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We study the dynamical regimes of a density-stratified fluid confined between isothermal
no-slip top and bottom boundaries (at temperatures Tt and Tb) via direct numerical
simulation. The thermal expansion coefficient of the fluid is temperature dependent and
chosen such that the fluid density is maximum at the inversion temperature Tb > Ti > Tt .
Thus, the lower layer of the fluid is convectively unstable while the upper layer is stably
stratified. We show that the characteristics of the convection change significantly depending
on the degree of stratification of the stable layer. For strong stable stratification, the
convection zone coincides with the fraction of the fluid that is convectively unstable (i.e.,
where T > Ti), and convective motions consist of rising and sinking plumes of large density
anomaly, as is the case in canonical Rayleigh-Bénard convection; internal gravity waves are
generated by turbulent fluctuations in the convective layer and propagate in the upper layer.
For weak stable stratification, we demonstrate that a large fraction of the stable fluid (i.e.,
with temperature T < Ti) is instead destabilized and entrained by buoyant plumes emitted
from the bottom boundary. The convection thus mixes cold patches of low density-anomaly
fluid with hot upward plumes and the end result is that the Ti isotherm sinks within the
bottom boundary layer and that the convection is entrainment dominated. We provide a
phenomenological description of the transition between the regimes of plume-dominated
and entrainment-dominated convection through analysis of the differences in the heat
transfer mechanisms, kinetic energy density spectra, and probability density functions for
different stratification strengths. Importantly, we find that the effect of the stable layer on
the convection decreases only weakly with increasing stratification strength, meaning that
the dynamics of the stable layer and convection should be studied self-consistently in a
wide range of applications.
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I. INTRODUCTION

Buoyancy-driven convection can result from a number of physical mechanisms leading to a change
of the fluid density, including evaporation, heating, and sedimentation. Convection occurs naturally
in the interior of stars and planets, as well as in oceans and atmospheres, but is also sometimes
used to improve heat transfer properties in buildings and industrial processes. The transport of mass,
momentum, and heat are all important aspects of convective flows.

Because density variations are often small compared to the mean fluid density, buoyancy-
driven convection studies typically neglect density effects other than in the buoyancy force, an
approximation known as the Boussinesq assumption. The Oberbeck-Boussinesq (OB) assumption,
which additionally assumes constant physical properties (such as viscosity, conductivity, and thermal
expansion), is also often considered and has resulted in much of our fundamental understanding
of convective flows, spearheaded by the canonical problem of (thermally driven) Rayleigh-Bénard
convection (RBC) [1].
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While the Boussinesq assumption is applicable in a number of physically interesting fluid
systems, some dynamics of realistic convective fluids are not attained under the Oberbeck-Boussinesq
approximation. In thermal convection, for instance, symmetric top and bottom boundary conditions
necessarily result in a top-down midplane symmetry of the flow under OB assumption. Helium
convection experiments have demonstrated asymmetric fluid motions with respect to the midplane
due to temperature-dependent viscosity [2], an effect discarded within the OB framework.
Non-Oberbeck-Boussinesq (NOB) effects are of current research interest because a number of
fluids (e.g., water, helium, and ethane) have temperature-dependent physical properties, in particular
close to their critical point (such as in glycerol; see, e.g., [3]).

Of all NOB effects, those due to temperature-dependent expansion coefficients may be most
striking (in ethane; see e.g., [4]) and at the same time can be readily observed in nature. This is
especially true because the expansion coefficient of water varies significantly close to its density
maximum at temperature T0 = 4 ◦C, a temperature ubiquitous in oceans and lakes that can thus
routinely experience NOB effects [5,6]. The density maximum for water results from the quadratic
equation of state (EOS) ρ ∝ ρ0[1 − β(T − T0)2], which is a simplified yet realistic EOS for water at
atmospheric pressure [7]. Because of the quadratic temperature nonlinearity, the water with a positive
vertical temperature gradient reverses from buoyancy decreasing with height for T � T0 = 4 ◦C to
buoyancy increasing with height for T � T0 = 4 ◦C. This results in a layer subject to convective
instability beneath a stably stratified layer. The existence of an adjacent stable stratification can have
a significant influence on the convective dynamic, most notably allowing for penetrative convection,
as demonstrated theoretically via stability analysis decades ago (e.g., [8]). More recently, laboratory
experiments [9] and numerical simulations [10] have improved our understanding of such penetrative
convection following the seminal study by Townsend [11] and have shown a clear picture of plumes
interacting with a stable layer and generating internal waves, an effect inaccessible within the OB
framework.

Non-OB convection with a buoyancy reversal is not limited to water but also occurs in a number
of alcohol-glycol–water mixtures used as analogs of gas dissolution in porous media [12–14], in
glass-forming liquids such as BeF2 [15], and in the troposphere where an inversion layer forms atop
the cloud-top mixing layer as a result of evaporation [16]. The heterogeneous convective or wave
dynamic is also relevant to many astrophysical and geophysical settings: In stars such as our Sun,
convection only occurs in the relatively cool outer shell and couples with an underlying stable region
where gravity waves propagate [17–20]; in the Earth, observations within the convective liquid
outer core point to a possible stratified layer near both the core-mantle boundary and the inner-core
boundary [21,22]. Buoyancy reversal in astrophysical and geophysical systems is due to changes
from super- to subadiabatic mean temperature profiles, related to changes of physical properties with
temperature and pressure.

In addition to the effects of the Rayleigh and Prandtl numbers on thermal convection, buoyancy
reversal dynamics are strongly affected by an additional physical parameter, the relative strength S
of the stable stratification compared to the destabilizing buoyancy difference. A number of questions
related to buoyancy reversal effects in thermal convection are related to the effect of varying S.
Such questions, addressed in this paper, include the following. For which S is it safe to assume that
the convection is not affected by the dynamic of the stable layer? How is the generation of internal
waves affected by S? How does the height of the convection zone change with S? Is the heat transfer
sensitive to S?

The idea of possibly decoupling the convection zone from the stable fluid layer is of particular
interest because the convective and internal gravity wave dynamics can be on vastly different time
and length scales [9,10]. In numerical simulations it would be advantageous to run a turbulent
convection-only simulation and then use the output flow statistics from this simulation as a source
term for generating internal waves in a separate run. This idea was put forward theoretically by
Goldreich and Kumar [23]: Assuming a Kolmogorov-type spectrum representative of Reynolds
stresses due to sweeping plumes below the unstable-stable interface, they bypassed the simulation of
the convection and were able to directly analyze in detail the generated internal wave field. Of course
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this approach requires a careful investigation of whether a Kolmogorov spectrum is appropriate and
whether Reynolds stress is indeed the main generating mechanism. Ongoing work and recent results
on water convection seem to support that waves are mainly generated by Reynolds stresses, at least
for some (high) values of S [10]. Another simplified approach consists in deriving one-dimensional
(along the vertical) models with turbulence diffusivity parametrization, as done in, for instance, [24].

Here we address via direct numerical simulation some of the questions pertaining to the effect
of the stable stratification strength on buoyancy reversal convection. Because our goal is to obtain
a clear picture of the various convective dynamics for a wide range of stratification parameters,
we focus in this paper on two-dimensional simulations. Reducing the system to two dimensions
allows us to run a large number of simulations for several diffusive times, which is necessary to
reach a statistically steady state. We describe the model setup in Sec. II. In Sec. III we analyze the
onset and transition to steady state. The qualitative features of simulations with high, moderate, and
small stratification strengths are described in Sec. IV. A detailed analysis is presented in Sec. V. A
summary is given in Sec. VI.

II. PROBLEM FORMULATION

We consider the Navier-Stokes equations under the Boussinesq approximation and in two
dimensions. We take x (z) to be the horizontal (vertical upward) direction, with x̂ and ẑ the unit
vectors. The dimensionless equations are

∂t u + u · ∇u = −∇p + Pr∇2u − Pr Raρẑ, (1a)

∂tT + u · ∇T = ∇2T , (1b)

∇ · u = 0. (1c)

Length and time scales are nondimensionalized using the full vertical extent of the domain � and
the thermal diffusion time �2/κ , where κ is the constant thermal diffusivity of the fluid. Here T is
the temperature, u is the velocity vector, and ρ is the density anomaly compared to the reference
density ρ0. We assume isothermal and no-slip boundary conditions on the top and bottom horizontal
plates and periodicity of all fluid variables in the horizontal x direction. The dimensionless parameter
Pr = ν/κ is the Prandtl number, with ν the constant fluid viscosity. Here Ra is the Rayleigh number,
defined as

Ra = α∗
c g(T ∗

b − T ∗
i )�3

νκ
, (2)

where g is the constant gravitational acceleration, α∗
c is the (dimensional) constant thermal

expansion coefficient for temperatures T ∗ > T ∗
i , and T ∗

b − T ∗
i > 0 is the (dimensional) temperature

scale obtained from the difference between the temperature on the bottom plate (T ∗
b ) and the

inversion temperature (T ∗
i defined below). Using T ∗

i as the absolute reference temperature then
gives the dimensionless temperature T in Eq. (1) in terms of the dimensional one, T ∗, as
T = (T ∗ − T ∗

i )/(T ∗
b − T ∗

i ), implying Tb = 1 and Ti = 0.
As in classical RBC, we consider an equation of state for the density anomaly of the form

ρ = −αT . However, we deviate from the OB paradigm as we allow the dimensionless thermal
expansion coefficient α(T ) to vary with temperature, as is the case for, e.g., water. Specifically, as
can be seen in Fig. 1, we consider

ρ = −α(T )T =
{−T , T � 0
ST , T < 0,

(3)

such that α changes sign at T = 0, with S > 0 a free parameter of our model. The change of sign of
α results in the density anomaly being nonmonotonic and maximum at T = 0, which we thus refer
to as the inversion temperature (at the dimensional temperature T ∗

i ). The form of α is the simplest
model that can reproduce a nonmonotonic EOS similar to water (shown in Fig. 1) and that allows
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FIG. 1. Equation of state for the density anomaly ρ as a function of temperature T (T decreasing upward)
for three different stiffness parameters S (solid lines). For comparison with water, the quadratic equation of
state ρ = −T 2 is also shown (dashed line); note that the S parameter that best represents water depends on the
temperature range considered.

varying degrees of stratification of the top stable layer. While S � 1 is obtained when considering
a stronger stratification than is the case for water, i.e., a steeper effect of varying temperature on
the density, S � 1 implies a weaker stratification. It can be noted that a smoothed piecewise profile
for α may have worked equally well as the discontinuous profile considered in Eq. (3), though it
would have introduced additional parameters in the problem. Numerically, Eq. (3) did not pose any
problem, although a relatively high vertical resolution was necessary, because even though α is
discontinuous, relevant terms appearing in the equations (i.e., T and its first-order and second-order
derivatives as well as the buoyancy αT ) are all continuous. The variations of ρ with T are shown in
Fig. 1 for S = 1, along with the stiffest S = 28 (almost horizontal line) and most flexible S = 2−8

(almost vertical line) cases considered in this paper. For S = 28, note that the stratification in density
is so strong in the stable layer that the density anomaly cannot be shown in Fig. 1 even for a unitary
increment in temperature; at the top of the domain where we will consider Tt = −20, we will have
ρ = −5120.

The system described by Eqs. (1) and (3) is completely defined by Pr, Ra,S, and the dimensionless
top temperature Tt (recall Tb = 1). We will call S the stiffness parameter as it is related to the
buoyancy resistance of the upper fluid to overshooting convective plumes. Defining the buoyancy
frequency as N = √−Pr Ra∂zρ (based on our notation), we can see that S is also related to the ratio
of the buoyancy frequency in the stable and unstable fluids through S = (N2/∂zT )|zs

/(N2/∂zT )|zc
,

where ·|zs ,zc
means evaluated at points z = zs or z = zc in the stable or convective zone, respectively.

The conductive state has a linear temperature profile T = 1 − z(1 − Tt ). In this state, the fluid is
convectively unstable below z = 1/(1 − Tt ) and stably stratified above and the interface separating
the unstable and stable regions corresponds to the T = 0 (inversion temperature) isotherm. We will
also consider the neutral buoyancy level ZNB, the height at which fluid parcels rising adiabatically
and without inertia from the bottom boundary would reach equilibrium.

In the following sections we solve Eqs. (1) with ρ given by (3) using the pseudospectral code
Dedalus [25] (see [26] and further details in the Appendix). We first briefly discuss the transient
evolution (Sec. III) and then we explore the dynamical regimes and statistical properties of the
coupled convective–stably-stratified system at thermal equilibrium (Secs. IV and V) for different
stiffness parameters, S = 2i with i ∈ [−8,8] an integer, and three different reference Rayleigh
numbers, i.e., Ra = 8 × 106,8 × 107,8 × 108 (details of all 51 simulations are provided in the
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FIG. 2. Transient evolution of (a) and (b) the temperature field and (c) and (d) the normalized vorticity
field ωτc at times (a) and (c) t/τc = 2.1 and (b) and (d) t/τc = 50.5. The simulation is started from the static
equilibrium of the linear temperature profile and the physical parameters are Pr = 1, Ra = 8 × 107, S = 1, and
Tt = −20. Here τc is the reference turnover time scale (see the text).

Appendix). For simplicity, the Prandtl number is set equal to Pr = 1 and the top temperature is
set equal to Tt = −20 in all simulations. The choice of Tt = −20 is rather arbitrary but serves the
purpose of having stable and convective layers of similar height for the prototypal case shown in
Fig. 3(b) (Ra = 8 × 107 and S = 1), thus minimizing confinement effects on the convection and on
wave propagation in the stably stratified region. The box width relative to the height is set equal to
2 such that the effective aspect ratio for the convection is approximately 4, which limits horizontal
confinement effects.

III. TRANSIENT EVOLUTION AND THE HEIGHT OF THE CONVECTION ZONE

We first show in Fig. 2 the transient evolution of the temperature and vorticity fields between
t/τc = 2.1 and t/τc = 50.5 starting from the conductive state T = 1 − z(1 − Tt ) with white noise at
t = 0 for physical parameters Ra = 8 × 107 and S = 1 (we recall that we set Pr = 1 and Tt = −20
for all simulations in this paper); τc = 1/fc = 2π/

√
Ra Pr is the reference turnover time scale for

buoyancy forces, which will be used throughout (along with the turnover frequency fc) to normalize
time variables and vorticity [note that it can be obtained from Eqs. (1) assuming small perturbations,
upon substitution of ρ by (3), and assuming a unitary temperature gradient]. After roughly two
turnover times [Figs. 2(a) and 2(c)], the convective instability develops close to the bottom boundary
layer; the convective cells then expand over time upward into the overlaying stable layer [Figs. 2(b)
and 2(d)]. The convective region expands because the convective flux in the convection zone is
larger than the diffuse flux in the stable zone. When the convection expands, the convective flux
stays about constant, but the diffusive heat flux in the stable region increases because the temperature
gradient increases. The depth of the convection zone reaches a constant mean value when the heat
flux through the convection zone is on average equal to the heat flux through the stable layer, which
is known as the state of thermal equilibrium.

The characteristics of the convection vary with the height of the convective region. Determining
the height of the convective region at thermal equilibrium is thus a major goal of this paper. The
Rayleigh number defined by (2) is a reference Rayleigh number, but is not a strict analog of
the Rayleigh number in classical RBC because the height of the convective region is an output of the
simulation, not an input. Indeed, in our definition of the Rayleigh number we use the temperature
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difference T ∗
b − T ∗

i and thermal expansion coefficient α∗
c related to the convection, but choose the

total domain depth � as the length scale. The inversion depth �/(1 − Tt ) of the conductive state
could be used alternatively, but from Fig. 2 and previous studies on convection in water close to its
density maximum, we know that the convective layer depth grows with time from the static state and
that it reaches a mean height at dynamical equilibrium that can substantially vary with the problem
parameters (see, e.g., [27] and Fig. 2). As a result, neither � nor �/(1 − Tt ) can be expected to provide
an accurate measure of the convective height. Providing a prediction for the convective layer depth
including coupling between the two layers is the topic of Sec. V F.

In a previous analysis of convection in water close to its density maximum, Ref. [28] showed that
a prediction of the (dimensionless) convective height h could be made under several assumptions.
Assuming no dynamical coupling between the stratified upper layer and the convection, the method
equates the diffusive heat flux in the upper layer [approximated as −(Tt − Ti)/(1 − h)] with the heat
flux in the convection zone of the form C Raβ

eff(Tb − Ti)/h, where Raeff is the Rayleigh number based
on the effective convective depth. The form of the convective heat flux is suggested by classical RBC
studies, which show that for fixed Pr the Nusselt number Nu can be approximated as Nu = C Raβ ,
with C and β two constants. Solving for the convective depth h with Raeff = Rah3 then yields (with
Ti = 0 and Tb = 1)

1 − h = −Tt

h1−3β

C Raβ
, (4)

which, under the assumption that 1 − 3β � 1 (an acceptable approximation since 0.28 < β < 0.31
for laminar thermal boundary layers; cf. [1,29]), reduces to

1 − h ≈ −Tt

C Raβ
. (5)

The approximate expression (5) for 1 − h predicts that the convection height increases with the
reference Rayleigh number Ra but decreases with Tt . Both effects are expected since as Tt decreases,
the stably stratified layer grows and the unstable layer correspondingly shrinks in the conductive
state. The prediction, however, is independent of the stratification parameter S, as the dynamical
coupling between the stably stratified and convective regions is neglected. We will show that this
simplification is appropriate only in the large stiffness regime (S � 1) and that the convection height
cannot be in general inferred from this model.

IV. DYNAMICS AT THERMAL EQUILIBRIUM FOR DIFFERENT STIFFNESSES

We now turn our attention to the system dynamics at thermal equilibrium, i.e., once statistical
steady-state and depth-invariant heat flux are achieved. Unlike in Fig. 2, in order to avoid the thermal
equilibration time for the stable layer, we start our simulations from a temperature profile close to
what is expected at thermal equilibrium (see the Appendix).

We show in Figs. 3(a)–3(c) three snapshots obtained at thermal equilibrium for high S = 28,
moderate S = 1, and small S = 2−8 stiffness, respectively. We select snapshots for Ra = 8 × 107,
since this intermediate Rayleigh number case will be the focus of the detailed analysis in Sec. V
(Pr = 1 and Tt = −20). In Figs. 3(a) and 3(b), the density anomaly ρ is shown from the bottom
up to the instantaneous neutral buoyancy level [i.e., z = ZNB(x), where ρ(x,ZNB) = −1, labeled as
the interface in Fig. 3], while the vorticity is shown above it. The idea of showing both density and
vorticity such as in Fig. 3 is not new [10] and allows us to combine in a single plot the information
on buoyancy effects in the convection zone and waves in the stable layer. In Fig. 3(c), the density
anomaly is shown everywhere because plumes can in theory rise all the way to the top of the domain;
the stratification is indeed so weak that the lightest fluid is within the bottom boundary layer.

Figure 3(a), obtained for a high stiffness parameter, shows two distinct regions above and below
ZNB, which coincides with the Ti isotherm. The bottom layer consists of Rayleigh-Bénard convective
cells made of up-down symmetric plumes rising between the bottom plate and the neutral buoyancy
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FIG. 3. Simulation snapshots for Ra = 8 × 107 and stiffness (a) S = 28, (b) S = 1, and (c) S = 2−8

representatives of the system’s dynamic at thermal equilibrium, i.e., obtained after several thousand convective
turnover times. The density anomaly is shown in the convection zone, below the neutral buoyancy height ZNB(x)
[i.e., where ρ(x,ZNB) = −1]. Above ZNB, the fluid is stably stratified and we plot the vorticity. In (a) convective
cells with a top-down symmetry are shown in the lower layer, generating global wave modes in the upper stably
stratified layer. In (b) the convection zone is larger, but significant coupling between the two layers is obtained
as shown by the strong variations of ZNB with x. In (c) the system changes significantly with rising plumes
close to the bottom interacting with large-scale structures (shown by contour lines) higher in the fluid (note that
ZNB is outside the domain such that we show the density field everywhere in this case). We also show the mean
temperature and anomaly density profiles by the dashed and solid lines as later discussed and reported in Fig. 6
(see also [30]).
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FIG. 4. Snapshot of the temperature field corresponding to the density anomaly plot of Fig. 3(c).

level. The top layer is stably stratified and supports waves. The interface is almost perfectly straight
and we expect that the waves are excited by Reynolds stress forcing [10]. Global internal gravity
modes are present, with approximately three wavelengths fitting along the vertical direction.

Figure 3(b), obtained for stiffness S = 1, exhibits the same features as Fig. 3(a). Plumes are
emitted from the bottom plate and the interface, while internal waves are observed above ZNB. The
aspect ratio of the convective cells is roughly 1, as in Fig. 3(a), but because the interface lies higher,
only two cells are obtained, compared to three for S = 28. Compared to the high-stiffness case,
however, the instantaneous interface is much more distorted as a result of upward-going plumes
impinging on the relatively weak stable stratification. Rising and sinking plumes do not have the
same symmetry either: Down-going heavy plumes look like filaments, entraining chunks of lighter
fluid with them. These observations are also reflected in the difference of location of the Ti isotherm
and neutral buoyancy level, which can be seen as a first approximation of the overshooting length
scale of strong penetrative convection. Note that this overshooting length scale is defined from
the mixing of stable fluid into the convective region (sinking of Ti isotherm within the convection
zone) and is therefore not exactly equivalent to the overshooting length scale based on the mixing
of convective fluid into the stable region considered in penetrative convection studies on top of a
background state. The more chaotic dynamical transition between the convective and stably stratified
regions clearly results in a less organized internal gravity wave field than in the high-stiffness case
of Fig. 3(a).

Figure 3(c), obtained for the smallest stiffness parameter S = 2−8 considered, shows a very
different behavior than the previous two cases. In this simulation, the bulk of the fluid is everywhere
heavier than near the bottom plate. A stark difference also comes from the fact that there are only
upward-going plumes. This is because the Ti isotherm is within the thermal bottom boundary layer,
so convection only occurs near z = 0. The sinking of the Ti isotherm is an important result that
can be explained by the fact that the top stable layer, which is initially quiescent in the simulations,
is so heavy for small S that it can squeeze the buoyancy-driven convective layer down as soon as
it is destabilized by overshooting convective plumes. Because the stable layer is only marginally
stratified for small S, the entire stable fluid is put into motion and slumps down when the bottom part
is destabilized by the plumes. This explains why entrained fluid motions extend almost everywhere
in the fluid. Note that the cold entrained fluid moves seemingly passively, i.e., slower than the
plumes, but because of its inertia and large temperature anomaly still dominates dynamically almost
everywhere and brings the bulk density anomaly close to zero. Looking at the temperature field at
the same simulation time (cf. Fig. 4) shows that hot rising plumes still impact high parts of the fluid
as a result of their inertia. Thus, plumes play an essential role in the dynamics by maintaining the
entrained fluid in motion, but not necessarily in the heat transfer. As they rise further up, plumes
broaden [thereby carving the large-scale entrained fluid visible in Fig. 3(c)] and cool down to
the point that they can contribute negatively to the (positive) heat transfer. Nonetheless, as will be
demonstrated later, convection is efficient from z = 0 up to z = 0.9, because the large-scale entrained
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FIG. 5. (a) Bulk temperature Tbulk as a function of S (S decreases to the right) averaged over the convection
zone (see the text for details). The dash-dotted line is a best fit obtained for all data points and is given by
Eq. (6). The dashed line highlights the inversion temperature Ti = 0 where α changes sign and the dotted line
represents the bulk temperature expected from classical RBC. (b) Total heat flux Q as a function of S. Results
are shown for three different reference Rayleigh numbers Ra.

structures of low-density anomaly [in part visible from contour lines of isodensity in Fig. 3(c)] are
efficient at transporting cold fluid down. In the weakly stratified limit, the overshooting length scale
is of the same order as the entire fluid depth. Note that the top of the fluid layer is stably stratified,
although weakly.

V. STATISTICAL ANALYSIS AND REGIME PROPERTIES

The simulation snapshots of Fig. 3 show that the stiffness parameter S plays a key role in the
coupling between the convective and stably stratified regions. The high-stiffness regime shows strong
top-down symmetry in the convection zone, suggesting negligible feedback from the waves on the
convection. This symmetry is no longer present for moderate stiffness S ∼ 1 and the dynamics
completely change for low stiffness.

We now quantitatively study the effect of the stiffness S on the interaction between the convective
and stably stratified regions and on the heat transfer. The results are obtained for simulations in
thermal equilibrium, i.e., such that the statistics are temporally converged and the total heat flux is
depth invariant. Reaching thermal equilibrium requires running simulations over several dissipation
times, which requires long run times. Use of judicious initial conditions allows a more rapid
convergence to thermal equilibrium (see the Appendix for more details). We will make use of the x

average operator 〈·〉x = ∫
dx/2 (2 is the box width), the volume average operator 〈·〉 = ∫

dz dx/2,
and the time average operator, denoted by an overline. Time averages are typically performed over
tens to thousands of turnover times depending on S (see the Appendix for details).

We first present in Fig. 5 simulation results obtained for three different Rayleigh numbers (Ra =
8 × 106,8 × 107,8 × 108) and 17 different stiffness parameters (S from 28 to 2−8; see Table I in the
Appendix). In Fig. 5(a) we show the bulk temperature, i.e., Tbulk = ∫

z
dz〈T 〉x , averaged in z over

the convection zone (i.e., where the convective heat transfer qc accounts for at least 95% of the
total heat flux q). For all three Rayleigh numbers we can see that the bulk temperature increases
with the stiffness parameter. In the limit of large stiffness, Tbulk → 0.5, which is the temperature
expected from a convection-only simulation with top and bottom temperatures of Tt = 0 and Tb = 1,
respectively. Thus the large-stiffness limit of the bulk temperature tends to the classical RBC bulk
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temperature even though the EOS is nonlinear. This is consistent with Fig. 3(a), where the density
anomaly in the bulk is roughly ρ = −0.5, corresponding to Tbulk = 0.5. In the small-stiffness limit,
the bulk temperature decreases below the Ti = 0 isotherm, suggesting that significant mixing of
low-temperature fluid occurs within the convective region. The overlap of the results for all Ra
further indicates that this mixing is relatively independent of the degree of turbulence. As long
as the lower layer is convectively unstable and plumes are emitted, they can destabilize the upper
stable layer entirely, because it is only marginally stratified. For high stiffness, higher Ra tends to
increase the entrainment and mixing, and lower the bulk temperature. The data for all Ra are well
approximated in the range S ∈ [2−8,28] by a best polynomial fit law in terms of ln(S), i.e.,

Tbulk(S) = −0.0075 ln(S)2 + 0.11 ln(S) + 0.1, (6)

shown as the dash-dotted line in Fig. 5(a). This empirical law will be used in Sec. V F to provide an
estimate for the depth of the convection zone.

We define the z-dependent convective and diffusive heat fluxes to be

qc = 〈wT 〉x, (7a)

qd = 〈−∂zT 〉x (7b)

and we recall that the total heat flux q = qc + qd can be shown to be independent of z when averaged
over long time periods (recall that time and therefore w are normalized by the thermal time and
that Pr = 1). Figure 5(b) then shows the total heat transfer Q = ∫

q dz as a function of the stiffness
parameter (z averaging removes the small 2% maximum relative discrepancy obtained using the
infinity norm in our simulations, showing the good statistical convergence). Because we work with
dimensionless variables, we note that Q is normalized by a diffusive heat flux and thus may be
interpreted as a Nusselt number. We refrain from interpreting Q as a Nusselt number, however,
because the Nusselt number definition requires a choice of length scale (see Sec. V E). The heat
transfer Q increases with decreasing stiffnessS for all three Rayleigh numbers, which is in agreement
with the observation that the diffusive heat flux in the stable layer should increase as a result of the
growing convection zone (see Fig. 3). As expected, we also observe that Q increases with Ra for
all S. In the high-stiffness limit, the slope |dQ/dS| → 0, which suggests that the classical RBC
regime might be recovered for large S. This further implies that the depth of the convection zone
h becomes independent of S since the heat flux in the stable layer is dominated by diffusion, so
Q ≈ −Tt/(1 − h). However, how large S should be to recover RBC clearly depends on Ra, since
for the highest Ra simulations, Q still changes appreciably for S = 256. For small S, on the other
hand, Q increases continuously with decreasing S. Thus, different mechanisms occur when varying
S, as could be inferred from Figs. 3 and 4.

A. Vertical profiles of the mean temperature and density

In Fig. 6, the mean temperature 〈T 〉x and density 〈ρ〉x profiles are shown as a function of
z. Because the convection is steady for Ra = 8 × 106 at high S and vertical confinement effects
may affect the higher Ra = 8 × 108 simulations (due to the higher convective flux resulting in
a larger h and to overshoot), from here onward we choose to focus on the case Ra = 8 × 107

(obtaining converged statistics would also require a much longer time for Ra = 8 × 108 than for
Ra = 8 × 107). The trends regarding the effect of S are nevertheless similar for all three Rayleigh
numbers considered. We use colors ranging from blue to red to represent increasing stiffness. In
Fig. 6(a), we plot the temperature between −4 and 1 because the temperature decreases linearly with
z for 〈T 〉x � −4 (recall Tt = −20). The highest-stiffness case (dark red curve) shows a symmetric
temperature profile with z for 〈T 〉x ∈ [0,1], i.e., between the bottom and inversion temperature,
similar to what is obtained from a purely convection simulation (see the open squares). The mean
temperature in the well-mixed region is roughly 0.5, as observed in Fig. 5(a). As the stiffness
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FIG. 6. (a) Mean temperature 〈T 〉x and (b) mean density anomaly 〈ρ〉x profiles as functions of z for
Ra = 8 × 107 and for different stiffness parameters S. For strong stratification, the density anomaly in the
convection zone is constant within a bulk bounded by two thin layers where the density quickly increases,
reminiscent of classical RBC. For weak stratification, the fluid density only increases within the bottom
boundary layer and is almost uniform or weakly decreasing above. As in Fig. 5, the vertical dashed line in (a)
highlights the inversion temperature Ti = 0 and the dotted line indicates the bulk temperature expected from
classical RBC. The open squares show results from a convection-only simulation with rigid no-slip top and
bottom boundaries and a vertical height h = 0.32, which is an estimate of the depth of the convection zone for
S = 28 [obtained from h = 2Ldb + Lcp + Lce; see (9)].

decreases, the mean temperature profiles become less symmetric; eventually the bulk temperature
drops below zero. It is relatively surprising that for S � 2−2 the Ti = 0 isotherm is found within the
thermal bottom boundary layer, so the fluid is on average stably stratified from the outside of the
bottom boundary layer all the way to the top of the domain. Nonetheless, it is in agreement with the
observations made in Fig. 3(c), i.e., that entrained cold fluid motions squeeze the buoyancy-driven
convection zone close to the bottom boundary layer.

The stable stratification of the entire fluid domain, except the bottom boundary layer, for low
stiffness S can be clearly seen in the (blueish) 〈ρ〉x profiles of Fig. 6(b). For S � 2−2 the density
increases rapidly from −1 at z = 0 to zero and then becomes roughly uniform or slowly decreasing
with z [as observed in Fig. 3(c)]. For high stiffness, on the other hand, large positive density gradients
are obtained in two distinct regions separated by the bulk region such that density increases over
a relatively large vertical extent. It should be noted that because density anomaly gradients vary
strongly where the dynamics change from stable to unstable, the buoyancy frequency N varies
strongly there too. However, since we chose a constant background density and an EOS for which
α is constant in the stable layer, N is mostly constant deep in the stable region. Had we chosen a
nonuniform background density or an EOS for which N would be variable deep in the stable region
on length scales large in comparison to the vertical wavelength of the wave, then wave propagation
would follow WKB ray theory [31].

Unstable (positive) density gradients are only found close to the bottom boundary for low stiffness
S because buoyancy-driven convection is limited to a thin bottom layer when the stratification is
weak. Nonetheless, it is clear from Fig. 6(b) that the vertical extent over which the density is
approximately uniform always increases with decreasing stiffness S such that there might be a
mixed region of non-negligible extent for all values of S considered. We will confirm that convective
motions take place over a volume fraction that grows monotonically with decreasing stiffness in the
next section.
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FIG. 7. Vertical profiles of the heat transfer due to (a) convective plumes qcp, (b) entrainment qce, and (c)
diffusion qd for Ra = 8 × 107. Different curves correspond to different stiffness S. For high stiffness, we obtain
a symmetry in the heat transfer in the convection zone due to plumes qcp in (a), suggesting classical RBC. The
contribution from entrainment to the total heat transfer can be seen in (b) to be dominant in the low-stiffness cases
and negligible in the high-stiffness regime. The total heat transfer q = qcp + qce + qd is constant along the z

axis up to 2% maximum relative discrepancy. As in Fig. 6, the open squares show results from a convection-only
simulation with a vertical height comparable to the convection depth of the highest-stiffness case.

B. Heat transfer and entrainment

In order to explain the increase of Q with decreasingS from Fig. 5(b), as well as the initial increase
and then decrease of the layer depth over which buoyancy-driven convection occurs (Fig. 6), we
split the convective heat transfer qc into two contributions, i.e.,

qcp = 〈wTH[+(T − Ti)]〉x, (8a)

qce = 〈wTH[−(T − Ti)]〉x, (8b)

where H is the Heaviside step function (recall Ti = 0). The heat transfer qcp gives the contribution
from convective motions occurring as a result of buoyancy effects and is equivalent to the convective
heat flux in classical Rayleigh-Bénard convection; qce measures the contribution to the heat flux from
fluid that is entrained (hence the superscript e), i.e., from fluid parcels expected to be in a stable region
(T < Ti) and that yet have a net negative velocity. We recall that the sum qcp + qce + qd = q = Q

is constant for all z.
From Fig. 7(a) we find for the high-stiffness cases (S ∈ [22,28]) a symmetric profile for qcp in the

convection zone, with a rapid increase close to the bottom boundary and a rapid decrease higher up,
where density gradients change sign [see Fig. 6(b)]. This is a typical profile of the total convective
heat flux in classical RBC (see the open squares). As S decreases from 28 to 22, however, qcp

increases in parallel with increasing convective layer depth (which can be taken approximately as
the height at which qcp decreases quickly). This is qualitatively different from RBC, which exhibits
a weak dependence of qcp on h. For S � 21, qcp loses its symmetry and decreases as the stiffness
decreases (gray to dark blue). For low stiffness, the buoyancy-driven heat flux reaches a maximum
close to the bottom boundary layer and decays rapidly with z away from it.

The dominant contribution to convective heat transfers does not come from buoyancy effects for
low stiffness S, but from fluid motions in an overall stably stratified environment, as can be seen from
Fig. 7(b). The heat transfer qce is almost uniformly zero for high-stiffness cases, but is large for low
stiffness S; both the maximum of qce and the vertical extent increase with decreasing stiffness. As
S decreases from 28 to approximately 1, qce becomes non-negligible close to the density inversion
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FIG. 8. Volume fractions occupied by the bottom thermal boundary layer, the plume zone, the entrainment
zone, and the stably stratified top layer as functions of the stiffness parameter S and for Ra = 8 × 107 (see
Fig. 15 in the Appendix for Ra = 8 × 108). The layer thicknesses are computed based on the profiles shown in
Fig. 7 and according to Eqs. (9). For each stiffness parameter, the position where the average temperature in
the simulations is equal to the inversion temperature is shown by a star. It can be clearly seen that the inversion
temperature isotherm is on average close to or within the bottom thermal boundary layer for S � 2−2. The
double-headed arrow on the left-hand side shows the convection layer thickness h prediction based on Eq. (4).
The closed diamonds show the empirical prediction of h based on Eq. (14) presented in Sec. V F.

height as a result of plumes overshooting in the stable layer and inducing some entrainment of the
stable fluid (T < Ti) (see, e.g., [17]). For low-stiffness simulations, the entrained fluid has a density
roughly equal to the density of the fluid just outside of the thermal boundary layer [see Fig. 6(b)],
so the entrained fluid has a strong influence on the rising thermal plumes. Buoyancy-driven effects
become confined closer and closer to the bottom boundary as S decreases, but at the same time
plumes can entrain more of the stably stratified fluid since the stable buoyancy frequency decreases.
This competition results in higher heat transfers for smaller stiffness parameters [as can be seen in
Fig. 5(b)] and a smaller diffusive upper layer close to the top boundary of the fluid [Fig. 7(c)]. It
should be noted that the efficiency of heat transfers by the entrained fluid depends on the temperature
anomaly carried by the stable fluid. Here the top temperature is Tt = −20, which means that the
entrained fluid can have temperature anomalies in the range [−20,0]. This range is broader than the
typical temperature anomaly of buoyant plumes of 0.5–1 (see, e.g., Fig. 10), hence partly explaining
the relative high values of qce compared to qcp in spite of the relatively slow velocities of the entrained
fluid (see Sec. V D).

The respective contributions from plumes, entrained fluid, and diffusive effects to the heat transfer
for varying stiffness are summarized in Fig. 8 for Ra = 8 × 107 (and in Fig. 15 in the Appendix for
Ra = 8 × 108). Each region represents the volume fraction where qcp, qce, or qd dominates over the
others and each region thickness is computed based on the corresponding heat flux variables as

Lcp =
∫ 1

0

qcp

Q
dz, Lce =

∫ 1

0

qce

Q
dz, Ldb =

∫ z∗

0

qd

Q

dz

z∗
, Lds =

∫ 1

z∗

qd

Q

dz

1 − z∗
. (9)

The thicknesses of the two diffusive regions, i.e., of the thermal bottom boundary layer and the
upper stable layer, denoted by Ldb and Lds , are computed from the same diffusive heat flux qd ,
but we separate the integral values over the two zones at z = z∗, with z∗ taken in the middle of the
mixed region [i.e., defined as {z,qd (z) � 5%Q}] in order to avoid an overlap. The choice of z∗ is
rather arbitrary, but results in an appropriate estimate for the depths of the bottom boundary layer
and upper stable layer. Importantly, we have Lcp + Lce + Ldb + Lds = 1, which is the total domain
height.

Figure 8 clearly shows that plumes dominate convective heat transfers for high stiffness (left-hand
side of Fig. 8). For low stiffness (right-hand side), however, it is the entrained fluid that dominates
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FIG. 9. Spectrogram of the kinetic energy density spectrum 0.5f 〈û2 + ŵ2〉x as a function of frequency
and z for each of the three simulations shown in Fig. 3 (Ra = 8 × 107; S = 28,20,2−8 from left to right).
The frequencies are normalized by the reference turnover frequency fc = √

Ra Pr/2π . The black solid (white
dashed) line represents the mean value of the real (imaginary) part of the normalized buoyancy frequency,
i.e., N/fc with N = 〈√−Ra Pr∂zρ〉x/2π based on our notation. The arced dashed lines in (a) highlight global
internal-wave modes.

over most of the mixed region and plume-driven heat fluxes are confined near the bottom plate.
The vertical extent of the mixed region increases monotonically with decreasing S and the stratified
upper layer correspondingly shrinks, which is in agreement with increasing heat transfer (cf. Fig. 5).
The white stars show the position of the Ti isotherm in our simulations, and it can be seen that this
isotherm sinks close to or within the thermal bottom boundary layer for S � 2−2. The fact that the
change of the Ti position is much more sudden than the change of the plume region relative to the
entrainment region indicates that plumes carrying heat upward are still somewhat effective despite
the low bulk temperature; this is in agreement with Fig. 4, in which plumes that are still relatively hot
can be seen as high as z ∼ 0.6. In the high-stiffness regime it is expected that the convective layer
thickness h is well approximated by Eq. (4). This is verified in Fig. 8 as the predicted h (shown by
the double-headed arrow), including the plume region as well as two symmetric thermal boundary
layers, is in good agreement with the highest-stiffness S = 28 results (note that we use β = 0.27
and C = 1/5.5 in Eq. (4) based on convection-only simulation results that we ran with Dedalus
and obtained for Rayleigh numbers in the range [106,109]). The fact that the convection height for
S = 27 is different than for S = 28, however, suggests that the stiffness must be quite large [greater
than O(100)] to be in the asymptotic high-stiffness regime.

C. Kinetic energy density spectra

The regimes of entrainment- and plume-dominated heat transfer exhibit different types of flows
and dynamical signatures. Figure 9 shows the temporal kinetic energy density spectrum averaged in
x (〈 〉x operator), i.e., 2πf 〈K〉x = πf 〈û2(f,x,z) + ŵ2(f,x,z)〉x , for the three simulations shown in
Fig. 3 (a caret denotes a temporal Fourier transform and f the frequency).

The kinetic energy density spectrum for the high-stiffness case [Fig. 9(a)] shows a convective layer
with a midplane symmetry, similar to classical RBC. As expected, the energy peaks at frequency
f/fc ∼ 1, where fc = √

Ra Pr/2π is the reference turnover frequency. The kinetic energy density
decreases rapidly above the mean neutral buoyancy level [z ∼ 0.33; see Fig. 3(a)] in the stably
stratified region. Diffusive and viscous damping is most rapid for low-frequency internal waves
(such as those at the convection frequency), so only relatively high-frequency waves carry energy
all the way to the top of the domain. The kinetic energy density is small above the buoyancy
frequency, shown as the black solid line. Interestingly, the arced dashed lines in Fig. 9(a), which
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highlight low-energy (z,f/fc) paths, indicate the presence of nodes of standing high-frequency
internal waves.

Figure 9(b) shows the kinetic energy density spectrum for the moderate-stiffness case. As for
Fig. 9(a), the energy density peaks at f/fc ∼ 1 in the convective region, but also at f/fc ∼ 0.04.
A second peak at lower frequency can also be seen for the high-stiffness case [Fig. 9(a)], though
less intense, that is due to a large-scale circulation, which is stable on very long time scales.
For the moderate-stiffness case, the second peak may be due to the large-scale circulation, but is
also possibly related to the coupling of the convective and wave dynamics; it may be due to the
slow motion downward of low-density-anomaly stable fluid entrained by the penetrating plumes.
The buoyancy frequency (black solid line) in the moderate-stiffness case is relatively close to the
reference turnover frequency fc such that the kinetic energy density of the internal-wave field
that peaks at f/fc ∼ O(1) quickly decreases with frequency. Compared to the high-stiffness case,
internal waves are yet more strongly generated as a result of the penetrating plumes, complementing
the generation by Reynolds stress due to weaker plumes sweeping beneath the neutral buoyancy
interface (which is the main generation mechanism for stronger stratification; see [10]). We note
that in the case of water cooled from below (T ∗

b = 0 ◦C) and heated from above (T ∗
t = 25 ◦C), the

kinetic energy density spectrum obtained shows similarities with both Figs. 9(a) and 9(b). This is
because the stiffness parameter approximating the quadratic EOS for water (with T ∗

i = 4 ◦C) is then
S ≈ (T ∗

t − T ∗
i )/(T ∗

i − T ∗
b ) = 5.25.

The kinetic energy density spectrum for the low-stiffness case (S = 2−8) is shown in Fig. 9(c).
Fluid motions in the upper stable layer (z � 0.8) have significant energy at frequencies larger than N ,
showing that even though the stratification is stable, the motions are not wavelike. This is in part due
to the fact that the stratification is weak, such that large convective motions from the entrained fluid
are not strongly affected by the restoring buoyancy forces. The maximum of kinetic energy density
spectrum in the bulk is approximately two orders of magnitude smaller for S = 2−8 compared to
the high-stiffness case. This is because buoyancy-driven fast plumes are confined near the bottom
boundary (the energy peak is close to 1 near z = 0), while slower larger-scale structures of lower
frequencies dominate the fluid bulk [as already suggested from the large energy peak at ∼0.1 in
Fig. 9(b)]; this can also be seen from the decrease in the frequency of the kinetic energy density
maximum from ∼1 close to the bottom boundary layer to ∼0.1 at z ∼ 0.2.

D. Probability density functions

Probability density functions (PDFs) of flow variables describe important aspects of the flow
characteristics. In experiments, PDFs of the flow variables are accessible using thermometers and
particle image velocimetry techniques and geophysicists can infer flow statistics for, e.g., Earth’s
deep interior from measurements of the magnetic field. Here we show that different convective
regimes exhibit different flow statistics.

We show in Fig. 10 the PDFs of the temperature for all our simulations with Ra = 8 × 107. All
PDFs are obtained based on temperatures interpolated on a uniform grid within the entire domain
and have been normalized such that the integral value

∫
P(T )dT = 1. As the stiffness increases and

becomes large, the peak of the PDF tends toward T ≈ 0.5 and becomes more and more symmetric
about its peak value, as is the case for convection-only simulations (see the PDF shown by the open
squares in Fig. 10). Moreover, the PDFs for the high-stiffness cases appear mostly exponential, in
agreement with earlier studies [32,33]. As the stiffness S decreases, however, the peak shifts toward
negative temperatures and the PDF becomes skewed toward the lower-temperature values. The
decrease for low stiffness of the peak temperature is in agreement with the low average temperature
reported in Fig. 6 and the asymmetry tells us that the large-scale convecting structures have densities
only marginally smaller than zero [the maximum density; see Fig. 6(b)]. This asymmetry is a feature
of the entrainment regime and is not due to sampling a subset of the total convective domain (see, e.g.,
[34]). Asymmetric temperature distributions have already been observed in laboratory experiments
of convection in water (see [9]), in which case the asymmetry is most likely related to entrainment
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FIG. 10. Probability density function of temperature P(T ) for different stiffness parameters S and Ra =
8 × 107. As S is increased, the peak of P(T ) tends to 0.5 (dotted line), the bulk temperature expected for
classical RBC. As S is decreased, the peak of P(T ) drops below the inversion temperature (dashed line). The
profile of P(T ) is symmetric about the peak for hight stiffness (the black solid line shows exponential fit),
but asymmetric for low stiffness. Small local maxima of P(T ) in the range T ∈ [0.5,1] are expected to be
representative of the plumes’ temperature. As in Fig. 6, the open squares show results from a convection-only
simulation with a vertical height comparable to the convection depth of the highest-stiffness case. Note that
P(T ) for the convection-only results is normalized such that the integral value is equal to the integral value of
P(T ) for S = 28 over the range T ∈ [0,1].

and mixing of the stable fluid in the convection zone. Note that the oscillations of the temperature
distributions for high-stiffness cases are most likely due to statistics that are not yet fully converged
in the stable layer.

The PDFs of the vertical velocity w obtained for different stiffnesses are shown in Fig. 11(a)
(for clarity, we do not include results from all simulations). The PDFs are for vertical velocities
interpolated on a uniform grid within the convection zone only and normalized such that

FIG. 11. (a) Probability density function P of velocity w from the convective region for different stiffness
parameters S and for Ra = 8 × 107. Note that the convective region encompasses both the entrainment zone
and the plume zone (cf. Fig. 8). (b) Same as (a) but normalized by the standard deviation σ and mean μ of the
distributions. For high stiffness (red solid line), the distribution looks exponential for slow speeds (black dashed
line). For low stiffness (blue solid line) the distribution looks Gaussian (black dotted line) for slow speeds with
asymmetric exponential tails. As in Fig. 6, the open squares show results from a convection-only simulation
with a vertical height comparable to the convection depth of the highest-stiffness case.
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FIG. 12. Joint probability density function of temperature and vertical velocity for Ra = 8 × 107 and
(a) S = 28, (b) S = 20, (c) S = 2−8. Note that the oscillations in (c) are most likely due to statistics that are not
yet fully converged in the stable layer for the highest-stiffness case.

∫
P(w)dw = 1. As in classical RBC (cf. the open squares), the PDF of w for high stiffness is

symmetric with respect to positive and negative values. The PDF for low stiffness, on the other hand,
is skewed toward the positive vertical velocities w > 0 and a similar albeit weaker asymmetry is
also observed for S = 20. The asymmetry for S = 2−8 is toward high positive vertical velocities
because plumes, which are much faster than the entrained fluid, are only ascending. That the
velocity distributions for the more flexible cases are more peaked around small velocities than for
the stiffer cases suggests that patches of the stable fluid that are entrained within the convection
zone have small velocities. In an attempt to further characterize the dynamics of the plume- and
entrainment-dominated convection, we show in Fig. 11(b) the PDFs of vertical velocity w after
normalization with respect to their mean and standard deviation. For the high-stiffness cases, we see
that the slow speeds (in absolute magnitude) follow an exponential distribution, while the distribution
at higher speeds decays like a Gaussian one (cf. the dashed line). For the low-stiffness cases the result
is the opposite: Slow speeds seem to follow a Gaussian distribution (cf. the dotted line), while high
speeds follow an asymmetric exponential distribution. The statistics for weak stratification suggest a
mixed dynamics. Large-scale structures that are relatively slow (but with a Reynolds number ∼100
still relatively large based on a length scale of ∼1 and typical rms velocity of ∼100) have a velocity
distribution similar to isotropic random fluctuations, possibly due to the fact that the motions of the
entrained fluid are not driven by buoyancy and thus are isotropic. Fast fluid motions (i.e., plumes
rising in the dense fluid bulk), on the other hand, are intermittent and strongly skewed toward w > 0.
For the stiffest cases, fluid motions in the convection zone are expected to be turbulent, which is in
agreement with the Gaussian distribution for the highest speeds. That the PDFs for the high-stiffness
cases (and also the convection-only simulations) are not purely Gaussian for slow speeds may be
explained from the fact that we have compiled statistics for w not only in the bulk but also partly on
the edge of the boundary layers, which are not as turbulent as the bulk.

Figures 12(a)–12(c) show the joint PDFs of w and T for S = 28,20,2−8. For large stiffness
[Fig. 12(a)], the joint PDF shows a symmetry for T ∈ [0,1] around zero velocity and T = 0.5,
because the heat transfer is due to both rising and sinking plumes. In Fig. 12(b), the peak convective
heat transfer occurs for values of T closer to zero and the larger values of the joint PDF for T > 0
and w > 0 highlight the increased importance of hot rising plumes compared to cool descending
ones. In the weak-stratification regime [Fig. 12(c)], low-velocity sinking fluid parcels are primarily
responsible for the convective heat flux, in addition to the slightly hot fast rising plumes [shown
in Fig. 3(c)]. The asymmetry of positive and negative vertical velocities is evident and again
demonstrates that buoyancy-driven plumes only go upward.
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FIG. 13. Variations of Nu/Ra0.28 with S where Nu = −Q/(Tt − 1) for three reference Rayleigh numbers.
The dashed line shows the best-fit power-law regression of Nu in terms of S for Ra = 8 × 107,8 × 108.

E. Heat transfer scaling

We now discuss the Nusselt-Rayleigh scaling obtained from our simulations, which is an essential
element of the study of convective heat transfers. The Nusselt number Nu is traditionally defined as
the total heat transfer Q, normalized by the purely conductive heat flux, and thus Nu measures the
heat transfer enhancement due to convective motions. In our case, the purely conductive heat flux
across the domain boundaries is −(Tt − 1) such that

Nu = −Q

Tt − 1
. (10)

In classical RBC, it is generally assumed that one can write Nu(Ra,Pr) = C RaβPrγ , with Ra and Pr
the two (separable) problem parameters. Here we have two additional parameters (S and Tt ), but as
we restrict Pr = 1 and Tt = −20, we only consider Nu ≡ Nu(Ra,S).

Figure 13 shows Nu/Ra0.28 as a function of S for all three reference Rayleigh numbers. The
exponent 0.28 for Ra is obtained from a best-fit power-law regression of Nu for our simulations with
Ra = 8 × 107,8 × 108 for each S and is within the range obtained in classical RBC [1]. We do not
expect the RBC scaling to work equally well for all S and the r2 value of this first fit is therefore
small (i.e., ∼0.52) due to the relatively large dispersion of the exponents in the range [0.26,0.31]
obtained for different S. Nevertheless, there is then a relatively good collapse of the data for different
S with exponent −0.086 (with final r2 value of 0.99). That the exponent is negative is expected
since as the stiffness decreases we showed that the heat transfer increases. Note, however, that this
exponent has no theoretical grounding yet. For the smaller Ra = 8 × 106, Nu/Ra0.28 is above the
collapsed data, especially for the high-stiffness cases, because the convection pattern is steady. This
is consistent with classical RBC studies, which showed that the Nusselt number has a steeper scaling
with Ra for smaller Ra, close to the onset of convection.

The empirical law

Nu(Ra,S) ≈ 0.26 Ra0.28S−0.086

(1 − Tt )
(11)

suggested by Fig. 13 can be useful in predicting the size of the convection zone in mixed convective–
stably-stratified systems. However, the Nusselt numbers obtained are small (we find Nu ∈ [1,7])
compared to those demonstrated in classical RBC, where Nusselt numbers have been reported in
the range Nu ∈ [10,30] for Pr = 1 and Rayleigh numbers in 8 × 106–8 × 108 (see, e.g., [29]). In
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FIG. 14. Rayleigh-Nusselt scaling based on NuC = Qh and effective Rayleigh number Raeff = Rah3, where
h is an estimate of the convective layer depth [see Eq. (12) and the text for details]. The circles, triangles, and
stars correspond to reference Rayleigh number Ra = 8 × 106,8 × 107,8 × 108, respectively. The dash-dotted
line has slope 0.28, while the dashed line has slope 1. Results of five convection-only simulations are shown
by closed squares; note that the lowest Raeff convection-only simulation is stationary in time; also, the scaling
exponent for the convection-only results is 0.28 (discarding the lowest Raeff case).

order to reconcile the expected enhancement of the heat transfer due to convective motions in our
simulations in the high-stiffness limit with RBC results, we consider the rescaled Nusselt number
(subscript C standing for convection)

NuC = Q

1/h
, (12)

where h = 2Ldb + Lcp + Lce is a measure of the depth of the convection zone based on (9). Thus
NuC corresponds to the heat flux normalized by the diffusive heat flux through the depth of the
convective layer only.

In Fig. 14 we plot NuC as a function of the effective Rayleigh number Raeff = Rah3 (also
characterizing this convective layer only). We find that NuC ≈ CRa0.28

eff for each fixed S, where C

is a constant that depends on S. For the high-stiffness cases (S = 28) we find that NuC is in the
range 3–30 for Raeff ∈ [2 × 104,2 × 108], in relatively good agreement with classical RBC results
(shown by the closed squares). For fixed reference Ra number, d log(NuC)/d log(Raeff) appears to
approach 0.28 as S → ∞, similar to classical RBC, which suggests that the coupling between the
two layers diminishes. For small stiffness, however, d log(NuC)/d log(Raeff) increases up to 1 for
Ra = 8 × 107 and S = 2−8, indicating that the weakly stratified fluid significantly enhances the
convective heat transfer.

F. Extension of Moore’s model to include the effect of S
With the help of (11), we can now extend Moore’s approximate model [28] for the prediction of

the convective layer depth. This is done by equating the diffusive heat flux in the stable region with
the convective heat flux, i.e.,

−[Tt − Tbulk(S)]

1 − h
≈ −Nu(S)(Tt − 1), (13)
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FIG. 15. Same as Fig. 8 but for the higher-Rayleigh-number Ra = 8 × 108 case.

with consideration of the effect of S on Nu(S) and Tbulk(S) (approximately the temperature at the
top of the convective layer) through Eqs. (11) and (6). We obtain

h ≈ 1 − Tbulk(S) − Tt

0.26 Ra0.28S−0.086
(14)

and the prediction (14) [with Tbulk substituted by (6)] is shown in Fig. 8 by the closed diamonds.
It should be noted that in the high-stiffness limit Nu, Tbulk and h seem to become independent of
S, so (14) cannot be valid as S → ∞. That some variations of Nu are observed for S ∈ [26,28]
shows that we are not yet in the high-stiffness regime even with S = 28 and suggests that RBC
is quantitatively recovered only when S � O(100). The classical RBC scaling of heat transfer is
nevertheless recovered for the highest stiffness considered when choosing an appropriate effective
Rayleigh number (see Fig. 14).

VI. CONCLUSION

We have presented two-dimensional direct numerical simulation results of thermal convection
with buoyancy reversal and demonstrated that the convective and internal-wave dynamics can be
strongly coupled depending on the stable stratification strength. Our results are expected to hold
qualitatively for arbitrary profiles of the thermal expansion coefficient with temperature, despite
only considering a simple piecewise linear EOS. Similarities with convection in water, for which the
EOS is quadratic, have been demonstrated by comparing our results with previous numerical and
laboratory experiments [9,10].

The different dynamical regimes obtained for different S are best summarized by Fig. 8 (see also
Fig. 15 for higher Rayleigh simulations) and the two most important findings are that (i) for weak
stratification [S � O(10−1)], entrained fluid motions that are maintained by rising plumes close to
the bottom boundary dominate the convection zone, and (ii) classical RBC is recovered only for
S � 100 since otherwise the influence of the stable layer on the mean temperature profiles and flow
statistics is significant. For the smallest stiffnesses considered, the entire stable layer slumps down
and becomes entrained by the buoyant plumes such that the convective dynamics is qualitatively very
different from what is expected from classical RBC or even penetrative convection. As S increases,
however, entrained fluid motions vanish and the convective dynamics becomes again dominated by
buoyant plumes; as expected, the overshooting length scale and mixing of the stable fluid decreases
with increasing S. For large stratification [i.e., S � O(100)], the convection is relatively similar to
RBC, the convective layer depth can be estimated assuming no feedback from the stably stratified
fluid [see Eq. (5)], and flow statistics are similar to convection-only statistics.

In the high-stiffness limit, the convection is not affected much by the waves it generates such
that classical RBC statistics might be used as forcing in simulations of internal waves within the
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stable zone. Whether the theoretical approach in Ref. [35] or numerical method based on Reynolds
stress [10] is valid, however, is beyond the scope of this paper. In fact, as S decreases to S � O(10),
Reynolds stress may not be the only mechanism exciting internal waves, so it may be necessary to
consider other mechanisms such as the mechanical oscillator effect (see, e.g., [36], for a discussion
of the mechanical oscillator effect in relation to the generation of atmospheric internal waves by
storms).

We have limited our study to fixing the top temperature to Tt = −20, which results in
approximately equal-size convective and stable layers for many parameter values. The effects of
changing Tt are qualitatively predictable and are not expected to change the importance of the
convective-wave coupling. Imagine a domain with larger Tt (e.g., Tt = −10). If the convection
height is the same as for the case Tt = −20, the temperature gradient in the stable layer is larger
(i.e., less negative) such that the heat flux is smaller in the stable layer than in the convective one. To
obtain a thermal equilibrium the convection height h must thus be different. In particular, h should
decrease as Tt < 0 decreases [in agreement with Eq. (5)], because the diffusive heat flux of the upper
layer increases with h [i.e., Qd ≈ −Tt/(1 − h)], while the convective heat flux of the lower layer
stays the same (at least in the high-stiffness case). Preliminary results for S = 1 have confirmed
this claim. For Tt = −20 we have h ≈ 0.60 and Q ≈ 48, whereas for Tt = −40 we find h ≈ 0.27
and Q ≈ 55 and for Tt = −10 we find h ≈ 0.89 and Q ≈ 44. Note that the increase of Q with
decreasing Tt suggests that the effect of Tt on h is not quite as dramatic as indicated by (5), at least
for S = 1.

The effect of the Prandlt number, which we did not explore (we set Pr = 1), is likely to be more
complex than Tt . Nonetheless, we might expect that decreasing Pr will result in stronger convective-
wave coupling. Plumes overshooting from the convective region are expected to penetrate further into
the stratified layer as a result of rapid thermal diffusion processes in the low-Péclet-number limit.
Significant overshooting could potentially result in turbulent motions within the stably stratified
layer, a topic of interest to astrophysical systems that would be worth investigating [37,38].

We have based our analysis on the stiffness parameter S, which is equal to the ratio of the thermal
expansion coefficients, or N2/(dT /dz), in the stable and convective regions. In real systems, we
can only measure the end states of nonlinear processes, which means that N2 and dT /dz are both
expected to be approximately zero in the well-mixed (convective) zone and hence difficult to measure.
Extracting S from real systems might thus require knowing the thermal expansion coefficient within
the convection based on the fluid composition directly while measuring both N2 and dT /dz in the
stably stratified zone. A different stiffness parameter SH has been used in previous astrophysical
studies of compressible convection [39]. Anelastic simulations have a background temperature
profile T̄ (z), and SH is defined as the ratio of N2/(dT /dz) in the two regions, multiplied by the ratio
of T̄ (z) in different parts of the domain. For domains smaller than a typical pressure scale height
(the Boussinesq regime), T̄ (z) is almost constant and thus S ≈ SH . Massive stars have stable layers
with typical stiffness SH ∼ 105 and therefore are good examples of coupled systems in which the
stable layer has a large stiffness [40]. Knowing whether the convection is similar to RBC or includes
some types of entrained motions would yet still require a self-consistent study because the Rayleigh
number in stars is so large that the required stiffness for the entrainment to be negligible should be
very large too. In the case of Earth’s liquid outer core, the stratification strength of the stable layer,
if it exists, is still uncertain (possibly not too different from the Coriolis frequency [41]) and the
Rayleigh number is relatively large [42]. Therefore, self-consistent studies might be required in the
context of planetary interiors in order to estimate the importance of the stable layer’s feedback on
the convection. It is possible that convective motions in the oceans and atmosphere [43,44] may
sometimes fall within the class of low- to moderate-stiffness convective regimes (i.e., including
some entrainment), depending on the properties of the stably stratified fluid [45,46].

The plume- and entrainment-dominated regimes have been shown to have unique dynamical sig-
natures that can be of interest to astrophysicists, meteorologists, oceanographers, and geophysicists.
Understanding how the flow signatures relate to the mean state of a fluid is of significant importance
since measurements of, e.g., the stable stratification in planets and stars are typically difficult and
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the present study can provide information on the dynamics of a system with a buoyancy reversal.
We have neglected a number of physical effects that can have a significant impact on astrophysical
and geophysical fluids. In the case of stars and planetary interiors, the mean background convective
state does not have a constant density profile, but a constant entropy profile, and compressibility
and magnetic effects can be significant. Nonuniform background density profiles can lead to upward
buoyancy plumes stronger than downward ones (and vice versa) and strong variations of the buoyancy
frequency even deep in the stable region, resulting in internal waves of varying amplitudes [31].
Double diffusive effects may also play a major role in some cases. In the ocean, for instance, density
is a function of both temperature and salt such that temperature gradients can be stabilizing while
salt stratification is destabilizing and vice versa. Our generic model of convective–stably-stratified
fluids provides a basis for future works aimed at considering such physical effects, but also spherical
geometry and rotation, along with buoyancy reversal. The potential emergence of a mean flow in the
stable layer similar to the quasibiennial oscillation of the Earth’s equatorial stratosphere [47] is also
a topic of significant importance.
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APPENDIX: NUMERICAL METHOD AND SIMULATION DETAILS

We use the open-source pseudospectral code Dedalus [26] to solve Eqs. (1). The spectral
decomposition consists of Chebyshev polynomial functions in the ẑ direction and complex
exponential functions (Fourier series) in the periodic x̂ direction. We denote by nz and nx the
number of modes in the ẑ and x̂ directions, respectively. The use of Chebyshev polynomials along
the vertical axis results in increased resolution near the top and bottom domain boundaries such
that an accurate treatment of the thermal and viscous boundary layers is obtained with relatively
few spectral modes. A two-step implicit-explicit Runge-Kutta scheme is used for time integration
[48]. We list all simulation runs whose results are presented in this paper in Table I with relevant
numerical and physical parameters.

In order to reach thermal equilibrium relatively rapidly, we initiate all numerical simulations at
t = 0 with low-amplitude noise added to a background zero-velocity field (u = 0) and a background
temperature field of the form (except those in Sec. III, which are started from the conductive state)

T = Tb + (Tbulk − Tb)
z

zconv
, z � zconv (A1a)

T = Tt + (Tbulk − Tt )
1 − z

1 − zconv
, z > zconv. (A1b)

In Eq. (A1) zconv is an estimate of the convective layer depth and Tbulk the bulk temperature, both
obtained from preliminary simulations at low resolution, which allow us to initialize the problem
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TABLE I. List of all 51 simulations discussed in this paper. Ra is the reference Rayleigh number [see
Eq. (2)]. Simulations are run with a stiffness parameter S and with nx Fourier and nz Chebyshev basis functions
in the horizontal and vertical directions. Time steps were taken using the Courant-Friedrichs-Lewy (CFL)
condition, with a safety factor given in the table. dt is the typical time step and each simulation was run for at
least O(1) thermal time (about dt−1 time steps). The aspect ratio of all simulations is 2, Pr = 1, and Tt = −20.

Ra S nx × nz CFL dt

8 × 106 2−8 256 × 256 0.7 O(3 × 10−6)
8 × 106 2−7 256 × 256 0.7 O(3 × 10−6)
8 × 106 2−6 256 × 256 0.7 O(3 × 10−6)
8 × 106 2−5 256 × 256 0.7 O(3 × 10−6)
8 × 106 2−4 256 × 256 0.7 O(3 × 10−6)
8 × 106 2−3 256 × 256 0.7 O(3 × 10−6)
8 × 106 2−2 256 × 256 0.7 O(3 × 10−6)
8 × 106 2−1 256 × 256 0.7 O(3 × 10−6)
8 × 106 20 256 × 256 0.5 O(10−6)
8 × 106 21 256 × 256 0.5 O(10−6)
8 × 106 22 256 × 256 0.5 O(10−6)
8 × 106 23 256 × 256 0.5 O(10−6)
8 × 106 24 256 × 256 0.5 O(10−6)
8 × 106 25 256 × 256 0.5 O(10−6)
8 × 106 26 256 × 256 0.5 O(10−6)
8 × 106 27 256 × 256 0.5 O(10−6)
8 × 106 28 256 × 256 0.5 O(10−6)

8 × 107 2−8 512 × 256 0.7 O(7 × 10−7)
8 × 107 2−7 512 × 256 0.7 O(7 × 10−7)
8 × 107 2−6 512 × 256 0.7 O(7 × 10−7)
8 × 107 2−5 512 × 256 0.7 O(7 × 10−7)
8 × 107 2−4 512 × 256 0.7 O(7 × 10−7)
8 × 107 2−3 512 × 256 0.5 O(3 × 10−7)
8 × 107 2−2 512 × 256 0.5 O(3 × 10−7)
8 × 107 2−1 512 × 256 0.5 O(3 × 10−7)
8 × 107 20 512 × 256 0.5 O(3 × 10−7)
8 × 107 21 512 × 256 0.5 O(3 × 10−7)
8 × 107 22 512 × 256 0.5 O(3 × 10−7)
8 × 107 23 512 × 256 0.5 O(3 × 10−7)
8 × 107 24 512 × 256 0.5 O(3 × 10−7)
8 × 107 25 512 × 256 0.35 O(2 × 10−7)
8 × 107 26 512 × 256 0.35 O(2 × 10−7)
8 × 107 27 512 × 256 0.35 O(2 × 10−7)
8 × 107 28 512 × 256 0.35 O(2 × 10−7)

8 × 108 2−8 512 × 256 0.5 O(10−7)
8 × 108 2−7 512 × 256 0.5 O(10−7)
8 × 108 2−6 512 × 256 0.5 O(10−7)
8 × 108 2−5 512 × 256 0.5 O(10−7)
8 × 108 2−4 512 × 256 0.5 O(10−7)
8 × 108 2−3 512 × 256 0.5 O(10−7)
8 × 108 2−2 512 × 256 0.5 O(10−7)
8 × 108 2−1 512 × 256 0.5 O(10−7)
8 × 108 20 512 × 256 0.5 O(10−7)
8 × 108 21 512 × 512 0.5 O(4 × 10−8)
8 × 108 22 512 × 512 0.5 O(4 × 10−8)
8 × 108 23 512 × 512 0.5 O(4 × 10−8)
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TABLE I. (Continued.)

Ra S nx × nz CFL dt

8 × 108 24 512 × 512 0.5 O(4 × 10−8)
8 × 108 25 512 × 512 0.5 O(4 × 10−8)
8 × 108 26 1024 × 512 0.35 O(2 × 10−8)
8 × 108 27 1024 × 512 0.35 O(2 × 10−8)
8 × 108 28 1024 × 512 0.35 O(2 × 10−8)

close to thermal equilibrium. An accurate estimate for zconv and Tbulk results in an accurate estimate
for the heat flux −(Tt − Tbulk)/(1 − zconv) and hence the temperature field in the stably stratified
layer, which is the fluid region that is longest to reach equilibrium. While the convection reaches
a dynamical equilibrium relatively quickly [i.e., in ∼O(100) turnover times, which corresponds to
O(0.01) thermal time for Ra = 108], the stably stratified fluid layer above needs ∼O(1) thermal
time to reach equilibrium. Setting up the initial temperature field close to thermal equilibrium in
the stable region thus reduces the simulation time significantly by allowing us to obtain converged
flow statistics rapidly, i.e., without having to wait several thermal times for the entire system to
be at equilibrium. We note that the initial state of the system is of much less importance for a
convective system without buoyancy reversal since in this case the transient initial phase consists of
an exponential growth of the most unstable modes until rapid saturation.

We would like to note that the cadence at which data must be output is controlled by the shortest of
the convective time scale τc = 2π/

√
Ra Pr and the internal-wave time scale τw = τc/

√
S. In order to

construct flow statistics that capture the fastest dynamics here we typically use min(τc,τw)/10 as the
time step between two data outputs. It should be noted that when the output cadence is high (S large),
statistics are at equilibrium with relatively short time averages. When the output cadence is long,
however, longer time averages are necessary to ensure a statistical steady state. This implies that
about the same number of data outputs are required to obtain converged statistics for all parametersS.
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