates [9,10], resulting in marine organism
mortalities and fish kill. Density stratification acutely affects algal bloom formation [3,8,11], leading
to low dissolved oxygen levels, and food web disruption. Events such as a sudden rain storm,
discharge of submarine, and freshwater runoff from rivers can affect the formation of bioluminescent
plankton blooms and harmful algal blooms [12,13], concomitantly affecting hydrodynamic, acoustic,
and optical performances of sea platforms [14]. The aforementioned environmental consequences
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make it imperative to develop a fundamental understanding of transport, and accumulation, of
particles and organisms in density stratified fluids.

In spite of the widespread implications of stratification on the swimming of microorganisms and
settling of particles, the underlying hydrodynamic intricacies remain poorly understood. In oceans
and lakes, the ambient fluid density varies on a length scale of Lρ = �ρ0/γ ∼ O(1) in meters, where
�ρ0 is a reference density variation (e.g., 27 kg m−3) and γ (0–2 kg m−4) is the vertical gradient in
fluid density. This length scale is much larger than the characteristic size of the marine organisms and
particles (in the range of micrometers to centimeters). However, it has been recently shown that the
appropriate length scale for incorporating density variation effects is Ls = (μκ/γg)1/4, where μ is
the dynamic viscosity of water, κ the diffusivity of the stratifying agent, and g the acceleration due to
gravity [15]. This length scale has been previously introduced in a different context (diffusion induced
flows along inclines in a stably stratified fluid) by Phillips [16]. Importantly, typical values of γ

show that Ls is often as small as a fraction of a millimeter (hence Ls � Lρ), thus overturning
the notion that the fluid mechanics of aquatic organisms and small particles is unaffected by
stratification.

The presence of a density gradient leads to significant modifications in the flow physics as a particle
settles, or an organism swims, through the stratified fluid. In a homogeneous fluid with kinematic
viscosity ν, the motion of a particle or organism of characteristic length L and characteristic velocity
Wp is well described by the Reynolds number, Re = WpL/ν. In a stratified fluid, the buoyancy force
and the diffusivity of the stratifying agent are also important. The buoyancy force is represented
by the Froude number, Fr = Wp/(NL), where N = (γg/ρ0)1/2 is the Brunt-Väisälä frequency, the
natural frequency of oscillation of a vertically displaced fluid particle in a stratified fluid. Moreover,
the difference between the momentum diffusivity and the diffusivity of the stratifying agent κ

impacts the settling of particles or swimming of organisms in stratified fluids and their ratio can be
characterized by the Prandtl number, Pr = ν/κ . The list of dimensionless parameters are given in
Table I. In addition to introducing new dimensionless groups, stratification causes major qualitative
differences in flows in the vertical and horizontal directions. The horizontal flows of stratified fluids
have been extensively studied [17–19] and the drag reduction due to internal waves is well understood
[20,21]. Spherical particles settling through sharp density interfaces show an increase in their drag
coefficient [22–25]. Our recent studies have explored the flow fields of organisms and dynamics of
particles swimming or settling in stratified fluids. The present paper discusses the fluid mechanics
governing transport of organisms and particles in the context of the following questions:

(a) How does stratification influence sedimenting particles, rising drops, and swimming
organisms?

(b) Does density stratification lead to enhanced clustering in a suspension of particles, drops,
and organisms?

(c) How does elongation of particles modify their motion in a stratified water column?
(d) What is the role of density stratification on bioconvection plumes in a suspension of algal

cells?
(e) To what extent do swimming organisms contribute to biogenic mixing in stratified oceanic

environments?
These questions are addressed by investigating the role of stratification in the suspension of

particles and organisms by utilizing three-dimensional fully resolved computational fluid dynamics
tools. In Sec. II, governing equations, relevant dimensionless parameters, and the computational
framework based on a semianalytic approach and direct numerical simulation (DNS) are introduced.
In Sec. III, results of the fully resolved, three-dimensional DNS of the unsteady settling of rigid and
deformable drops in stratified fluids are provided. Settling dynamics are discussed for individual
particles, pairs of interacting particles, and suspension of particles, and new mechanisms for
aggregation of particles in the presence of background density gradient are introduced. Moreover,
one aspect of geometrical complexity is addressed by characterizing the effect of elongation of
particles on settling dynamics in a density stratified fluid. In Sec. IV, the results of modeling the full
nonlinear effects of stratification on motility are presented and it is shown that a frequent feature
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TABLE I. List of dimensionless parameters important in the study of settling particles and droplets in
stratified fluids. Here, ρp denotes particle density and d is the particle diameter, ρ0 is a reference density of the
background fluid, μ is the dynamic viscosity of the fluid, ν is the kinematic viscosity, κ is the diffusivity of
the stratifying agent, g is the gravitational acceleration, and N = (γg/ρ0)1/2 is the Brunt-Väisälä frequency. In
the case of multiparticle systems, Np denotes the number of particles and L is the system size.

Dimensionless number Definition Description

Reynolds number, Re ρ0Wpdp/μ Ratio of inertial to viscous forces
Froude number, Fr Wpdp/N Ratio of inertial to buoyancy forces
Richardson number, Ri ρ0N

2d3
p/(μWp) Ratio of buoyancy to viscous forces

Prandtl number, Pr ν/κ Ratio of momentum diffusivity to the
diffusivity of a stratifying agent

Density ratio, η ρp/ρ0 Ratio of particle density to the reference
density of the fluid

Archimedes number, Ar ρ0gd3
p(ρp − ρ0)/μ2 Ratio of gravitational to viscous forces

Volume fraction, φ Npπd3
p/(6L3) Fraction of the domain occupied by particles

of the physical environment—density stratification—can have direct ecological consequences on
motility-related traits, including energy expenditure, nutrient uptake, and predator-prey interaction.
Furthermore, stratification impact on bioconvection plumes of algal cells and biogenic mixing
induced by swimming organisms in the presence of background turbulence are investigated. Finally,
in Sec. V, concluding remarks and future directions are discussed.

II. GOVERNING EQUATIONS

The vast majority of organisms and particles being considered in our studies are “small”
(micrometers to centimeters), and their motion is predominantly in the viscous flow regime. The
prevalence of small particles is apparent from the observations of particle size spectra [26], which
show that the abundance of marine particles and organisms scales with the inverse of their size to
the fourth power. Even then, the basics of particle and organism motion (and/or accumulation) in the
presence of density stratification have been marginally explored from a fluid dynamics perspective,
thus calling for fundamental research in this topic. In this section, we discuss both a semianalytical
approach, based on point-force singularities, and fully resolved simulation techniques to accurately
capture the physics of the stratification impact on the settling of particles and swimming of marine
organisms in environmentally relevant setups.

The equations governing the fluid motion under the Boussinesq approximation are

∇ · u = 0, (1)

ρ0
∂u
∂t

+ ρ0u · ∇u = −∇p + μ∇2u + ρg + fb, (2)

∂T

∂t
+ u · ∇T = κ∇2T , (3)

where u = (u,v,w) is the velocity field, t is time, p is the pressure, ρ is the fluid density, g =
−g k̂ is the acceleration of gravity, with k̂ the vertical unit vector, positive upwards, and fb is an
external body force. The first equation states that the fluid is incompressible. The second equation
expresses conservation of momentum, under the assumption that the effect of variations in fluid
density is only considered in the body force ρg (Boussinesq approximation). The last equation
describes how temperature/salinity changes due to advection and diffusion of the stratifying agent.
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(a) (b) (c) (d)

FIG. 1. Stratification dramatically alters flow fields of point-force singularities. A vertical point force is
shown (a) in a stratified fluid, (b) in a homogeneous fluid, and (c) between two horizontal walls. Black lines
are streamlines; colors indicate the magnitude of vertical velocity, w. (d) The results show that stratification
induces a sharper decay of fluid velocity, wS , with distance from the disturbance compared to the homogeneous
fluid, for both a Stokeslet (red, green) and a stresslet (blue). (Reprinted from [15] with the permission of APS
Publishing.)

Equations (2) and (3) are coupled as the fluid density is related to the temperature variation by
ρ = ρ0(1 − αT ), where α is the thermal expansion coefficient and ρ0 is the reference density of the
fluid, chosen as the density of the background fluid at the initial location of the particle. It should
be noted that the same governing equations apply to salt stratified fluids. In that case, T , κ , and α

represent the salt concentration, diffusivity, and salinity contraction coefficient, respectively.

A. Fundamental singularities in a stratified fluid

The far-field velocity generated by a settling particle and a motile organism in the Re = 0 limit
can be described by the point-force singularities, a “Stokeslet” and a “stresslet,” respectively. Here,
we consider steady viscous flow induced in a vertically stratified fluid by a point force f. In this
case the external body force in Eq. (2) is fb = fδ(r), and inertial terms are neglected. The resulting
linearized equations can be solved analytically in Fourier space after linearization, followed by
numerical inversion to recover the solution in the real space [27]. The details of fundamental low-Re
singularity solutions of the flow induced by a point force and a force dipole are shown in Ref.
[15]. These semianalytical solutions hold for small isopycnal deflections and do not account for the
nonlinear convection term in the transport equation.

The semianalytical results reveal that stratification dramatically alters the flow field generated
by a point force (Stokeslet) by creating toroidal eddies [Fig. 1(a)], which stand in stark contrast
to the monodirectional flow of a Stokeslet in a homogeneous fluid [Fig. 1(b)]. This is due to
the suppression of the vertical motion of the fluid, which leads to the formation of recirculation
patterns. Eddy formation is consistent with the tendency of stratification to hinder vertical motion,
as highlighted by comparing the recirculating patterns formed due to stratification with the case
where stratification is replaced by two horizontal walls. In the latter case, a qualitatively similar eddy
occurs due to the confinement (Fig. 1(c); see also [28]).

Point-force singularities only provide information about the far-field flow generated by a moving
particle and swimming organism in small-Reynolds- and Péclet-number regimes, whereas a full
description requires numerical solution of the nonlinear equations. To this end, Ardekani and co-
workers have developed three-dimensional, fully nonlinear simulations, investigating the motion of
a single settling sphere [29], a motile organism [30], an elongated particle [31], and a rising droplet
[32], as well as suspensions of particles [33], drops [34], and organisms in multibody systems in the
presence of stratification, as well as background turbulence [35]. In this review article, we summarize
these studies.
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B. Fully resolved numerical simulations

In this section, we discuss the numerical tools that are used to solve the full nonlinear equations
of motion to understand the effects of stratification on the motion of suspension of particles and
organisms. Ardekani and co-workers have developed advanced numerical tools to study particle
motion in viscous fluids [36,37] and extensively tested them against benchmark problems. The
code is based on a finite-volume method. The Navier-Stokes equations are solved on a nonuniform
staggered grid, using an operator splitting technique. Convection and diffusion terms are discretized
using the QUICK (quadratic upstream interpolation for convective kinetics) and central difference
schemes, respectively [34,38]. The time evolution is obtained using a second-order Runge-Kutta
scheme. Objects of general shape and multiple particles [37] are resolved using a distributed
Lagrange multiplier method [39], where the equations of fluid motion are first solved for the
entire computational domain including the inside of the particle, and then a rigidity constraint is
implemented inside the particle by means of Lagrange multipliers. The details of the projection step
and calculation of the rigidifying force are provided in our previous publications [29,37].

The same numerical approach can be applied to self-propelled organisms, for which the kinematics
of deformation are specified as an input and the flow field is computed by solving the momentum
equation with an added body force fb [40], which models the presence of the organism (see below).
The density in the inertial terms of the momentum equation would be equal to ρp in the “organism
domain” and ρf in the fluid domain. By defining the body force as

fb = f∗
b + C

ρφ

�t
(Up + ωp × r + ui − u) (4)

inside the organism (and zero elsewhere), we can enforce the organism to move with the desired
deformation kinematics, where f∗

b is the force computed from the previous iteration, C is a
dimensional constant (whose value does not affect the final converged solution), and φ is an
indicator function defined to be φ = 1 inside the particle and φ = 0 outside. The velocity field
inside the organism is decomposed into a velocity due to the rigid body motion of the organism,
up, plus a solenoidal velocity, ui , imposed inside the swimmer causing its propulsion. The former
is calculated as up = Up + ωp × r, where Up and ωp are the organism translational and angular
velocities calculated as [29,40]

Up = 1

Mp

∫
Vp

ρp(u − ui) dV and Ipωp =
∫

Vp

ρpr × (u − ui) dV, (5)

where Vp, Mp, and Ip are the volume, mass, and moment of inertia of the organism. It is important
to mention here that an appropriate choice of ui will enable us to model the complex movement
of organisms ranging from algae to jellyfish. The details of the computational method are given
in recent publications on the suspension of squirmers in a homogeneous fluid [40,41], rod-shaped
swimmers [42], and motion of an undulatory flagellated swimmer [43].

III. SETTLING AND RISING OF RIGID PARTICLES AND DEFORMABLE
DROPS IN STRATIFIED FLUIDS

A. Individual particles

1. Settling of spherical particles in sharp and continuous stratifications

Gravitational settling of a single particle and droplet has been extensively studied in sharp density
gradients [22,44–46]. In particular, it was shown experimentally that a sphere settling through a
sharp density interface experiences an order of magnitude larger drag force due to buoyancy effects
compared to settling in a homogeneous fluid [22] and that the sphere is subject to long residence times
at the sharp interface [44]. In linear stratified fluids, the study of steady state settling motion showed
that in both inertial and viscous regimes the drag on the spherical particle significantly increases
[23,25]. We have recently conducted numerical simulations of the settling of a rigid sphere in linearly
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FIG. 2. Settling dynamics of a rigid particle and a deformable drop in linearly stratified fluids for various
Froude numbers Fr (smaller Fr corresponds to stronger stratification). (a) The temporal evolution of the settling
velocity of a rigid particle for various strengths of the stratification. τ = √

dp/g denotes the characteristic time
and W = (ρp − ρ0)gd2

p/(18μ) is the Stokes terminal velocity. (b) A phase diagram of distinct deceleration
dynamics. (c) Generation of lee waves around the particle, evident from contours of the velocity magnitude.
Green lines show the lines of constant phase calculated from the method of stationary waves. yp denotes the
transverse position of the particle. (d) Rising motion of a deformable drop in a linearly stratified fluid over the
course of time (t∗ = t/τ ). Color maps show dimensionless vorticity ω∗ = ωτ contours and solid lines illustrate
constant density lines. (e) The effect of stratification on the deformation of a drop. The drop deformation is
quantified by χ = I1/I2, where I1 and I2 are the largest and smallest eigenvalues of the second moment of
inertia tensor, with χ = 1 corresponding to a spherical drop. Stronger stratification (smaller Froude number)
leads to a more spherical drop (χ ∼ 1). [Panels (a)–(c) reprinted from [29] with the permission of Cambridge
University Press and (d), (e) reprinted from [32] with the permission of AIP Publishing.)

stratified fluids, investigating the transient dynamics of particle sedimentation. Our simulation results
reveal a wealth of dynamics offered by the combination of buoyancy forces and inertial effects on the
particle settling under gravity [see Fig. 2(a)] [29]. We report that unlike the settling in a homogeneous
fluid, where the particle velocity monotonically increases before reaching a constant settling speed,
settling of a particle in stratified fluids shows a maximum in the settling velocity, with the magnitude
of this maximum being reduced at stronger stratifications. This suppression of vertical motion is then
followed by distinct dynamical behaviors depending on the strength of the stratification: (i) At weak
stratifications, after reaching a maximum, the settling velocity drops continuously until the particle
stops [Fig. 2(a), blue line]. (ii) Stronger stratifications lead to emergence of oscillations in the particle
velocity [Fig. 2(a), light green line]. We found these oscillations to be induced by the formation
of primary, secondary, and tertiary vortices behind the particle; such vortex structures around a
settling particle are absent in homogeneous fluids. (iii) At even stronger density gradients, oscillation
amplitude grows such that the particle stops settling momentarily, levitates for a short time, and then
reverses its motion [Fig. 2(a), red line]. At this point, the particle experiences monotonic deceleration,
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oscillation, or even levitation depending on the strength of the stratification. A classification of the
particle’s dynamical behavior can be obtained from a phase diagram based on the Froude number
and the density ratio [see Fig. 2(b)]. Furthermore, a closer look into the oscillations in the particle
settling velocity reveals that the oscillation frequency scales with the Brunt-Väisälä frequency,
and lee waves form around the particle [see Fig. 2(c)]. Moreover, recent experiments by Okino
et al. [47] have examined time-dependent velocity distribution around a sphere settling with constant
speed in linearly stratified fluids at moderate Reynolds numbers.

In addition to a rigid particle, we have also studied the rising motion of a deformable drop in
linearly stratified fluids [32]. We found that much like the descent of a rigid particle, the ascent of
a deformable drop is markedly suppressed by the presence of density stratification, and secondary
vortex structures are seen to manifest around the drop [see Fig. 2(d)]. More importantly, stratification
effectively hampers the deformation of drops and for strong stratifications a drop remains closely
spherical [see Fig. 2(e)]. In addition to rigid particles and deformable drops, the rising motion of
bubbles has been recently studied through experiments on sharp density interfaces [48]. It was
shown that, depending on the size of the bubble, it can experience straight or zigzag trajectories at
the interface leading to stable and unstable drift volumes behind the bubble, potentially impacting
the mixing induced by rising bubbles in stratified fluids.

2. The impact of particle elongation

For a long time, the understanding of particle motion in stratified fluids remained limited to
the motion of spherical particles but it is known that many marine particles and organisms are
not perfectly spherical [49]. In fact, a majority of phytoplankton are spheroid-shaped (aspect ratio
∼5) [50], and slender shapes (rods or needles) outnumber shapes such as spheres and disks. The
sedimentation of such elongated particles in homogeneous fluids has been studied in detail [51–54],
but their behavior under stratification remained unexplored or elusive for quite a long time. In
the Stokes regime, the orientation of an ellipsoid does not change as it settles in an unbounded
quiescent fluid (due to the “reversibility” of the Stokes flow) [55]. Drag anisotropy dictates that
the hydrodynamic drag on an ellipsoid settling parallel to its shorter axis is larger than the one
descending parallel to the longer axis. This means that the settling rates in Stokes flows are orientation
dependent. However, inertial effects significantly modify the settling dynamics—due to upstream
wake formation—by causing rotation of the elongated particles as they settle. Thus any ellipsoid
that begins descending in a direction parallel to its major axis in an inertial regime, ultimately settles
along a direction that is parallel to its minor axis (broadside settling) [54].

For a particle settling at Re � 1 in a stratified fluid, we find that the settling dynamics is affected
differently. A torque acts on the particle due to the differential buoyancy experienced by its opposite
ends [31]. This buoyancy-induced torque can have important consequences on the retention of
particles at density interfaces which affects the formation of thin particle layers and algal blooms
[2]. Our simulations for the motion of an ellipsoid settling through a sharp density interface are
shown in Fig. 3(a). As stratification is increased in the form of a buoyancy jump, the ellipsoid’s
minor axis aligns with the vertical direction near the interface and then retains its original orientation
after crossing the density divide [see Fig. 3(b)]. The results are very different though, for linear
stratification. Here the ellipsoid reorients, once again due to stratification effects, but this time it
is the major axis that aligns itself with the vertical direction. Thus, depending upon the intensity
(density gradient magnitude) and type of stratification (sharp jump vs. continuously varying) we
observe qualitatively and quantitatively different settling behaviors of elongated objects.

B. Dynamics of suspensions

While the effects of the density stratification on the reduced settling velocity of a single sphere
have gained significant attention in the research community [15,22,25,29,44], the same cannot be
said about the settling rates and accumulation trends of a suspension of particles and/or organisms
in stratified fluids. This is in part due to the complexity of the problem which involves coupling
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FIG. 3. The settling motion of an ellipsoid at (a) a sharp density interface and (b) a linear stratification.
Shown in (a) are the normalized density contours. In (b), the solid lines show the isocontours of density and
the color map shows the normalized vorticity contours. (Reprinted from [31] with the permission of APS
Publishing.)

between particle-particle hydrodynamic interaction and density stratification. We employed DNS
to resolve the motion of particles and organisms and quantify the effect of density stratification on
possible cluster formation. We quantified the flow field around a suspension of particles settling in
stratified fluids, and provided a correlation between the mean settling velocity of the suspension and
the extent of density stratification.

The relative velocity of the particles with respect to the surrounding stratified fluid is represented
by the “average slip velocity,” Ws = Wp − w̄f , where Wp is the mean velocity of particles averaged
over the particle assembly and w̄f denotes the volume averaged velocity of the fluid phase in the
suspension. The normalized slip velocity Ws , when scaled by its homogeneous counterpart WH ,
is significantly reduced (Ws/WH < 1.0). The best fit of the data for different volume fractions is
obtained as Ws/WH = 1 − 61.1Fr−2.07. Our results for a swarm of particles in a stratified fluid show
that their motion is significantly slowed down, and that they are more aggregated as compared to
the same swarm in a homogeneous fluid. We observe a similar behavior (of slower ascent, and an
enhanced aggregation) for a swarm of deformable drops ascending in linearly stratified fluids [see
Fig. 5(b)] [34]. In fact, the slowing down of a swarm of rising drops can even be predicted by
analyzing the motion of a single drop, rising in a stratified fluid. Figure 4 clearly shows the similarity
in the time evolution of the instantaneous rise Reynolds numbers for a single drop, and a swarm of
drops, for a range of stratifications. It is seen that the rise is substantially slowed down in both cases;
however, this effect is much stronger for the swarm of drops. We characterize the microstructure
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FIG. 4. The time evolution of the instantaneous rise Reynolds number of (a) a single drop and (b) multiple
drops in a stratified fluid at different Fr. (Reprinted from [34] with permission of Elsevier.)

of the particle assemblies by comparing the pairwise probability distribution functions (both radial
and angular) between homogeneous and stratified fluids. The tendency of horizontal alignment in a
suspension of particles or drops is evaluated by measuring the angular pair probability distribution
function G(θ ), which quantifies the probability of finding two particles that are oriented at a specific
angle with respect to each other, and separated by a prescribed distance r:

G(θ ) = L3

Np(Np − 1)�V (θ )

Np∑
m=1

Np∑
n=1,
n�=m

δ

(
|rmn| < r; θ − 1

2
�θ � θmn < θ + 1

2
�θ

)
, (6)

where �V (θ ) = (2πr3/3)[cos(θ − �θ/2) − cos(θ + �θ/2)] is the volume of a spherical sector of
radius r , and azimuthal angle θ , between [θ − �θ/2,θ + �θ/2]. Therefore, a higher probability of
horizontal clustering will be associated with peaks in the value of G(θ ), observed at angles close to
θ = π/2. In light of this reasoning, the results shown in Figs. 5(d) and 5(e) illustrate that density
stratification leads to the formation of clusters that are predominantly aligned horizontally across
the fluid column, both for rigid particles and for a swarm of drops. In addition to peaks around
θ = π/2, we observe increasingly higher values of G(0) and G(π ), for reduced Fr, for a suspension
of rigid particles [Fig. 5(d)]. All these peaks are “specific to short-range interactions”; i.e., these
are only found when G(θ ) is evaluated for r ∼ d, and are seen to reduce appreciably when r � 5d

(see [33,34] for details). This means that significant vertical (for rigid particles) and horizontal (for
rigid particles, and for drops) clustering is observed only at smaller length scales. As opposed to the
horizontal configuration (θ = π/2), the vertical configurations are unstable. The unstable nature of
“short-range vertical interactions” is consistent with our recent study [33] on the interaction of an
isolated pair of rigid particles in stratified fluids for both side-by-side and in-tandem configurations.
It is interesting to note that the clustering behavior of a suspension can also be deduced by examining
the motion of a pair of particles, or drops. A pair of rigid particles sedimenting side-by-side in a
stratified fluid are attracted toward each other, after initial repulsion due to inertial effects. This is
dramatically different from the side-by-side sedimentation in a homogeneous fluid, where the inertial
repulsion persists up to a certain distance after which the rigid particles sediment with an offset in
their horizontal separation. The enhanced attraction in a stratified fluid helps explain the higher
“short-range” peaks observed at θ = π/2 (for lower values of Fr), for the case of a sedimenting
suspension of rigid particles. The behavior of particles settling in tandem in a weakly stratified fluid
is characterized by drafting-kissing-tumbling with a prolonged kissing time and reduced separation
as compared to a homogeneous fluid. This regime can change to either drafting-kissing-separation,
or even drafting-separation in stronger background density gradients [57]. There is a noticeable
absence of the tumbling behavior. This behavior reinforces the understanding of the more complex
response of a suspension of rigid particles, i.e., the existence of peaks at θ = 0, π . The dynamics
of the particle pair interaction in stratified and homogeneous fluids is summarized in Fig. 5(a). The
behavior of an ascending swarm of drops can also be understood by a closer examination of the
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FIG. 5. (a) Schematic of inertial pair-particle interaction in homogeneous and stratified fluids. (b) Dispersion
of particles and drops in a stratified fluid is significantly reduced. Left, homogeneous fluid; middle, Fr = 10.2;
right, Fr = 7.26. (c) The growth of velocity fluctuations as a function of the system size (number of particles,
Np) is suppressed in a stratified fluid (open symbols) compared to the settling in a homogeneous fluid (solid
symbols). Here, Ws denotes the average settling velocity. Stratification leads to a strong horizontal cluster
formation in a suspension of (d) particles and (e) drops as shown in plots of angular pair probability distribution
function. (f) Density stratification reduces fluctuations in vertical and horizontal velocity components, denoted
by ReW ′ = W ′dp/ν and Re(U ′+V ′) = (U ′ + V ′)dp/ν. (Panels (a), (c), and (d) reprinted from [33] with the
permission of AIP Publishing and (b), (e), and (f) reprinted from [34] with the permission of Elsevier.)

motion of two drops rising in a stratified fluid column [58]. We observe that greater stratification
leads to an enhanced attraction between two drops ascending side by side, just like it results in higher
values of G(π/2) for a swarm of drops. The tendency of drops to horizontally cluster in stratified
fluids is so high that the vertical configurations become less probable with increased stratification.
This is in stark contrast with the behavior of rigid particles, wherein we see higher values of G(θ )
even for θ = 0, π .

In addition to the mean settling velocity and the microstructure of a suspension, stratification
also impacts the fluctuations in particle velocity. In a homogeneous fluid, there have been several
contradictory predictions of the dependence of velocity fluctuations on the system size (system
size refers to the number of particles for a prescribed volume fraction of the “particle phase”)
[59]. Our DNS results show that density stratification inhibits both vertical and horizontal velocity
fluctuations and suppresses the “growth rate” of fluctuations with increasing system size (compared to
the corresponding responses for a homogeneous fluid). This reduction in fluctuations is also apparent
in Fig. 4, where we see oscillations of much smaller magnitudes as Fr decreases. Furthermore, even
though the growth rate of fluctuations reduces progressively with increasing system size [see the
slopes of the curves in Fig. 5(c)], the actual value of said fluctuations does not seem to saturate, at
least for the range of particle numbers considered (Np = 8 to Np = 64) [Fig. 5(c)]. Future studies
should investigate the existence of such a “thermodynamic limit” for particle velocity fluctuations
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by considering even larger systems. Finally, the velocity fluctuations for a swarm of drops rising
in a linearly stratified fluid show drastically different behavior as compared to the homogeneous
case [see Fig. 5(f)]. At low volume fractions, velocity fluctuations are more uniformly distributed
between vertical and horizontal directions in a linearly stratified fluid (〈ReW ′ 〉/〈ReU ′+V ′ 〉 is closer to
unity). This is unlike the anisotropy of the homogeneous fluid case, where fluctuations in the vertical
direction are almost twice as intense. The reason behind this enhanced isotropy in stratified fluids
can be attributed to the suppression of vertical motion, leading to a uniform energy transfer across
the flow. Once again, we stress that this suppression was also seen in the semianalytical results of
Sec. II A (Fig. 1) and, therefore, it is important to view the results of more complex systems in light
of the fundamental understanding imparted by the simpler problems.

These results hint at intriguing and nontrivial behavior of suspensions in stratified fluids. The
dynamics discussed thus far will be even more significantly altered if the particles or drops are
replaced by motile organisms. In this case, the self-propulsion of organisms modifies the flow field,
leading to altogether different clustering behavior.

IV. HYDRODYNAMICS OF ORGANISMS AT PYCNOCLINES

A. Stratification affects swimming dynamics of a single organism

The impact of planktonic microorganisms on marine ecology is apparent, and well studied
[60–63]. However, the same cannot be said about the impact of density stratification on the many
fundamental aspects of microorganism motility, their energetic expenditure, and nutrient uptake
rates. The first attempt in this direction, via a series of numerical simulations of a swimmer in
stratified waters, was carried out by Doostmohammadi et al. [30]. The results show that stratification
has potential benefits, as it may render a microorganism less prone to be detected by predators,
but on the flip side it demands more energy during locomotion. As a first approximation, the
classic “two-mode squirmer” model is employed as a representative swimming microorganism [64].
This model consists of a spherical swimmer body with a prescribed tangential “slip” velocity that
represents the effects of surface deformations due to flagella or cilia:

uθ = B1 sin θ + B2

2
sin 2θ, (7)

where θ is the inclination angle measured from the swimming direction. The parameters B1 and
B2 determine the organism velocity and stress field around the organism, respectively. The sign
of the ratio of β = B2/B1 distinguishes puller (generating thrust in front of the body) and pusher
(generating thrust behind) swimmers with β > 0 for pullers (e.g., algal cells) and β < 0 for pushers
(e.g., bacteria).

The results show that the stratification has major consequences on the motility of organisms and
causes a dramatic reduction in their speed up to ∼50%, when compared to a homogeneous fluid [30];
see Fig. 6(b). There are two mechanisms responsible for reduced motility (alternatively, enhanced
energetic needs): (i) viscous “trapping” of lower-density fluid from upper layers, resulting in the
formation of a “shell” of lighter fluid around the organism [where the negative buoyancy of this fluid
shell reduces the speed of the organism; Fig. 6(b)] and (ii) the “tail” of perturbed isopycnals in the
organism’s wake, which induces upward moving flows due to the tendency of isopycnals to restore
to the unperturbed configuration.

The significant reduction in motility implies that the “flow signature” of organisms can be
markedly altered by stratification. This is because of the suppression of vertical fluid flow—and thus
reduced fluid disturbance in the ambient—as discussed in Sec. II A. It is quantified by calculating
the volume wherein a fluid disturbance exceeds a threshold, i.e., a detection volume. Calculations
show that the flow signature in a stratified fluid can be less than half of that in a homogeneous fluid;
i.e., detection volumes can be ∼60% smaller. A direct consequence of low detection volumes is a
possible safety offered against predators, due to reduced mechanosensing. Moreover, measurements
of the energy expenditure by the microswimmers show a significant increase of up to 300% and 500%
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FIG. 6. Motility of microorganisms is affected by density stratification. (a) Stratification impact on the
velocity field generated by squirmers. The color map shows normalized density. Black lines with arrows
represent streamlines. Note that the squirmer is swimming in the downward (−z) direction. (b) The speed of
an organism in a stratified fluid, U , normalized by the speed in a homogeneous fluid, UH , as a function of the
Richardson number Ri = Re/Fr2 (higher Ri corresponds to stronger stratification). (c) Stratification leads to
a significant reduction of the detection volume compared to a homogeneous fluid. (d) Stratification increases
nutrient uptake compared to the homogeneous fluid. The nutrient uptake is quantified by the Sherwood number
Sh = − ∫

n · ∇C dS/(4πaC∞), measuring the ratio of the nutrient flux at the swimmer surface to the nutrient
uptake by the diffusion alone. (Reprinted from [30] with the permission of the National Academy of Sciences.)

for pullers and pushers, respectively. This is because, in addition to working against hydrodynamic
resistance, the organism also consumes energy as it mixes the ambient fluid, i.e., homogenizes
the ambient density gradients. It is noteworthy that the disparity in the energy expenditure between
pullers and pushers cannot be captured by the semianalytic point-force singularity method, discussed
in Sec. II A, and this highlights the necessity of full numerical simulations. In addition, the results
show that nutrient uptake of the organism can be largely affected by stratification. The nutrient
concentration, C, is computed by solving the following conservation equation:

∂C

∂t
+ u · ∇C = κN∇2C, (8)

where κN is the nutrient diffusion coefficient. The effect of stratification is quantified by comparing
the Sherwood number—representing the ratio of the total nutrient uptake to the nutrient uptake
by diffusion alone—for stratified and homogeneous fluids. It is seen that for the parameter values
considered, and at a fixed swimming speed, stratification leads to thinner concentration boundary
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layers around a swimmer as compared to a homogeneous fluid, for both a pusher and a puller,
implying enhanced diffusion of nutrients into the swimmer body. As a result, the Sh for a stratified
system is larger than ShH for a homogeneous system, or Sh/ShH > 1 [see Fig. 6(d)]. But a higher Sh
does not translate to more efficient foraging, because of the increased energetic expenditure discussed
earlier. In other words, the “foraging efficiency” (ηfor ≡ Sh/P , where P is the energy expended by
the swimmer) for a stratified fluid is always less than that for a homogeneous fluid (ηfor,H ≡ ShH/PH )
and the ratio ηfor/ηfor,H continues to reduce for greater stratifications. These results are a reflection
of the notable effects that stratification has on the livelihood of marine organisms. In conclusion,
we reiterate that residing at pycnoclines leads to many fundamental changes in an organism’s
biophysical dynamics, the major ones being a reduction in the cell motility, as well as in the risk of
their predation.

B. The role of stratification on bioconvection plumes of a suspension of gyrotactic algal cells

In this section, we discuss that not only does density stratification affect organisms individually, but
that it also does so collectively, by hindering bioconvection and effecting aggregation. Bioconvection
plumes emerge as groups of bottom-heavy microorganisms swim against gravity, following an
external stimuli such as light or oxygen. This leads to an overturning instability à la Rayleigh-Bénard,
as a heavier layer of swimmers over a lighter fluid creates a “top-heavy” situation (an unstable density
gradient) [65]. Such bioconvection plumes have been observed in bacterial, flagellate, plankton,
ciliate cultures, and algal cells [66]. We first focus on a particular form of bioconvection, which
occurs for bottom-heavy algal cells, and is termed gyrotaxis. In gyrotaxis, an interplay between the
viscous (due to fluid flow) and gravitational (due to bottom heaviness) torques acting on the cell body
determines the swimming direction of the cell [67,68]. Towards this, we study the impact of density
gradients—caused by heterogeneities in cell and salt concentration (or temperature distribution)
combined—on bioconvection. We note that the stratification can be induced either by temperature
or by salinity gradients. We emphasize here that since gyrotaxis-induced stratification is affected
or controlled by cellular motility, gyrotactic bioconvection behaves differently as compared to
the phenomenon of double diffusion (where the scalars being transported are “passive tracers” as
opposed to “active swimmers”) [69,70].

1. Continuum numerical approach

Karimi and Ardekani used coarse-grained three-dimensional computational modeling to inves-
tigate the dynamics of an algal suspension in a stratified fluid [56]. At the coarse-grained level,
the cell concentration [number density, denoted by n(x,t)] is assumed to be continuous, with the
condition nv � 1, where v is the average volume of a single algal cell. The ambient fluid velocity
u is governed by the continuity and Navier-Stokes equations under the Boussinesq approximation:

∂u
∂t

+ u · ∇u = −∇pe − Sc(Rn + LeRsT )ẑ + Sc∇2u, ∇ · u = 0, (9)

∂n

∂t
+ u · ∇n = −∇ · (nVcp) + ∇2n, (10)

∂T

∂t
+ u · ∇T = Le∇2T , (11)

where the dimensionless numbers are defined as follows: Schmidt number, Sc = ν
D

; Lewis number,

Le = κ
D

; dimensionless motility, Vc = WcL

D
; bioconvection Rayleigh number, R = n̄v�ρgL3

ρ0νD
; and

salinity/temperature Rayleigh number, Rs = gβ�T L3

νκ
, where �ρ is the excess density of the cells, n̄

is the mean cell concentration, v is the average volume of a cell, Wc is the speed of the motile cells,
p is the unit vector along the swimming direction, and the cell diffusion coefficient D is assumed to
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FIG. 7. (a) Space-time plots of the horizontal average of the cell concentration in a salt stratified fluid.
(b) The isosurface of cell concentration for different values of density stratification. Density stratification
hinders the bioconvection plumes and leads to the accumulation of algal cells at pycnoclines. (Reprinted from
[56] with the permission of Cambridge University Press.)

be constant. The cell orientation p is governed by [71]

ṗ = 1

2B̃
[ẑ − (ẑ · p)p] + 1

2
ω × p + r2 − 1

r2 + 1
p · E · (I − pp), (12)

where ω is the local vorticity field, B̃ = 4πμa3/mgh is a time scale for gyrotactic reorientation with
a and m denoting cell radius and mass, respectively, E = (∇u + ∇uT )/2 is the rate of strain tensor,
and r is the aspect ratio of the cells. The center of mass of the cell is offset by a distance h from
the center of buoyancy. The dimensionless gyrotactic parameter BD/L2 is introduced to represent
the ratio of the reorientation time of the gyrotactic cell to the required time for diffusing across the
length L. In deriving Eq. (12), inertial effects are neglected and the balance between the torques
induced by gyrotactic effects and viscous effects is incorporated [71].

The space-time representations of cell dynamics are illustrated in Fig. 7(a), and the isosurfaces
of n for different levels of stratification can be seen in Fig. 7(b). When Rs is small, the
negative buoyancy due to stratification is dominated by the viscous forces, and thus the plume
dynamics is similar to the case of a homogenous fluid (Rs = 0). At higher Rs , stronger buoyancy
suppresses downwelling of the algal cells—and concomitantly, bioconvection—leading to the cell
accumulation at the top (free) surface. Karimi and Ardekani [56] noted that this transition in the
dynamical behavior of the system is best represented by the “buoyancy ratio” Rρ = LeRs/R =
ρ0β�T/(n̄v�ρ), characterizing the relative effects of buoyant forces due temperature or salinity,
and cell concentration. Numerical simulations for different values of Rayleigh number, Lewis
number [corresponding to both temperature (Le > 1) and salinity stratification (Le < 1)], Schmidt
number, and motility (representing various planktonic species) were performed for both sharp and
linearly stratified fluid domains. Finally, Karimi and Ardekani [56] also performed a linear stability
analysis, providing the threshold for the onset of gyrotactic bioconvection instability in the presence
of stratification.

2. Accumulation of algal cells in stratified fluids: Experimental approach

A biflagellate gyrotactic organism, Heterosigma akashiwo, forms toxic algal blooms in temperate
waters [72]. The flagellum along the direction p is responsible for generating a propulsion velocity
in that direction. A second flagellum, along n, generates an intrinsic torque which creates the helical
motion of the cell (see Fig. 8). It has been shown that changes in salinity of the environment trigger
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FIG. 8. A schematic of an algal cell like Heterosigma akashiwo, that utilizes two flagella—directed along
the unit vectors p and n—for swimming. (Reprinted from [73] with the permission of AIP.)

the formation of Heterosigma blooms, for instance after a freshwater runoff from rivers or a sudden
rain storm [12]. Despite this, the role of stratification on the cell distribution is poorly understood,
with only a few experiments focusing solely on collective cellular motion in stratified domains.

Hershberger et al. demonstrated that Heterosigma akashiwo cells aggregated below the interface
(halocline) between a high salinity fluid (at the bottom) and a low salinity fluid (at the top) [74]. They
did not observe any such aggregation in cases where an interface was absent, i.e., when the fluid in
the test tubes was either salt free (freshwater), or had a constant salinity. This latter observation might
have been due to bioconvective mixing, because a subsequent study by Bearon et al. did report the
occurrence of surface aggregation, even in unstratified fluids, within ∼2 h after the initial injection
of the algal cells into the water column [75]. This aggregation soon led to an overturning instability
leading to the formation of bioconvection plumes, and subsequent fluid mixing. The objective of
Bearon et al.’s study was to analyze the effect of a sharp salinity stratification on the swimming
behavior of Heterosigma cells [75]. The sharp stratification was realized by overlaying a heavier fluid
column with a lighter one, with the strength of stratification dictated by the corresponding salinities.
They estimated the cell concentration by observing and recording the number of two-dimensional
trajectories of up-swimming cells in the water column, with the main conclusion being that the cells’
swimming behavior depended on the strength of the “salinity jump.” The behavior did not change
appreciably when the jump was from a 28% saline solution to a 16% saline solution. But when
the jump was from a 28% saline solution to freshwater (0% saline), strong aggregation (one order
of magnitude difference between top and bottom algal concentration) was observed, with the cells
stopping altogether at the halocline. They attributed this behavior to an increase in the cell diameter
in regions of low salinity—due to osmosis of the “fresher” water into the cell bodies—leading to
increased drag, and hence reduced velocity. Based on this hypothesis, their calculations of the Stokes
drag agreed well with the experimental observations. In a later study, Bearon and Grünbaum studied
the formation of bioconvection patterns of upswimming Heterosigma in stratified fluids [76]. They
carried out experiments (i) in a weakly stratified fluid and (ii) in a sharply stratified one (like the study
of Hershberger et al.). In case i, they observed the classic overturning instability and the formation
of bottom-standing bioconvection plumes. In case ii, initially, in the absence of stratification, the
algal suspension was well mixed due to the aforementioned bioconvection. But the addition of a low
salinity fluid onto the upper surface resulted in a rapid (on the order of minutes) upswimming of
cells, followed by visible aggregation below the air-water interface.

In order to estimate the cell concentration as a function of position in HABs, it is important to
measure the spatial heterogeneity in the cell population. The lack of quantitative experimental studies
on HABs motivated us to estimate the concentration of Heterosigma aggregates in a salt stratified
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FIG. 9. Aggregation of Heterosigma akashiwo at the halocline. Conditions are cell density 2.5 × 106 in
f/2 media (1.024 g/cm3).

environment, using dark field image analysis. Heterosigma akashiwo (strain CCMP452, Bigelow
Laboratory) was cultured in f/2 medium and synchronized via a 12:12 light:dark (LD) photoperiod
at 25 ◦C. Exponentially growing cells at a concentration of 2.5 × 106 cells/cm3 were visualized
in a cuvette cell. A sharp stratified environment was created by slowly adding distilled water on
top of algal suspension. The relative density of the medium and distilled water was measured by
a density meter (Densito 30PX, Mettler Toledo). The dark field illumination was provided with a
circular light-emitting diode array (3.6 cm diameter, 655 nm emission; Advanced Illumination),
to which the algal cells are insensitive; i.e., the possibility of phototaxis is prevented. The cells
were observed in a dark and unstratified condition first, to confirm the upward swimming. All
images were captured by a high speed camera (Vision Research M340, Phantom) at 60 frames/s
with a 24× objective. The results clearly show the accumulation of cells at the density interface
(Fig. 9).

The behavior of organisms (dinoflagellates and Heterosigma akashiwo) in stratified fluids
encompasses many other nontrivial aspects that are unexplored so far. The phenomenon as a whole
is governed by interactions between inertial, viscous, and buoyancy forces, but there are a number
of additional underlying complexities that must be unraveled. The most important one is turbulence,
which is ubiquitous in marine environments. There are a number of organisms in the oceans that
have characteristic dimensions larger than the Kolmogorov length scale; consequently the effect of
turbulent flow regimes on the motion of these organisms should be considered. It is expected that the
velocity fluctuations in space and time will be affected by background density gradients as well as
the swimming motion, and care must be taken to account for this. The density gradient will have a
stabilizing effect, while the swimming motion coupled with turbulent velocity fluctuations will tend
to enhance the randomness, thus giving rise to a unique confluence.

C. Biogenic mixing and the role of stratification and turbulence

The energy input of biological activities in the oceans has been claimed to be of the same order
as major storms [77]. It is argued that marine organisms whose swimming Reynolds numbers range
from O(1) to O(1000) contribute significantly in global ocean mixing [78–83] through biogenic
turbulence or drift mechanisms. However, there are contradictory arguments dismissing the idea by
attributing a low mixing efficiency to biogenic mixing and a small drift volume due to restoration
of deflected density levels [84,85]. The problem is yet to be resolved since the comprehensive
knowledge of fluid-organism interaction is not available to fully understand the relevant mechanisms
involved in biogenic mixing. Moreover, the fluid dynamics of the ocean is largely affected by density
stratification, and an accurate quantification of biogenic mixing requires a consistent incorporation
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FIG. 10. The effect of the Reynolds number on (a) the mixing efficiency �, (b) the diapycnal eddy diffusivity
κρ , and (c) the Cox number. (d) The comparison of the turbulent activity parameter ε/νN2, between the
swimmer-induced mixing and the shear-driven turbulence (black circles). The impact of density stratification
on (e) mixing efficiency, (f) diapycnal eddy diffusivity, and (g) the Cox number. (h) The temporal evolution of
the active biomixing number for pushers and pullers, where Te = t/τ0 is the normalized time scale and τ0 is
the initial eddy turnover time of the turbulence. (Reprinted from [35] with the permission of Nature Publishing
Group.)

of these effects. Studies on suspensions of particles have shown that particle assembly can enhance
mixing in temperature stratified fluids through hydrodynamics of the particle motion coupled with the
tendency of the particles to themselves act as heat carriers [86]. However, whether this enhancement
is large enough to contribute to ocean mixing is subject to further investigation. Recently, Wang
and Ardekani [35] have tackled the problem of biogenic mixing by conducting direct simulations of
suspensions of squirmers, taking into account the effects of viscous and inertial forces, hydrodynamic
interactions between the swimmers, density stratification, and also background turbulence in the
fluid. The results are presented for a range of Reynolds numbers Re ∼ O(1 − 100) that is relevant
to the zooplankton that are abundant in the ocean.

The following three measures were computed to quantify the impact of the swimming organisms
on biogenic mixing: (1) the efficiency of biogenic mixing �, which is the ratio of the rate of energy
removal by buoyancy forces to the total kinetic energy in the fluid domain, (2) the diapycnal eddy
diffusivity Kρ , which characterizes the mixing induced by the vertical transport of the organisms,
and (3) the Cox number COX, which quantifies the variation in the temperature gradients in the fluid
and is an indicator of the temperature microstructure.

The impact of inertia on the biogenic mixing is quantified by calculating the variation of �, Kρ ,
and COX as a function of the Reynolds number [see Figs. 10(a)–10(c)]. As evident from Fig. 10,
larger inertia of the swimming organisms leads to enhanced mixing by increasing the mixing
efficiency, the extent of vertical transport, and the average temperature variations in the domain.
It was further shown by Wang and Ardekani that the mixing is more pronounced for vertically
swimming squirmers than for the horizontally (perpendicular to gravity) swimming ones, with Kρ

and COX being two orders of magnitude larger [35]. Moreover, in order to characterize the vertical
transport by biogenic mixing with respect to the pseudoturbulence effects that are generated by the
fluctuations in the organisms’ velocities, the turbulent activity parameter Ra = ε/νN2 is plotted as
a function of normalized diapycnal eddy diffusivity (Kρ + ν/)ν [see Fig. 10(d)]. Here, ε = 2νE : E
is the viscous dissipation defined based on the strain rate tensor E for fluctuating velocities. Small
(Ra < 7), moderate (7 < Ra < 100), and large (Ra > 100) activity numbers correspond to decaying,
stationary, and growing turbulence in stratified fluids, respectively. The results show that mixing
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predominantly occurs at large activity numbers, indicating that the strong eddy diffusivity generated
by swimmers corresponds to larger energy dissipation as compared to turbulent mixing. It should be
noted that the mixing efficiency of swimmers is found to be much smaller than the mixing efficiency
measured in the ocean for turbulent mixing. Wang and Ardekani [35] also considered the impact of
density stratification on the mixing induced by organisms [see Figs. 10(e)–10(g)]. As the strength
of the stratification is decreased (i.e., as the Froude number is increased), the mixing efficiency is
significantly reduced, while the vertical flux and temperature microstructure reach steady values and
become independent of stratification for Fr ∼ 20. This value of the Froude number corresponds to
the stratification length scale being larger than the organism size.

In natural waters, the background turbulence in the fluid can interfere with stratification effects.
The strongest velocity gradients due to turbulence occur at a length scale of (10–50)LK , where
LK is the Kolmogorov scale, LK = (ν3/ε)1/4, and ε is the turbulent dissipation rate [87]. For
ε = 1 × 10−8/W/kg [88–90], this length scale is 32–158 mm. The scalar gradient length scales are
smaller than the velocity gradient length scales by a factor of Pr1/2, leading to the length scales of
1–6 mm (10–60 mm), at which turbulence can impact velocity fields of motile organisms in stratified
fluids caused by salt (temperature) gradients. The weaker turbulence observed in inlets [82], lakes,
and reservoirs [91] increases these length scales. The intermittent nature of the turbulence [87] is
expected to occasionally destroy the flow field of millimeter-sized organisms in weakly turbulent
flows. On the other hand, under strong turbulent flows, the flow field is significantly modified and
turbulence can affect the transport of particles and organisms.

In order to study the hydrodynamic interactions between turbulence and the disturbances induced
by the swimmers, a statistically steady stratified turbulence is numerically generated and treated as
the initial background flow. For generating the statistically steady stratified turbulence, Eqs. (1) to
(3) are solved. A direct forcing term, f = ρ0ε/u · u, is added to the momentum equation to achieve
statistically steady state stratified turbulence [92,93]. The initial temperature field varies linearly
with depth and the initial velocity field is generated using the open source code NTMIX-3D [94]. The
initial velocity profile has the following energy spectrum E(k) (see [95]):

E(k) = A

(
k
ke

)4

exp

(
− 2

(
k
ke

)2)
, (13)

where k is the wave number, ke is the most energetic wave number, and A = (16u2
rms/k2

e)
√

2/π with
urms being the root-mean-square value of the fluid velocity. The statistically stationary state for the
turbulence is reached, as both u2

rms and ε reach their quasisteady values. The grid size is chosen such
that the Kolmogorov scale is well resolved in the simulations. One of the main advantages of the
DNS of biogenic mixing in stratified turbulence is that it allows for dissecting the effect of swimming
organisms on mixing from the impact of the background turbulence. To achieve this, a “biomixing
active parameter” B = Kρ,bio/Kρ,turb is defined as the ratio of the diapycnal eddy diffusivity due to
biogenic mixing, Kρ,bio, to its counterpart due to turbulent mixing, Kρ,turb. The temporal evolution
of biomixing active parameter reveals the existence of two distinct regimes for both pushers and
pullers [see Fig. 10(h)]. During the early stages of mixing, hydrodynamic interactions between the
fluctuations induced by swimmers and by the background turbulence generate a large biomixing
activity number (B > 0.2). Interestingly, during the first stage, the turbulence-induced mixing is
amplified more by the pushers than by the pullers. This is due to the difference in the nature of
hydrodynamic interactions between pushers and pullers, which leads to rectilinear trajectories of
the former as opposed to helical trajectories of the latter [41]. Taken together, these results show that
although swimming strategy is important at local swimming scales in producing efficient biogenic
mixing and enhancing the vertical transport, it does not play a significant role at global scales.

V. CONCLUDING REMARKS

The presence of density gradients in the water column (density stratification) is an important factor
in governing the hydrodynamics of settling and swimming in environmental flows, irrespective of
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whether it is a single particle settling in the ocean or an assembly of motile phytoplankton forming
large-scale blooms. In an aqueous medium, the density stratification can be caused by temperature
or salinity variations and manifests in the form of a sharp density interface or a continuous density
gradient (e.g., linear stratification). There is now a growing evidence on the correlation between local
hot spots engendered by density stratification and accumulation of particles and/or increased activity
of organisms in the vicinity of these hot spots. Here, we provided an overview of recent works on
settling of particles and swimming of organisms in stratified fluids. We presented a comprehensive
computational study of settling dynamics in stratified fluids, from rigid particles and deformable
drops to self-propelled organisms. In addition to individual particles and organisms, our studies shed
light on the hydrodynamics of particle suspensions and on organism blooms.

We began by considering a linearized set of the governing equations and using point-force
singularities to account for the presence of a single particle or a force-free swimmer. This allowed a
tractable semianalytical approach to tackle the problem of settling and swimming in stratified fluids,
providing qualitative predictions of the impact of density stratification on the vertical motion of
particles and microswimmers. Next, we complemented the semianalytical approach by simulations
of full nonlinear equations accounting for the interactions between a stratified medium, and rigid,
deformable, and self-propelled particles. The numerical simulations, for a single spherical particle
settling through sharp and linear stratifications, provided a quantitative understanding of different
regimes of settling dynamics and the emergence of vortex structures and lee waves around the
particle. We then studied the dynamics of a pair of particles in a stratified fluid, exploring the
impact of the fluid density variations on the interaction between the two particles as a building
block to study particle suspension in stratified fluids. In the end, we introduced self-propulsion
as an extra complexity to explore the effect of density stratification on the vertical migration of
a microswimmer and on the mixing induced by a suspension of small organisms. In addition to
DNS of multiple swimmers, we developed a continuum approach to characterize the bioconvection
patterns of swimmer suspensions in stratified fluids and finally summarized some of the relevant
experimental studies in the realm of bioconvection in stratified media.

A noteworthy aspect of the present review is that certain characteristics of the motion of multiple
particles or drops can be inferred by a careful examination of the motion of a single particle or
drop, and of the interactions between a pair of particles or drops. In fact, the idea of suppression
of vertical motion, conveyed in Sec. II A, is a fundamental mechanism underpinning the major
results discussed in the subsequent sections: from the slower terminal velocity of a single settling
particle, to the reduced vertical velocity fluctuations in a suspension of settling particles. It is also
seen that stratification affects a single drop and a swarm of drops in a similar manner, i.e., by
reducing the average rise velocity in both cases. However, it must be noted that this reduction is
much more significant for the swarm, particularly at higher stratifications. The similarity between
multiple particle or drop systems and a pair of particles or drops was also highlighted in Sec. III B,
where we saw peaks in the values of the pairwise probability distribution function [G(θ )] for a
suspension of settling particles, for θ = 0, π/2, π . These peaks were explained based on the results
obtained for the motion of a pair of particles: (i) enhanced attraction in side-by-side configurations
explained the enhanced peaks at θ = π/2, and (ii) absence of a tumbling regime in tandem settling
(at high stratifications) explained the peaks at θ = 0, π . Finally, the emerging coherence between
the theory of suspensions and that of pairwise interactions leads us to postulate that the even more
involved phenomena seen in suspensions of microorganisms in stratified fluids can be explained if
the pairwise interactions of said microorganisms are investigated under identical conditions of fluid
flow [41] and stratification.

Our studies have shown that by suppressing the vertical motion of particles, drops, and organisms,
density stratification plays a key role in the formation of particle, drop, and organism clusters.
Moreover, the bioconvection plumes of algal cells are shown to be markedly affected by temperature
or salinity gradients, indicating a potential mechanism of affecting algal bloom formation. In
addition, the ecological traits of a single organism—e.g., its nutrient uptake, detectability, and
energy expenditure—are shown to experience dramatic changes due to the modification of its flow

100503-19



INVITED ARTICLES

ARDEKANI, DOOSTMOHAMMADI, AND DESAI

signature in a linearly stratified fluid. It is further shown that not only is the swimming dynamics
affected by stratification in the fluid, but that collective swimming of organisms can also lead to
prominent changes in transport properties such as mixing of the isopycnals. This study provided
an intricate coupling between organism behavior and stratification. The presence of background
turbulence adds to this complexity by contributing to the mixing of the fluid. The numerical approach
presented in this paper provides a tractable means for dissecting impacts of these interconnected
mechanisms by accounting for inertial and viscous forces, stratification, organism-induced mixing,
and turbulence-induced mixing. It is found that at the local scale, the diapycnal eddy diffusivity due
to interacting swimmers is comparable with the one from internal waves in the mid-ocean. However,
this is a local effect and at the global oceanic level, swimming organisms are expected to have a
small contribution to the overall ocean mixing.
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[22] A. N. Srdić-Mitrović, N. A. Mohamed, and H. J. S. Fernando, Gravitational settling of particles through

density interfaces, J. Fluid Mech. 381, 175 (1999).
[23] C. R. Torres, H. Hanazaki, J. Ochoa, J. Castillo, and M. Van Woert, Flow past a sphere moving vertically

in a stratified diffusive fluid, J. Fluid Mech. 417, 211 (2000).
[24] H. Hanazaki, K. Konishi, and T. Okamura, Schmidt-number effects on the flow past a sphere moving

vertically in a stratified diffusive fluid, Phys. Fluids 21, 026602 (2009).
[25] K. Y. Yick, C. R. Torres, T. Peacock, and R. Stocker, Enhanced drag of a sphere settling in a stratified

fluid at small Reynolds numbers, J. Fluid Mech. 632, 49 (2009).
[26] D. Stramski, A. Bricaud, and A. Morel, Modeling the inherent optical properties of the ocean based on

the detailed composition of the planktonic community, Appl. Optics 40, 2929 (2001).
[27] E. J. List, Laminar momentum jets in a stratified fluid, J. Fluid Mech. 45, 561 (1971).
[28] N. Liron and J. R. Blake, Existence of viscous eddies near boundaries, J. Fluid Mech. 107, 109 (1981).
[29] A. Doostmohammadi, S. Dabiri, and A. M. Ardekani, A numerical study of the dynamics of a particle

settling at moderate Reynolds numbers in a linearly stratified fluid, J. Fluid Mech. 570, 5 (2014).
[30] A. Doostmohammadi, R. Stocker, and A. M. Ardekani, Low-Reynolds-number swimming at pycnoclines,

Proc. Natl. Acad. Sci. USA 109, 3856 (2012).
[31] A. Doostmohammadi and A. M. Ardekani, Reorientation of elongated particles at density interfaces,

Phys. Rev. E 90, 033013 (2014).
[32] S. Bayareh, A. Doostmohammadi, and A. M. Ardekani, On the rising motion of a drop in stratified fluids,

Phys. Fluids 25, 103302 (2013).
[33] A. Doostmohammadi and A. M. Ardekani, Suspension of solid particles in a density stratified fluid,

Phys. Fluids 27, 023302 (2015).
[34] S. Dabiri, A. Doostmohammadi, S. Bayareh, and A. M. Ardekani, Numerical simulation of the buoyant

rise of a suspension of drops in a linearly stratified fluid, Int. J. Multiphase Flows 69, 8 (2015).
[35] S. Wang and A. M. Ardekani, Biogenic mixing induced by intermediate Reynolds number swimming at

pycnoclines, Sci. Rep. 5, 17448 (2015).
[36] A. M. Ardekani and R. H. Rangel, Numerical investigation of particle-particle and particle-wall collisions

in a viscous fluid, J. Fluid Mech. 596, 437 (2008).
[37] A. M. Ardekani, S. Dabiri, and R. H. Rangel, Collision of multi-particle and general shape objects in a

viscous fluid, J. Comput. Phys. 227, 10094 (2008).
[38] S. Dabiri and P. Bhuvankar, Scaling law for bubbles rising near vertical walls, Phys. Fluids 28, 062101

(2016).
[39] R. Glowinski, T. W. Pan, T. I. Hesla, and D. D. Joseph, A distributed Lagrange multiplier fictitious domain

method for particulate flows, Int. J. Multiphase Flow 25, 755 (1999).
[40] G. Li and A. M. Ardekani, Hydrodynamic interaction of micro-swimmers near a wall, Phys. Rev. E 90,

013010 (2014).
[41] G. Li, A. Ostace, and A. M. Ardekani, Hydrodynamic interaction of swimming organisms in an inertial

regime, Phys. Rev. E 94, 053104 (2016).
[42] G. Li and A. M. Ardekani, Collective Motion of Microorganisms in a Viscoelastic Fluid, Phys. Rev. Lett.

117, 118001 (2016).
[43] G. Li and A. M. Ardekani, Undulatory swimming in non-Newtonian fluids, J. Fluid Mech. 784, R4 (2015).

100503-21

https://doi.org/10.1103/PhysRevLett.105.084502
https://doi.org/10.1103/PhysRevLett.105.084502
https://doi.org/10.1103/PhysRevLett.105.084502
https://doi.org/10.1103/PhysRevLett.105.084502
https://doi.org/10.1017/S0022112088001910
https://doi.org/10.1017/S0022112088001910
https://doi.org/10.1017/S0022112088001910
https://doi.org/10.1017/S0022112088001910
https://doi.org/10.1017/S0022112000001361
https://doi.org/10.1017/S0022112000001361
https://doi.org/10.1017/S0022112000001361
https://doi.org/10.1017/S0022112000001361
https://doi.org/10.1017/S0022112080002303
https://doi.org/10.1017/S0022112080002303
https://doi.org/10.1017/S0022112080002303
https://doi.org/10.1017/S0022112080002303
https://doi.org/10.1017/S002211206600082X
https://doi.org/10.1017/S002211206600082X
https://doi.org/10.1017/S002211206600082X
https://doi.org/10.1017/S002211206600082X
https://doi.org/10.1017/S0022112098003590
https://doi.org/10.1017/S0022112098003590
https://doi.org/10.1017/S0022112098003590
https://doi.org/10.1017/S0022112098003590
https://doi.org/10.1017/S0022112000001002
https://doi.org/10.1017/S0022112000001002
https://doi.org/10.1017/S0022112000001002
https://doi.org/10.1017/S0022112000001002
https://doi.org/10.1063/1.3075953
https://doi.org/10.1063/1.3075953
https://doi.org/10.1063/1.3075953
https://doi.org/10.1063/1.3075953
https://doi.org/10.1017/S0022112009007332
https://doi.org/10.1017/S0022112009007332
https://doi.org/10.1017/S0022112009007332
https://doi.org/10.1017/S0022112009007332
https://doi.org/10.1364/AO.40.002929
https://doi.org/10.1364/AO.40.002929
https://doi.org/10.1364/AO.40.002929
https://doi.org/10.1364/AO.40.002929
https://doi.org/10.1017/S0022112071000193
https://doi.org/10.1017/S0022112071000193
https://doi.org/10.1017/S0022112071000193
https://doi.org/10.1017/S0022112071000193
https://doi.org/10.1017/S0022112081001699
https://doi.org/10.1017/S0022112081001699
https://doi.org/10.1017/S0022112081001699
https://doi.org/10.1017/S0022112081001699
https://doi.org/10.1017/jfm.2014.243
https://doi.org/10.1017/jfm.2014.243
https://doi.org/10.1017/jfm.2014.243
https://doi.org/10.1017/jfm.2014.243
https://doi.org/10.1073/pnas.1116210109
https://doi.org/10.1073/pnas.1116210109
https://doi.org/10.1073/pnas.1116210109
https://doi.org/10.1073/pnas.1116210109
https://doi.org/10.1103/PhysRevE.90.033013
https://doi.org/10.1103/PhysRevE.90.033013
https://doi.org/10.1103/PhysRevE.90.033013
https://doi.org/10.1103/PhysRevE.90.033013
https://doi.org/10.1063/1.4823724
https://doi.org/10.1063/1.4823724
https://doi.org/10.1063/1.4823724
https://doi.org/10.1063/1.4823724
https://doi.org/10.1063/1.4907875
https://doi.org/10.1063/1.4907875
https://doi.org/10.1063/1.4907875
https://doi.org/10.1063/1.4907875
https://doi.org/10.1016/j.ijmultiphaseflow.2014.10.010
https://doi.org/10.1016/j.ijmultiphaseflow.2014.10.010
https://doi.org/10.1016/j.ijmultiphaseflow.2014.10.010
https://doi.org/10.1016/j.ijmultiphaseflow.2014.10.010
https://doi.org/10.1038/srep17448
https://doi.org/10.1038/srep17448
https://doi.org/10.1038/srep17448
https://doi.org/10.1038/srep17448
https://doi.org/10.1017/S0022112007009688
https://doi.org/10.1017/S0022112007009688
https://doi.org/10.1017/S0022112007009688
https://doi.org/10.1017/S0022112007009688
https://doi.org/10.1016/j.jcp.2008.08.014
https://doi.org/10.1016/j.jcp.2008.08.014
https://doi.org/10.1016/j.jcp.2008.08.014
https://doi.org/10.1016/j.jcp.2008.08.014
https://doi.org/10.1063/1.4948464
https://doi.org/10.1063/1.4948464
https://doi.org/10.1063/1.4948464
https://doi.org/10.1063/1.4948464
https://doi.org/10.1016/S0301-9322(98)00048-2
https://doi.org/10.1016/S0301-9322(98)00048-2
https://doi.org/10.1016/S0301-9322(98)00048-2
https://doi.org/10.1016/S0301-9322(98)00048-2
https://doi.org/10.1103/PhysRevE.90.013010
https://doi.org/10.1103/PhysRevE.90.013010
https://doi.org/10.1103/PhysRevE.90.013010
https://doi.org/10.1103/PhysRevE.90.013010
https://doi.org/10.1103/PhysRevE.94.053104
https://doi.org/10.1103/PhysRevE.94.053104
https://doi.org/10.1103/PhysRevE.94.053104
https://doi.org/10.1103/PhysRevE.94.053104
https://doi.org/10.1103/PhysRevLett.117.118001
https://doi.org/10.1103/PhysRevLett.117.118001
https://doi.org/10.1103/PhysRevLett.117.118001
https://doi.org/10.1103/PhysRevLett.117.118001
https://doi.org/10.1017/jfm.2015.595
https://doi.org/10.1017/jfm.2015.595
https://doi.org/10.1017/jfm.2015.595
https://doi.org/10.1017/jfm.2015.595


INVITED ARTICLES

ARDEKANI, DOOSTMOHAMMADI, AND DESAI

[44] R. Camassa, C. Falcon, J. Lin, R. M. McLughlin, and R. Parker, Prolonged residence times for particles
settling through stratified miscible fluids in the Stokes regime, Phys. Fluids 21, 031702 (2009).

[45] R. Camassa, C. Falcon, J. Lin, R. M. McLaughlin, and N. Mykins, A first-principle predictive theory for
a sphere falling through sharply stratified fluid at low Reynolds number, J. Fluid Mech. 664, 436 (2010).

[46] F. Blanchette and A. M. Shapiro, Drops settling in sharp stratification with and without Marangoni effects,
Phys. Fluids 24, 042104 (2012).

[47] S. Okino, S. Akiyama, and H. Hanazaki, Velocity distribution around a sphere descending in a linearly
stratified fluid, J. Fluid Mech. 826, 759 (2017).

[48] L. Díaz-Damacillo, A. Ruiz-Angulo, and R. Zenit, Drift by air bubbles crossing an interface of a stratified
medium at moderate Reynolds number, Int. J. Multiphase Flow 85, 258 (2016).

[49] I. Morris, The Physiological Ecology of Phytoplankton (University of California Press, Berkeley, CA,
1980).

[50] W. R. Clavano, E. Boss, and L. Karp-Boss, Inherent optical properties of non-spherical marine-like
particles—from theory to observation, Oceanogr. Mar. Biol. 45, 1 (2007).

[51] D. J. Jeffrey and Y. Onishi, Calculation of the resistance and mobility functions for two unequal rigid
spheres in low-Reynolds-number flow, J. Fluid Mech. 139, 261 (1984).

[52] R. G. Cox, The motion of long slender bodies in a viscous fluid. Part 2. Shear flow, J. Fluid Mech. 45, 625
(1971).

[53] F. Fonseca and H. J. Herrmann, Simulation of the sedimentation of a falling oblate ellipsoid, Physica A
345, 341 (2005).

[54] T. Pan, R. Glowinski, and G. P. Galdi, Direct simulation of the motion of a settling ellipsoid in Newtonian
fluid, J. Comput. Appl. Math. 149, 71 (2002).

[55] L. G. Leal, Particle motions in a viscous fluid, Annu. Rev. Fluid Mech. 12, 435 (1980).
[56] A. Karimi and A. M. Ardekani, Gyrotactic bioconvection at pycnoclines, J. Fluid Mech. 773, 245 (2013).
[57] A. Doostmohammadi and A. M. Ardekani, Interaction between a pair of particles settling in a stratified

fluid, Phys. Rev. E 88, 023029 (2013).
[58] M. Bayareh, S. Dabiri, and A. M. Ardekani, Interaction between two drops ascending in a linearly stratified

fluid, Eur. J. Mech. B Fluids 60, 127 (2016).
[59] É. Guazzelli and J. Hinch, Fluctuations and instability in sedimentation, Annu. Rev. Fluid Mech. 43, 97

(2011).
[60] C. B. Field, Primary production of the biosphere: Integrating terrestrial and oceanic components, Science

281, 237 (1998).
[61] J. S. Guasto, R. Rusconi, and R. Stocker, Fluid mechanics of planktonic microorganisms, Annu. Rev.

Fluid Mech. 44, 373 (2012).
[62] R. Stocker and J. R. Seymour, Ecology and physics of bacterial chemotaxis in the ocean, Microbiol. Mol.

Biol. Rev. 76, 792 (2012).
[63] M. T. Madigan, J. M. Martinko, K. S. Bender, D. H. Buckley, and D. A. Stahl, Brock Biology of

Microorganisms, 14th ed. (Pearson, New York, 2014).
[64] J. Lighthill, Flagellar hydrodynamics, SIAM Rev. 18, 161 (1976).
[65] N. A. Hill and T. J. Pedley, Bioconvection, Fluid Dyn. Res. 37, 1 (2005).
[66] M. S. Plesset and H. Winet, Bioconvection patterns in swimming microorganism cultures as an example

of Rayleigh-Taylor instability, Nature (London) 248, 441 (1974).
[67] J. O. Kessler, Hydrodynamic focusing of motile algal cells, Nature (London) 313, 218 (1985).
[68] T. J. Pedley and J. O. Kessler, Hydrodynamic phenomena in suspensions of swimming microorganisms,

Annu. Rev. Fluid Mech. 24, 313 (1992).
[69] J. S. Turner, Buoyancy Effects in Fluids (Cambridge University Press, Cambridge, UK, 1973).
[70] H. E. Huppert and J. S. Turner, Double-diffusive convection, J. Fluid Mech. 106, 299 (1981).
[71] T. J. Pedley and J. O. Kessler, The orientation of spheroidal microorganisms swimming in a flow field,

Proc. R. Soc. B Biol. Sci. 231, 47 (1987).
[72] T. J. Smayda, Ecophysiology and bloom dynamics of Heterosigma akashiwo (Raphidophyceae), NATO

ASI Ser. Ser. G 41, 113 (1998).

100503-22

https://doi.org/10.1063/1.3094922
https://doi.org/10.1063/1.3094922
https://doi.org/10.1063/1.3094922
https://doi.org/10.1063/1.3094922
https://doi.org/10.1017/S0022112010003800
https://doi.org/10.1017/S0022112010003800
https://doi.org/10.1017/S0022112010003800
https://doi.org/10.1017/S0022112010003800
https://doi.org/10.1063/1.4704790
https://doi.org/10.1063/1.4704790
https://doi.org/10.1063/1.4704790
https://doi.org/10.1063/1.4704790
https://doi.org/10.1017/jfm.2017.474
https://doi.org/10.1017/jfm.2017.474
https://doi.org/10.1017/jfm.2017.474
https://doi.org/10.1017/jfm.2017.474
https://doi.org/10.1016/j.ijmultiphaseflow.2016.06.015
https://doi.org/10.1016/j.ijmultiphaseflow.2016.06.015
https://doi.org/10.1016/j.ijmultiphaseflow.2016.06.015
https://doi.org/10.1016/j.ijmultiphaseflow.2016.06.015
https://doi.org/10.1201/9781420050943.ch1
https://doi.org/10.1201/9781420050943.ch1
https://doi.org/10.1201/9781420050943.ch1
https://doi.org/10.1201/9781420050943.ch1
https://doi.org/10.1017/S0022112084000355
https://doi.org/10.1017/S0022112084000355
https://doi.org/10.1017/S0022112084000355
https://doi.org/10.1017/S0022112084000355
https://doi.org/10.1017/S0022112071000259
https://doi.org/10.1017/S0022112071000259
https://doi.org/10.1017/S0022112071000259
https://doi.org/10.1017/S0022112071000259
https://doi.org/10.1016/j.physa.2004.03.095
https://doi.org/10.1016/j.physa.2004.03.095
https://doi.org/10.1016/j.physa.2004.03.095
https://doi.org/10.1016/j.physa.2004.03.095
https://doi.org/10.1016/S0377-0427(02)00521-6
https://doi.org/10.1016/S0377-0427(02)00521-6
https://doi.org/10.1016/S0377-0427(02)00521-6
https://doi.org/10.1016/S0377-0427(02)00521-6
https://doi.org/10.1146/annurev.fl.12.010180.002251
https://doi.org/10.1146/annurev.fl.12.010180.002251
https://doi.org/10.1146/annurev.fl.12.010180.002251
https://doi.org/10.1146/annurev.fl.12.010180.002251
https://doi.org/10.1017/jfm.2013.415
https://doi.org/10.1017/jfm.2013.415
https://doi.org/10.1017/jfm.2013.415
https://doi.org/10.1017/jfm.2013.415
https://doi.org/10.1103/PhysRevE.88.023029
https://doi.org/10.1103/PhysRevE.88.023029
https://doi.org/10.1103/PhysRevE.88.023029
https://doi.org/10.1103/PhysRevE.88.023029
https://doi.org/10.1016/j.euromechflu.2016.07.002
https://doi.org/10.1016/j.euromechflu.2016.07.002
https://doi.org/10.1016/j.euromechflu.2016.07.002
https://doi.org/10.1016/j.euromechflu.2016.07.002
https://doi.org/10.1146/annurev-fluid-122109-160736
https://doi.org/10.1146/annurev-fluid-122109-160736
https://doi.org/10.1146/annurev-fluid-122109-160736
https://doi.org/10.1146/annurev-fluid-122109-160736
https://doi.org/10.1126/science.281.5374.237
https://doi.org/10.1126/science.281.5374.237
https://doi.org/10.1126/science.281.5374.237
https://doi.org/10.1126/science.281.5374.237
https://doi.org/10.1146/annurev-fluid-120710-101156
https://doi.org/10.1146/annurev-fluid-120710-101156
https://doi.org/10.1146/annurev-fluid-120710-101156
https://doi.org/10.1146/annurev-fluid-120710-101156
https://doi.org/10.1128/MMBR.00029-12
https://doi.org/10.1128/MMBR.00029-12
https://doi.org/10.1128/MMBR.00029-12
https://doi.org/10.1128/MMBR.00029-12
https://doi.org/10.1137/1018040
https://doi.org/10.1137/1018040
https://doi.org/10.1137/1018040
https://doi.org/10.1137/1018040
https://doi.org/10.1016/j.fluiddyn.2005.03.002
https://doi.org/10.1016/j.fluiddyn.2005.03.002
https://doi.org/10.1016/j.fluiddyn.2005.03.002
https://doi.org/10.1016/j.fluiddyn.2005.03.002
https://doi.org/10.1038/248441a0
https://doi.org/10.1038/248441a0
https://doi.org/10.1038/248441a0
https://doi.org/10.1038/248441a0
https://doi.org/10.1038/313218a0
https://doi.org/10.1038/313218a0
https://doi.org/10.1038/313218a0
https://doi.org/10.1038/313218a0
https://doi.org/10.1146/annurev.fl.24.010192.001525
https://doi.org/10.1146/annurev.fl.24.010192.001525
https://doi.org/10.1146/annurev.fl.24.010192.001525
https://doi.org/10.1146/annurev.fl.24.010192.001525
https://doi.org/10.1017/S0022112081001614
https://doi.org/10.1017/S0022112081001614
https://doi.org/10.1017/S0022112081001614
https://doi.org/10.1017/S0022112081001614
https://doi.org/10.1098/rspb.1987.0035
https://doi.org/10.1098/rspb.1987.0035
https://doi.org/10.1098/rspb.1987.0035
https://doi.org/10.1098/rspb.1987.0035


INVITED ARTICLES

TRANSPORT OF PARTICLES, DROPS, AND SMALL . . .

[73] M. S. Alqarni and R. N. Bearon, Transport of helical gyrotactic swimmers in channels, Phys. Fluids 28,
071904 (2016).

[74] P. K. Hershberger, J. E. Rensel, A. L. Matter, and F. B. Taub, Vertical distribution of the chloromonad
flagellate Heterosigma carterae in columns: Implications for bloom development, Can. J. Fish. Aquat.
Sci. 54, 2228 (1997).

[75] R. N. Bearon and D. Grünbaum, Bioconvection in a stratified environment: Experiments and theory,
Phys. Fluids 18, 127102 (2006).

[76] R. N. Bearon, D. Grunbaum, and R. A. Cattolico, Effects of salinity structure on swimming behavior and
harmful algal bloom formation in Heterosigma akashiwo, a toxic raphidophyte, Mar. Ecol. Prog. Ser. 306,
153 (2006).

[77] B. MacKenzie and W. Laggett, Wind-based models for estimating the dissipation rates of turbulent kinetic
energy in aquatic environments: Empirical comparison, Mar. Ecol. Prog. Ser. 94, 207 (2010).

[78] W. H. Munk, Abyssal recipes, Deep Sea Res. 13, 707 (1996).
[79] R. L. Iverson, D. P. Novacek, L. C. Laurent, W. K. Dewar, R. J. Bingham, and P. H. Wiebe, Does the

marine biosphere mix the ocean? J. Mar. Res. 64, 541 (2006).
[80] K. Katija and J. O. Dabiri, A viscosity-enhanced mechanism for biogenic ocean mixing, Nature (London)

460, 624 (2009).
[81] K. Katija, Review: Biogenic inputs to ocean mixing, J. Exp. Biol. 215, 1040 (2012).
[82] E. Kunze, J. F. Dower, R. Dewey, and E. A. D’Asaro, Mixing it up with krill, Science 318, 1239 (2006).
[83] K. Katija, Morphology alters fluid transport and the ability of organisms to mix oceanic waters, Integr.

Comp. Biol. 55, 698 (2015).
[84] G. Subramanian, Viscosity-enhanced bio-mixing of the oceans, Curr. Sci. 98, 1103 (2010).
[85] A. W. Visser, Biomixing of the oceans? Science 316, 838 (2007).
[86] F. Blanchette, Mixing and convection driven by particles settling in temperature-stratified ambients,

Int. J. Heat Mass Transfer 56, 732 (2013).
[87] U. Frisch, Turbulence: The Legacy of A. N. Kolmogorov (Cambridge University Press, Cambridge, UK,

1995).
[88] N. Oakey and J. Elliot, Dissipation within the surface mixed layer, J. Phys. Oceanogr. 12, 171 (1982).
[89] G. Sutherland, B. Ward, and K. Christensen, Wave-turbulence scaling in the ocean mixed layer, Ocean

Sci. 9, 597 (2013).
[90] P. A. Jumars, J. H. Trowbridge, E. Boss, and L. Karp-Boss, Turbulence-plankton interactions: A new

cartoon, Mar. Ecol. 30, 133 (2009).
[91] G. Piepke, A. Wüest, and D. C. Van Senden, Turbulent kinetic energy balance as a tool for estimating

vertical diffusivity in wind-forced stratified waters, Limnol. Oceanogr. 45, 1388 (2000).
[92] T. S. Lundgren, Linearly forces isotropic turbulence, technical report, Minnesota University, Minneapolis,

MN, 2003 (unpublished).
[93] C. Rosales and C. Meneveau, Linear forcing in numerical simulations of isotropic turbulence: Physical

space implementations and convergence properties, Phys. Fluids 17, 095106 (2005).
[94] B. Cuenot, B. Bedat, and A. Corjon, NTMIX3D user’s guide, preliminary version 1.0 (Centre de Recherche

sur la Combustion Turbulente, France, 1997).
[95] T. Passot and A. Pouquet, Numerical simulation of compressible homogeneous flows in the turbulent

regime, J. Fluid Mech. 181, 441 (1987).

100503-23

https://doi.org/10.1063/1.4958733
https://doi.org/10.1063/1.4958733
https://doi.org/10.1063/1.4958733
https://doi.org/10.1063/1.4958733
https://doi.org/10.1139/f97-131
https://doi.org/10.1139/f97-131
https://doi.org/10.1139/f97-131
https://doi.org/10.1139/f97-131
https://doi.org/10.1063/1.2402490
https://doi.org/10.1063/1.2402490
https://doi.org/10.1063/1.2402490
https://doi.org/10.1063/1.2402490
https://doi.org/10.3354/meps306153
https://doi.org/10.3354/meps306153
https://doi.org/10.3354/meps306153
https://doi.org/10.3354/meps306153
https://doi.org/10.3354/meps094207
https://doi.org/10.3354/meps094207
https://doi.org/10.3354/meps094207
https://doi.org/10.3354/meps094207
https://doi.org/10.1357/002224006778715720
https://doi.org/10.1357/002224006778715720
https://doi.org/10.1357/002224006778715720
https://doi.org/10.1357/002224006778715720
https://doi.org/10.1038/nature08207
https://doi.org/10.1038/nature08207
https://doi.org/10.1038/nature08207
https://doi.org/10.1038/nature08207
https://doi.org/10.1242/jeb.059279
https://doi.org/10.1242/jeb.059279
https://doi.org/10.1242/jeb.059279
https://doi.org/10.1242/jeb.059279
https://doi.org/10.1126/science.318.5854.1239b
https://doi.org/10.1126/science.318.5854.1239b
https://doi.org/10.1126/science.318.5854.1239b
https://doi.org/10.1126/science.318.5854.1239b
https://doi.org/10.1093/icb/icv075
https://doi.org/10.1093/icb/icv075
https://doi.org/10.1093/icb/icv075
https://doi.org/10.1093/icb/icv075
https://doi.org/10.1126/science.1141272
https://doi.org/10.1126/science.1141272
https://doi.org/10.1126/science.1141272
https://doi.org/10.1126/science.1141272
https://doi.org/10.1016/j.ijheatmasstransfer.2012.09.042
https://doi.org/10.1016/j.ijheatmasstransfer.2012.09.042
https://doi.org/10.1016/j.ijheatmasstransfer.2012.09.042
https://doi.org/10.1016/j.ijheatmasstransfer.2012.09.042
https://doi.org/10.1175/1520-0485(1982)012<0171:DWTSML>2.0.CO;2
https://doi.org/10.1175/1520-0485(1982)012<0171:DWTSML>2.0.CO;2
https://doi.org/10.1175/1520-0485(1982)012<0171:DWTSML>2.0.CO;2
https://doi.org/10.1175/1520-0485(1982)012<0171:DWTSML>2.0.CO;2
https://doi.org/10.5194/os-9-597-2013
https://doi.org/10.5194/os-9-597-2013
https://doi.org/10.5194/os-9-597-2013
https://doi.org/10.5194/os-9-597-2013
https://doi.org/10.1111/j.1439-0485.2009.00288.x
https://doi.org/10.1111/j.1439-0485.2009.00288.x
https://doi.org/10.1111/j.1439-0485.2009.00288.x
https://doi.org/10.1111/j.1439-0485.2009.00288.x
https://doi.org/10.4319/lo.2000.45.6.1388
https://doi.org/10.4319/lo.2000.45.6.1388
https://doi.org/10.4319/lo.2000.45.6.1388
https://doi.org/10.4319/lo.2000.45.6.1388
https://doi.org/10.1063/1.2047568
https://doi.org/10.1063/1.2047568
https://doi.org/10.1063/1.2047568
https://doi.org/10.1063/1.2047568
https://doi.org/10.1017/S0022112087002167
https://doi.org/10.1017/S0022112087002167
https://doi.org/10.1017/S0022112087002167
https://doi.org/10.1017/S0022112087002167



