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A simple analytical description for the effects of a single vortex near a turbulent/non-
turbulent interface (TNTI) layer, based on a Burgers vortex (BV) model, is compared with
results from direct numerical simulation (DNS) of shear-free turbulence. The BV model
parameters are derived from the DNS data, and the model separates the entrainment as a
two-stage process: (i) the strain imposed on the vortex draws non-turbulent fluid toward
the irrotational boundary that separates the irrotational from the turbulent region, and
afterwards (i) the velocity associated with the vorticity field moves the entrained fluid
toward the turbulent core region. The resulting model is able to predict the enstrophy
dynamics, flow streamlines, and flow topology—such as the formation of the teardrop map
in the invariants of the velocity gradient tensor—as well as the entrainment velocity. The
BV model provides an interesting framework to analyze the small-scale “nibbling” eddy
motions near the TNTI and allows the inclusion of the large-scale flow-dependent effects
imposed by the strain rate, while it also links the entrainment characteristics to the eddy
structure of the flow near TNTIs.
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I. INTRODUCTION

In jets, wakes, mixing layers, and boundary layers, a turbulent/non-turbulent interface (TNTI)
layer separates the turbulent from the non-turbulent (irrotational) flow. This layer has finite thickness
consisting of a turbulent sublayer (TSL) and a viscous superlayer (VSL) [1]. It has been shown that the
flow dynamics is quite different inside these two layers: viscous effects prevail over inviscid vortex
stretching within the VSL, whereas inviscid processes are important inside the TSL. Understanding
how the non-turbulent fluid is entrained across the TNTI layer is crucial in order to predict and control
mass, momentum, and scalar transfers in turbulent flows, which are omnipresent in engineering and
geophysical flows. The entrainment process has been studied recently with high-resolution direct
numerical simulation (DNS) [2-5] and experiments with laser-based measurements [6-9], such
as particle image velocimetry. These studies have shown that the entrainment is characterized by
a two-stage process with different length scales [8,10]. Initially the non-turbulent fluid acquires
vorticity near the outer edge of the TNTI by viscous diffusion [7], and later it is entrained into the
turbulent region across the TNTI layer. We denote the initial fluid motion across the outer edge of
the TNTI layer as local entrainment. Shortly after the local entrainment has taken place, the fluid is
transferred toward the turbulent-core region across the TNTI layer.

Despite these studies, the detailed mechanism by which the turbulence structures contribute to
the entrainment across the TNTI layer remains unclear. DNS studies have confirmed the existence
of small-scale intense vorticity structures near the TNTI [11-13], and in this study we focus on
the entrainment process caused by the small-scale motions induced by these structures near the
TNTI, often referred to as nibbling, rather than on the motions induced by the large-scales eddies,
described as engulfiment, even if these large-scale motions are thought to impose the entrainment
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FIG. 1. (a) Definitions used in the entrainment model based on the Burgers vortex, with a (constant) core
radius Rpy, and its associated tangential u, and radial u, velocities, caused by the balance between vortex
stretching and viscous diffusion. (b) The location of the viscous superlayer (VSL), turbulent sublayer (TSL),
and the turbulent core (TC) regions, in relation to the irrotational boundary, which is at the outer edge of the
TNTI layer at a distance equal to Lgy from the vortex center.

rate [14]; i.e., we focus on the small-scale entrainment mechanism, rather than on the imposition of
the entrainment rate. Specifically, we analyze the role of an isolated eddy near the TNTI layer and
develop a simple model for the entrainment, which is based on the Burgers vortex. The entrainment
characteristics derived from this simple model are compared to DNS of shear-free turbulence (SFT)
[15].

We show that an isolated eddy described by the Burgers vortex successfully predicts flow
characteristics within the TNTI layer, such as a nibbling type of entrainment and the particular
behavior of the invariants of the velocity gradient tensor near the TNTI layer, and provides a simple
model linking the entrainment characteristics to the small-scale eddies of turbulent flows. The model
can be easily extended to include the effects of large-scale eddies, which are found at the edges of
jets and mixing layers.

II. ENTRAINMENT CHARACTERISTICS CAUSED BY AN ISOLATED EDDY

In this study, we analyze the entrainment characteristics created by the presence of an isolated
eddy near the TNTI layer, which is modeled by a steady Burgers vortex (BV) [16], as illustrated in
Fig. 1. The velocity field in a BV, Ugy = (u,,uq,u;), is given by Ugy = U* 4+ U®, where U* and
U are the velocity fields associated with the irrotational strain and vorticity, respectively:

1
U(X = (u?(r)vogu(;(z)) = (_zarvovaz>s (])
® ® F() I"2
U® = (0,u9 (r),O) = <O,%|:1 — exp(—RT):|,O>. 2)
BV

Here, « is the strain acting on the vortex, Rpy is the constant radius of the vortex core, and Iy
is the circulation. The vorticity vector field, which is the curl of the velocity w; = &;jx0uy/0x;, is
non-zero only for the axial (z) component, which is given by w.(r) = wyexp(—r?/ R]%V), where
wy = w,(r=0)= Fo/JTR%V. The radius of the vortex is equal to Rpy = +/4v/a, where v is
the kinematic viscosity. Thus, the BV model has three parameters: I'y, «, and v (or [y, Rpy,
and v).

The radial profiles of the enstrophy o = w;w;, enstrophy production P, = w;s;jw;,
where s;; = (du;/0x; + 0u;/0x;)/2 is the rate-of-strain tensor, and enstrophy diffusion

2
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D,, = vd*(w;w;/2)/dx;0x; are then given by [17]

—2r2
a)2(r) = a)(z) eXp (RT>, (3)
BV
2 —2r2
P,(r) = wya exp 5 , 4)
Rgy
and
4vw? 2r2 —2r2
z%m=<—£)(—~{%m< ) (5)
Riy J\ Rgy Ry

respectively. Interestingly, the second and third invariants of the velocity gradient tensor A;; =
8ul~ / ox j»

Q = %(wiwi — 2Sijsij) (6)
and
R = —%(Siijkski + f—‘a)is,»ja)j), (7)

respectively, are related by a very simple expression for the Burgers vortex flow, namely,

R
Q=—5—M, (8)

and for instance the radial profile of the second invariant Q(r) is given by [16]

a)2
o@r) = IO(FQ,(E) — Fi()), €))

where F (§) = e %, F,(6§) = &£72[1 — (1 + E)e_é]z, and & = rz/RfW.

The entrainment is here analyzed in relation to a particular position within the TNTI layer—the
irrotational boundary defined by Watanabe et al. [18]—which is the outer edge of the TNTI layer [1],
detected as the isosurface of the vorticity magnitude, which separates the turbulent and non-turbulent
regions [19]. The flow characteristics within the TNTI layer are very different depending on the
sublayer (VSL or TSL). The determination of the outer edge of the TNTI layer, the irrotational
boundary (IB) position, enables us to connect the statistics between the two (sub)layers within the
TNTI layer. We define Ly as the distance from the axis of the isolated BV to the irrotational
boundary (see Fig. 1), while the y; coordinate points into the non-turbulent region, with the origin
located at the irrotational boundary. Figure 1 also represents the typical mechanism associated with
the BV, including its balance between vortex stretching and vortex diffusion, its associated (constant)
radius Ry, and induced tangential uy and radial u, velocities [Fig. 1(a)], as well as the locations of
the VSL, TSL, and the turbulent core (TC) regions [Fig. 1(b)].

Since in general the irrotational boundary moves with a given velocity, here denoted by U, the
entrainment characteristics need to be studied with the velocity of the fluid relative to the irrotational
boundary movement AU = U — U, where U is the absolute fluid velocity [20]. Moreover, the
relative velocity vector AU can be decomposed into its normal and tangential components with
respect to the irrotational boundary, which are represented by AUy and AUr = AU — AUyn,
respectively, where AUy = AU-n, and n = —V?/|V@?| is the unit normal vector of the
irrotational boundary and points into the non-turbulent region. Since the tangential relative velocity
component is oriented in an arbitrary direction on the plane perpendicular to n, we use the magnitude
of the tangential relative velocity component AUy = |AUr|. Although the Eulerian statistics of the
relative velocity do not show the actual path of the entrained fluid particles, both Lagrangian particle
tracking and Eulerian statistics have been shown to display similar movements of the fluid particles
during the entrainment [10,18,19].
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Finally, the local entrainment velocity vg, which is the velocity of the fluid across the irrotational
boundary, can be computed as the propagation velocity of the enstrophy isosurface vgn from the
enstrophy transport equation [7]:

Zwisija)j i 2va),-V2w,- (10)
Vg = .
UV T Ve

It has been shown that vg is of the order of the Kolmogorov velocity u, = (ve)/* (e is the dissipation
rate of turbulent kinetic energy) [21], and positive vg represents a propagation of the irrotational
boundary into the non-turbulent region.

Using the above definitions, we can write the y;-direction velocity component of U' on the y;
axis as Ul - n = vg + u?(Lgy). For a steady BV, the irrotational boundary does not move in the r
direction, i.e., U'- n = 0, and therefore, the local entrainment velocity associated with the BV is
given by

vg = —u¥(Lpy) = 3aLpy. (11)

The normal and tangential velocities relative to the irrotational boundary can be obtained in the r-6
plane and are given by

AUy(r,0) = uy(r)cosd — ug (r)sinf, (12)

) 13)

respectively, where 6 is the angle from the y; direction [Fig. 1(b)]. On the y; axis (6 = 0), the
relative velocities become

AUr(r,0) = |(u%(r)sin€ + ug(r)cos0) — ug(Lgv)

AUy (r) = ul(r), (14)

AU7(r) = [ug(r) — ug(Ly)|, (15)

and thus AUy and AUy are also related to the strain and vorticity fields, respectively.

Recall that many intense vortex structures (IVSs) have their cores (or central axis) within the
TSL. However, any of these vortex axes is hardly to be found inside the VSL because this layer is
so thin that it cannot possibly contain IVSs [11]. Thus, the radius of the vortex cores is linked to the
distance between the vortex center (or axis) and the boundary between the TSL and VSL. Therefore,
since the irrotational boundary is located at the outer edge of the VSL, the distance from the vortex
core axis to the irrotational boundary, Ly, can be rigorously defined by

Lgy = Rpv +6,, (16)

where §, is the VSL thickness. The typical mean VSL thickness is about §, ~ 4n [12,17], and
similarly, the typical vortex core radius observed in various turbulent flows is also Rgy = 57 [22],
where n = (v3/¢)!/# is the Kolmogorov microscale. Thus, we can define

Rpgv = Cgn a7
and
(SU = Caﬁ, (18)

where Cg and Cj are constants of order 1 [2]. Thus, the entrainment velocity based on the BV model
includes two new additional parameters: Cg and Cjs. It is noteworthy that the large scales affect
the model by the imposition of the strain field (thus by imposing «) as described by Jiménez and
Wray [22] (see also Ref. [11]) and, therefore, the present analytical model can be used to describe
TNTIs from different flows through the imposition of an appropriate value for «. Finally, it should
be noted that the intense vorticity structures have a radius of ~ 5y [22]. This indicates that they
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FIG. 2. Local coordinate systems used to compute the conditional mean profiles, in relation to the distance
from the irrotational boundary at the outer edge of the TNTI, which separates the turbulent (T) and non-turbulent
(NT) flow regions: 1D, along the y direction; 2D, normal to the interface in the (x,y) plane; and 3D, normal to
the local interface (not shown). The TNTI comprises two (sub)layers: the viscous superlayer with thickness 8,
and the turbulent sublayer with thickness §,,.

are stretched by the local (fluctuating) strain field, whose magnitude is of the order of o ~ (w?)!/?
[16,22]. However, even though the stretching is related to the local strain, the intense tubelike vortex
structures are long lived and stable compared with vorticity sheets [23].

III. DIRECT NUMERICAL SIMULATIONS OF SHEAR FREE TURBULENCE

DNS of SFT was carried out in a periodic box with sizes 27 with 512% collocation points
[15] to study the entrainment characteristics in the TNTI and to assess the results obtained with
the present model. The DNS code uses pseudospectral methods for spatial discretization and a
third-order Runge-Kutta method for temporal advancement. The details on the DNS were described
in previous studies [15,17,24], and here these simulations are only briefly described. After an
initial DNS of forced homogeneous isotropic turbulence (HIT) has been carried out, the boundary
between the turbulent and the non-turbulent flows is generated by instantaneously inserting the HIT
into the middle of a quiescent flow. The initial field consists of the HIT around the center of the
computational domain (]y| < 0.77) and the non-turbulent flow with zero velocity (0.77 < |y| < 7).
After this insertion step, the turbulent (central) region then spreads into the non-turbulent region in
the y direction in the absence of mean shear.

The TNTI is investigated using one single instantaneous field from the SFT simulation. The
turbulent Reynolds number is Re; = umsA, /v = 115 at the center of the SFT, where 4 is the rms
velocity in the x direction and A, is the Taylor microscale calculated with the x-direction velocity.
The ratio between A, and 1 is A, /n = 19.5 at y = 0, while the resolution at y = 0 is Ax/n = 1.5.

IV. FLOW CHARACTERISTICS IN RELATION TO THE DISTANCE FROM THE TNTI

In this section, we review several conditional statistics (in relation to the TNTI), which have
been employed in many recent works [1], and the procedure to obtain them is only briefly described
here. The procedure starts with the determination of the irrotational boundary, which is defined by
the surface where the vorticity magnitude is equal to a certain threshold wy,, whose precise value
is determined by using the dependence of the turbulent volume on wy, as in Ref. [19]. After the
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FIG. 3. Conditional mean profiles (as a function of the distance from the irrotational boundary) of vorticity
magnitude |w/|, enstrophy production (P,), and enstrophy viscous diffusion (D,,).

determination of the irrotational boundary location, the conditional statistics are computed as a
function of the distance to the irrotational boundary y;. The conditional statistics are computed
using one of three possible orientations to the interface (see Fig. 2): (i) “vertical” to the TNTI,
i.e., parallel to the y axis (1D), (ii) normal to the TNTI projected into the (x,y) plane (2D), or
(iii) normal to the TNTI (3D). For case iii we introduce a local coordinate y;, whose direction
given by n is locally normal to the irrotational boundary. In the resulting conditional mean profile,
the irrotational boundary is by definition located at y; = 0, while the non-turbulent and turbulent
regions are defined by y; > 0 and y; < 0, respectively, where y; is normalized by the Kolmogorov
length scale in the turbulent region n = n(y; < 0). We denote these conditional averages by ();.
Figure 3 illustrates the enstrophy buildup mechanisms across the TNTI by plotting conditional mean
profiles of vorticity magnitude |@|, enstrophy viscous diffusion D,,, and enstrophy production P,,,
for the present DNS. Several letters (A—G) are assigned to specific locations within the TNTI (see
Table I), where A denotes the irrotational boundary at the start or at the “outer edge” of the TNTI
(i.e., the origin of the local reference frame y; = 0). The viscous diffusion exhibits a characteristic
shape with positive or negative maxima at y;/n = —2.4 (B) and y;/n = —5.5 (E) associated with
gain or loss of enstrophy, respectively, as previously reported by several authors [1], and it is clear
that this is the first mechanism driving the observed enstrophy rise inside the TNTI. The diffusive
transport switches signal between the two extrema crossing zero at y;/n = —3.9 (D). On the other
hand, the enstrophy production starts to be important after y;/n &~ —2 and is responsible for the
enstrophy amplification for y;/n < —3.3 because at this point the enstrophy production surpasses
the viscous diffusion. The conditional mean vorticity magnitude exhibits a sharp rise in the range
—6.3 < y;/n < 0 (A-F) until at y;/n = —6.3 (F) the maximum vorticity magnitude is attained.
At y;/n = —23.5 (G), the flow exhibits all the characteristics of fully developed turbulence, with

TABLE I. Letters used to denote several points across the TNTI layer, which is divided into the viscous
superlayer (VSL) and the turbulent sublayer (TSL) [17]. The irrotational boundary (IB) location y; = 0 is also
indicated. Point G is deep inside the turbulent-core (TC) region where production and dissipation of enstrophy
roughly balance.

Letter A B C D E F G
(Sub)layer IB VSL VSL TSL TSL TSL TC
yi/n 0.0 —2.4 -3.1 -39 -5.5 —-6.3 —-23.5
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FIG. 4. Joint probability density function of Q and R across the VSL region in the flow: start of the viscous
superlayer (irrotational boundary) (A), point of maximum mean enstrophy diffusion (B), and point close to the
boundary between the viscous superlayer and the turbulent sublayer (C).

no sign of the presence of the TNTI. Therefore, in the present case the VSL, associated with the
viscous diffusion of vorticity toward the non-turbulent flow region, extends from —3.3 < y;/n <0
(A, B, and C), i.e., with a mean thickness (defined by the region in Fig. 3 where diffusion exceeds
production) equal to (§,) =~ 3.3n, while the TSL (associated with the rapid vorticity rise by the
enstrophy production) lies in the range —6.3 < y;/n < —3.3 (D, E, and F), with an estimated mean
thickness (region where production exceeds diffusion culminating in the maximum vorticity; Fig. 3)
equal to (8,) &~ 3n. Thus, in the present flow, both (§,,) ~ (§,) ~ n in agreement with Ref. [17],
because the coherent structures consist solely of “worms.”

The very different nature of the VSL and TSL can be further appreciated by analyzing the evolution
of the invariants Q and R across the TNTI layer, whose values somehow reflect the interplay between
strain and vorticity, which is so important in turbulent flows. Recall that the enstrophy is proportional
to the vorticity magnitude || = (w;w;)"/? while the strain is proportional to the viscous dissipation
rate of kinetic energy, & = 2vs?, where s> = s; j8ij. At high Reynolds numbers strong enstrophy is
concentrated in coherent tubelike structures or eddies (worms) with a lifetime comparable to the
reference time scale of the flow, whereas regions of strong strain are “incoherent,” “short lived,” and
tend to be a maximum near the periphery of the eddies [16].

If Q > 0, enstrophy dominates over strain, and hence Q > 0 leads to R ~ —w;w;s;;/4.
Consequently, R < 0 shows the predominance of vortex stretching (positive enstrophy production)
events over compression, whereas R > 0 implies a predominance of vortex compression over
stretching. On the other hand, if O < 0, R ~ —s;;5x8% /3 = —asBsys, whereas > Bg > ys are the
three eigenvalues of s;; arranged in descending order. Incompressibility implies ag + Bs + ys = 0.
Thus, R > 0 with Q « 0 requires ag,8s > 0 and ys < 0 associated with a sheetlike local flow
topology, while R < 0 arises when there is only a single stretching axis («g > 0), i.e., a tubelike
topology.

The invariants are inherently rich in physical information regarding both the flow topology and
the enstrophy dynamics, and have been widely used to describe the dynamics of turbulent flows
[25-28]. In particular, the joint probability density function (PDF) of O and R unites the main
features of turbulence into a single plot exhibiting a universal “teardrop” shape which is present
in virtually all turbulent flows [16,25-27]: it displays a clear (anti)correlation between Q and R in
the region (Q < 0,R > 0) associated with a sheetlike structure, and in the region (Q > 0,R < 0)
associated with a predominance of vortex stretching over compression [e.g., Fig. 5(d)]. However,
it has been stressed that the invariants only provide “local” information and are unable to describe
any sort of coherent structure, which by definition requires information from a set of different flow
points. Nevertheless, there have been numerous attempts to connect large-scale flow structures to
the information of the invariants [29].

It has been shown that the teardrop shape is not present in the non-turbulent region, but as the
fluid particles are entrained into the turbulent region, the teardrop forms remarkably fast, requiring a
distance of only one Taylor microscale from the non-turbulent region to form completely at the edge
of a jet [24,30]. Yet the steps in its formation remain largely ignored. The formation of the teardrop
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FIG. 5. Joint probability density function of Q and R across the TSL region in the flow: point of zero
diffusion (D), point of minimum diffusion (E), and point of maximum enstrophy (F).

shape across the TNTI is analyzed here for the first time, by plotting the joint PDFs of Q and R
at several fixed distances from the TNTI layer. Figure 4 shows the PDFs in the VSL [at y;/n =0
(A), —2.4 (B), and —3.1 (C)], while Fig. 5 shows the PDFs in the TSL [at y;/n = —3.9 (D), —5.5
(E), and —6.3 (F)]. The VSL is predominantly responsible for the formation of the teardrop shape
in the fourth quadrant, associated with a predominance of sheet structures, because w; ~ 0 inside
the VSL yields Q ~ —s;;5;;/2 < 0 and R ~ —agBsys. Since the VSL is at the edge of the eddies
from the turbulent region [17], strain dominates over enstrophy, and R > 0 (sheet structures) is more
frequent than R < O (tube structures). In contrast, the formation of the teardrop shape in the TSL
occurs in the second quadrant with the enstrophy now overcoming strain, thus Q = w;w;/4 > 0
and R ~ —w;w;s;; /4. The predominance of the vorticity over the strain in the flow implies that the
enstrophy can grow when w; and s;; are correlated so that w;w;s;; > 0, i.e., more frequent events
of R < 0 (vortex stretching) than R > 0 (vortex compression). The increasing intensity of Q and
R as one moves from A to F naturally reflects the increasing intensity of the fluctuating fields of
enstrophy and strain. The results are in agreement with the conditional profiles displayed in Fig. 3.
It is noteworthy that in contrast with the jet (where the teardrop forms in (8,) ~ A), the thickness
of the TSL is (8,) ~ n, and the teardrop shape forms in a much shorter distance, requiring only
~ —5.5n to form completely. Indeed, the joint PDF of (Q, R) at E is virtually identical to F and also
G (not shown). A very interesting perspective of the formation of the teardrop is provided by the
trajectory of the (conditional average of the) invariants of the velocity gradient tensor in the O-R
map, obtained from the conditional mean profiles using the three different orientations (1D, 2D, and
3D), presented in Fig. 6. Only in the second quadrant, we observe some differences in the statistics,

0.3

0.2

004 002 0 002 004
3/2
(R)1/(sijsij)

FIG. 6. Trajectory of the conditional mean values of Q and R across the TNTI layer. D4 = 27/4R* 4 Q°
is the discriminant of the eigenvalues of A;;.

094607-8



ROLE OF AN ISOLATED EDDY NEAR THE ...

T T T T T T [><104] R D
) L BV |
[ - = =BV model Lgy ‘%‘
100 —— DNS i 7l sl ™ L]
ah | fy
[ 1N | /' 53 |
! ! : G />\\\ :
/ \ o Frmemm == —— o /_ - “\\C )
- ' G L \f"{LA
. 25 "Fa
3 0 / F! l 0 \ \4’/0 :
~ 50r G / | § BV model \ | F i 1
NN R VO b, A|fE
/ : —— Py \ i :
/ 1 -5|- DNS \|/ L
/ | — Do \ |
, | S |
— e PR R SRR TR N HNU ER U S
950 25 20 -15 -10 -5 0 5 30 25 20 -15 -10 -5 0 5
(a) yi/m (b) yi/n

FIG. 7. Conditional mean profiles of (a) vorticity magnitude |@| and (b) enstrophy production (P,) and
enstrophy viscous diffusion (D,,) obtained from the DNS compared with the results from the BV model. The
vertical lines represent the locations of the irrotational boundary (dashed) and the BV axis (solid).

which shows the robustness of the conditional statistics. The non-turbulent region and the VSL are
represented only in the fourth quadrant, while the TSL develops in the third quadrant, with some
points appearing in the second quadrant. The turbulent core region is mainly in the second but also
in the first quadrant. There is an increasing tendency for generating a sheet topology as the fluid
particles enter the VSL (A to C), followed by a sharply increased predominance of vortex stretching
and formation of tube structures as the flow evolves inside the TSL (C to F), in agreement with the
model for the VSL proposed in Ref. [17]. Interestingly, the trajectory connecting the VSL and TSL
regions (B to E) consists of a straight line with a constant slope which is the same for all the three
orientations used in the conditional statistics (1D, 2D, and 3D). As we see below, this trajectory is a
direct manifestation of the presence of intense vortices near the TNTL

V. COMPARISON OF THE VORTICITY MODEL WITH RESULTS FROM DNS

In this section, the analytical results derived from the BV model are compared with the DNS
results. This requires the determination of the several model parameters, which we obtain directly
from the reference DNS. The Appendix details how these quantities were estimated from the
DNS. Specifically, we use v = 0.003 while « is estimated by assuming Rgy = 4.97, and I is
computed assuming a circulation Reynolds number equal to Rer = I'y/v = 19.0Re1/ 2, Finally,
Lgy is computed as the sum of the radius of the BV and the mean VSL thickness, in agreement
with Eq. (16), leading to Lgy = Rgy + §, = 4.9n + 4n = 8.9n, where 8, = 47 is the typical value
reported by the DNS [12,17]. Here, the comparison is limited to the simple conditional statistics since
the BV model considers the IB defined at one point on an -6 plane. The BV model cannot be used
for studying the relation between the TNTI geometry and the detailed vortex structure underneath
the TNTIL. The statistics in the DNS are calculated using a coordinate system taken in the normal
direction to the IB, while the coordinate direction crossing the vortex center is used in the BV model.
In previous DNS studies, a large number of tubelike vortex structures were observed underneath
the TNTI [11], and it is inferred that the probability that we find tubelike vortex structures on the
local coordinate system is very high. This justifies the present comparison between the conditional
statistics and the BV model.

We start with the conditional averages of vorticity magnitude, enstrophy production, and enstrophy
diffusion, which exhibit the well-known characteristic shape described in relation to Fig. 3. For
clarity, the comparison is split into two figures, where Fig. 7(a) shows the conditional vorticity
magnitude profile while Fig. 7(b) shows the conditional enstrophy production and diffusion. The BV

094607-9



T. WATANABE et al.

model agrees very well with the DNS near the irrotational boundary until about y;/n = —3.9 (D),
which is close to the end of the VSL. This is true for the vorticity magnitude as for its production and
viscous diffusion. Specifically, the enstrophy profile displays a very similar shape and agrees with
the exact location of the DNS curve from the irrotational boundary until the start of the TSL (end of
the VSL), which is located at y; /n = —3.9 (D). Similarly, the modeled enstrophy production P,, and
viscous diffusion D, profiles are very similar to the ones obtained in the DNS, provided the results
are taken from the VSL (A to C). The exact locations for the enstrophy production and viscous
diffusion in the DNS are not captured from the BV model, but the “shift” is equal to only 17 or less,
which is very small indeed. The fact that the enstrophy diffusion peak is captured (B) is particularly
impressive. Indeed, the agreement inside the whole VSL (A to C) is remarkable considering the
simplicity of the model. The small discrepancies observed here are possibly explained by the strain
field, which is assumed to be constant in the BV model, while the effective strain acting on the
vortices decreases near the TNTI [11] (see also the Appendix). Moreover, the effects of the other
interacting eddies are not accounted for in the BV model and will tend to increase the actual diffusion
near the TNTI. Furthermore, the small-scale incoherent strain (supposedly small but non-zero) in
the VSL is also not accounted for in the BV model.

After this region, when moving into the TSL (D to G) the results generally diverge, with the
enstrophy and enstrophy production term from the BV model tending to zero while they tend to the
turbulent core value in the DNS (for the enstrophy and enstrophy production). The weak agreement
between the BV model and the DNS in the TSL and in the turbulent core region (D to G) is not
surprising, because the number of intense vortices greatly increases in these regions and they are
not particularly aligned to the interface tangent [11]. Moreover, the strong non-linearity of the
turbulence, resulting from the complex interactions between strain and vorticity described before
in relation to Figs. 4 and 5, produces a very complex small-scale field which is incompatible with
the simple description given by the BV model. This explains why the results from the BV model
cannot be compared or used to predict the joint PDFs of Q and R. Indeed, as described before in
Eq. (8), Q and R are described by a simple linear relationship for a BV, and thus for given vortex
characteristics, each radial coordinate point r in the vortex is represented by a single straight line in
the O-R map, with Q(r) ~ —R(r)/«. A collection of several eddy types can hardly fill in the entire
O-R map, particularly if these eddies have very similar characteristics, such as the same core radius
with 4.5 < Rgy < 5.5[11].

However, it is probably possible to explain part of the results observed in the O-R map described
in Fig. 6. Recalling that a small-scale eddy has a vortex core radius equal to Rgy/n =~ 4.5 [22],
the time scale of the strain rate imposed on this eddy can be estimated with the BV as 1/a =
4v/ Rlzg\,)*1 ~ 5.1t [t, = (v/ £)!/2 is the Kolmogorov time scale]. On the other hand, by measuring
the slope of the straight line in the (Q, R) trajectory from B to E with the relation Q(r) ~ —R(r)/«
(Fig. 6), we arrive at the time scale of the stretching rate of 1/« ~ 5.51,, which is remarkably close
to the value obtained assuming the flow in the VSL and TSL is described by the BV. Thus, the
(Q, R) trajectory shows the imprint of the small-scale eddies existing near the TNTI, and unifies the
existing models for the VSL and TSL within a TNTI. The small differences obtained with the three
orientations in the second quadrant shown in Fig. 6 can now be explained: the 1D orientation is
less likely to align with the radial direction of the eddies forming the TNTI than the 3D orientation,
which explains why the straight line linking the VSL and TSL is longer for the 3D than for the
1D orientation. Both the teardrop formation and the mean trajectory of (Q, R) are expected to hold
for other flows, e.g., fully developed wakes and jets, since the VSL forms at the edge of similar
small-scale eddies in these flows [14,17]. However, as described above, the BV model is probably
unable to explain the detailed teardrop shape (Fig. 5) because it does not include non-linear effects,
e.g., extreme dissipation events (Q < 0), which tend to occur when two eddies come closer [31].

In order to compare the velocity field related to the entrainment created by the BV model
with the one obtained from DNS, Fig. 8 shows a relative streamline through point A in relation
to the movement of the irrotational boundary A. Here, we use the velocity field relative to the
irrotational boundary (enstrophy isosurface) movement, AU, since the conventional streamline
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FIG. 8. A single streamline in relation to a point (A) located at the irrotational boundary on a two-
dimensional plane perpendicular to the axis of a nearby vortex near the TNTI (a) in the DNS and (b) in the BV
model. These streamlines are defined by the velocity field relative to the velocity of the enstrophy isosurface
at point A. Point A corresponds (as in the rest of the paper) to the irrotational boundary location close to the
vortex location, while the color contours represent |w, |, with red and blue corresponding to high and low values,
respectively.

shows the convection of the TNTI rather than the entrainment velocity [32]. In contrast, the relative
velocity describes well the movement of fluid particles being entrained within the TNTT layer [10].
It is important to understand that the peculiar shape of these streamlines results precisely from the
“relative” velocity being computed in relation to a given position outside the axis of the nearby
vortex. This explains why these streamlines are very different from the classical circular streamlines
observed around the axis of a vortex. The particular location used in Fig. 8(a) was chosen to capture
one of the strong eddies lying near the TNTI.

Far away from point A in the non-turbulent region (or for y; > 0) the streamline is smooth and
approaches point A, and once the streamline crosses the irrotational boundary (at point A) it moves
away from the y; axis and spirals toward a point located at the edge of the vortex (not at its axis).
This trend is very similar in both figures, and the detail of the streamline of AU around the actual
eddy observed in the DNS is similar to the one near the BV. This comparison suggests that the BV
model could be useful to describe the instantaneous entrainment processes near the TNTI associated
with the small-scale eddy structures. The fluid particle movement within the TNTI layer during the
entrainment was recently studied in free shear flows [10]. It was shown that once the particles cross
the irrotational boundary, within the viscous superlayer, the particles move in the direction normal
to the irrotational boundary. Shortly after this, once the particles reach the turbulent sublayer, they
move in the tangential direction to the irrotational boundary. It was also found that while the particles
are moving within the TNTTI layer, they tend to circumvent the vortex core regions of the intense
nearby eddies. The instantaneous streamlines of the relative velocity in Fig. 8 also suggest a similar
movement of the entrained particles.

In order to quantify the agreement between the actual and modeled entrainment trajectories
obtained with the DNS and the BV model, respectively, Fig. 9 displays the joint PDFs of the
normal AUy and tangential AUy components of the relative velocity at several distances from
the irrotational boundary. Because the tangential component is zero at the irrotational boundary
(y; = 0), the normal component at y; = 0 is separately shown at the end of this section as the
local entrainment velocity. The results from the analytical BV model are represented with crosses
while the DNS results are represented as PDFs to display the scatter of the existing values. Because
the relative velocity is related to the entrained fluid movement within the TNTI layer [10], a close
inspection of Fig. 9 allows one to understand the trajectory of the entrained fluids in some detail.
While AUy is equal to zero right at the irrotational boundary (y;/n = 0), AUy has a non-zero
value. At the initial stage of the entrainment, the fluid moves in the radial (irrotational boundary
normal) direction since the normal component tends to be larger than the tangential component:
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FIG. 9. Joint PDFs of normal and tangential relative velocities, AUy and AUr, respectively, normalized
by the Kolmogorov velocity u,, at several distances from the irrotational boundary, obtained in the DNS.
The values of AUy and AUy in the BV model are marked with a cross. The dashed white line represents
AUr = |AUy]|.

|AUy| > AUy. This has been confirmed in the flows with mean shear (turbulent mixing layers [18]
as well as in planar jets [10]). However, as the fluid moves into the turbulent region [Figs. 9(a)
and 9(b)], the tangential component becomes large: |AUy| < AUTr. It is noteworthy that, already
at y;/n = —7.7, the tangential component is much larger than the normal component while it is by
then quite small [Fig. 9(a)]. Thus, while the fluid motion relative to the irrotational boundary is very
slow during the initial stage of the entrainment, it moves much faster in the tangential direction away
from the irrotational boundary shortly after the fluid has reached a few Kolmogorov scales inside
the TNTI layer. Clearly the values for the BV model are very close to the DNS results provided we
are inside the VSL (—3.9 < y;/n < 0). This is attested to by the very small distance between the
peak of the PDFs and the cross representing the BV results, where this difference is much smaller
than u,. Even at y;/n = —7.7 [Fig. 9(c)] the agreement between the relative velocity given by the
BV model and the peaks of the PDFs obtained from the DNS data is fairly good. In any case, the
exact value of the relative velocity obtained by the BV model is close to the peaks of maximum
probability computed from the DNS, and the description of the entrainment trajectory given by the
BV model agrees with the Lagrangian movement of fluid particles [10,19], which again shows that
the isolated eddy modeled by the BV provides an accurate representation of the fluid motion within
the TNTI layer.

As described by the BV model in the form of Eqgs. (14) and (15), the normal and tangential
components of the relative velocity are related to the irrotational strain and vorticity, respectively;
the BV model describes the entrainment across the TNTI layer as two processes: (i) drawing of the
non-turbulent fluid toward the vortex core region by the imposed strain, and (ii) advection by the
vortex structures, by which the entrained fluid moves away from the irrotational boundary. Note
that the velocity induced by the vorticity moves the fluid in the vicinity of the TNTI toward the
turbulent-core region, because away from the y; axis the velocity induced by the vorticity points
toward the turbulent-core region. The BV model captures well the two stages of the entrainment
process: the initial movement of the entrained fluid in the irrotational boundary normal direction
and the tangential movement from a few Kolmogorov length scales inside the irrotational boundary,
which have been found in the Lagrangian statistics of the distance between the entrained fluid particle
and the irrotational boundary [10].

Arguably, the large-scale flow features impose the entrainment rate by acting on the strain rate
field, since the strain acting on the worms observed in turbulent flows is related to the integral
scale [22]; however, the vorticity of the worms themselves is clearly associated with the smallest
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FIG. 10. Probability density function of the local entrainment velocity vg obtained from the DNS compared
with the value in the BV model represented by the solid line (vg/u, = 0.75). The velocities are normalized by
the Kolmogorov velocity u,,.

scales of motion [22]. Therefore, the interplay between the large and small scales of motion near the
TNTI can also be appreciated by analyzing the equations discussed above. For instance, the relative
normal velocity is connected with the local entrainment velocity vg, and both are related to the strain,
as strongly suggested by Eqgs. (11) and (14). However, it is well known that the local entrainment
velocity vg scales with the Kolmogorov velocity u,, [21], which is clearly a small-scale feature. In the
same vein, Eq. (15) links the tangential velocity to the small-scale vorticity field; however, it is well
known that the (related) azimuthal velocity of the intense small-scale eddies (worms) is of the order
of the root-mean-square velocity, which of course is a large-scale feature [11]. This suggests that the
interaction between the several worms near the TNTI could also explain the existing discrepancies
between the present BV model and the DNS results; however, the present entrainment model can
be extended to include large-scale effects by modeling the strain « (see the Appendix in Ref. [24]),
different interface orientations [30], and the external forces such as buoyancy for stably stratified
flows at large buoyancy Reynolds number [33], which also act upon the model via the strain imposed
on the eddies near the TNTI, thereby affecting the entrainment rate.

Finally, we compare the local entrainment velocity vg computed from the DNS as Eq. (10) with
the one obtained from the BV model, Eq. (11). To allow a detailed comparison of this important
quantity Fig. 10 shows the PDF of vg from the DNS, while the BV model result corresponds to
a single value (estimated as described before). The PDF for vg obtained from DNS seems to be
approximately Gaussian, with a range of possible values of the order of the Kolmogorov velocity,
while a large probability can be found for positive values of vg. The negative value of vg is caused
by the viscous dissipation of enstrophy. Note that the inviscid terms in the enstrophy equation are
comparatively very small or negligible at the IB position. The peak of the PDF is obtained for
vg/u, = 0.40, which agrees very well with the values measured by Wolf et al. [21]. For the BV
model we get vg/u, = 0.75, which is very close to the DNS values, considering the simplicity of
the present model.

VI. CONCLUSIONS

The dynamics of the flow near TNTIs in SFT is compared with a single eddy placed near an
irrotational boundary. The DNS used in this study attains the turbulent Reynolds number Re; ~ 100,
and conditional statistics are computed in relation to the irrotational boundary position, while the
single eddy is modeled using a steady BV model, which has only three parameters: the kinematic
viscosity of the fluid, v, the strain rate acting on the vortex, «, and the vortex circulation I'y. These
parameters are taken from the intense vorticity structures (worms) near the TNTI layer as obtained
from DNS. The BV model underlines a distinction between the velocity field associated with the

094607-13



T. WATANABE et al.

irrotational strain and the vorticity near a single vortex. While the strain imposed on the vortex draws
non-turbulent fluid toward the vortex core region, the motion induced by the vorticity moves the
entrained fluid into the turbulent-core region.

The analytical results for the BV model predict reasonably well the conditional profiles of
enstrophy, enstrophy production, and enstrophy diffusion within the TNTTI layer. Specifically, the
quantities are well captured inside the VSL and not inside the TSL. The formation of the teardrop
shape of the joint PDF of Q and R is analyzed inside the VSL and TSL in detail using the DNS, and
the different nature of the two layers is clearly illustrated. Moreover, it turns out that inside these
two layers, the invariants Q and R show the imprint of the small-scale eddies or worms from the
turbulent core region, thus providing a remarkable example where local flow topology and dynamics
are intertwined to the spatial coherence of the flow. Furthermore, the simple BV model is able to
capture these features. The streamline of the flow relative to the irrotational boundary movement
near the TNTI obtained from an intense eddy captured from the DNS is well reproduced by the
present BV model, both qualitatively and quantitatively, and finally the entrainment velocity of the
fluid within the TNTI layer is reasonably well estimated from the BV model. Thus the main features
of the entrainment mechanism are well reproduced.

The way that the effects arising from the large and the small scales of motion can be accounted
for in the model are briefly discussed, as well some of its limitations. In its present form, the model
misses the effects that result from the interactions of several similar vortices near the TNTI layer
as well as from any small-scale incoherent vorticity existing in the flow, which certainly play a
more crucial role inside the TSL and turbulent-core regions. The model can be extended to cover
these limitations and to describe several different flows and provides an interesting framework to
understand the entrainment mechanisms associated with the small-scale nibbling mechanism.
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APPENDIX

This Appendix describes how the parameters for the BV model were obtained from the DNS
of SFT. We use the vortex tracking algorithm described in Ref. [11], where each one of the IVSs
or worms is tracked and its characteristics are computed in relation to the irrotational boundary
location.

The IVS axis is detected with the points where the vorticity @ = |w| is above a certain threshold
wyr, where this threshold characterizes points with the most intense vorticity existing within the
flow domain. We define this threshold as equal to the vorticity of the points with highest enstrophy
that are contained in 1% of the total volume. The worm radius R and circulation I" as a function of
axis position are calculated from the vorticity profile along the axis with the same procedure as in
Refs. [11,13].

Figure 11 shows the conditional mean vortex radius R for each worm and the circulation Reynolds
number Rer as a function of the distance from the irrotational boundary in the SFT. As in Ref. [11],
the mean radius is compared with the Burgers vortex radius Rpy. These plots are very similar to
those in Ref. [11] in terms of magnitudes and shape of the functions. The radius of the worms, R,
and the circulation Reynolds number I, after being roughly constant inside the turbulent region,
increase slightly near the TNTI. However, the radius of the worms is always near the Burgers vortex
radius, i.e., (R/Rgy); = 1 throughout the whole range of y;, implying that the eddies are at all
locations in an approximate balance between the enstrophy production and viscous diffusion. As
explained in Ref. [11], the slight increase of the worms’ characteristics near the TNTI results from
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FIG. 11. Conditional mean profiles of (a) core radius R and (b) circulation Reynolds number Rer of the
intense vorticity structures or worms, as a function of the distance from the irrotational boundary for the SFT
simulation. R is normalized by the Kolmogorov microscale n or by the Burgers vortex radius Rpy calculated

with the mean stretching rate acting on the worms, while Rer is normalized by the Taylor Reynolds number
RC)L.

the slightly lower strain to which the worms are subjected near the TNTI, compared to inside the
turbulent region.

From these figures we take Rgy = 4.9n and Rer = 19.0Rei/2 at y; = —15n. The location of 159
was chosen so that statistics affected by the VSL, whose instantaneous thickness is not constant,
are not included in the BV model. With these values we estimate Lgy as Lgy = Rgy + 6, =
4.91 + 4.0n = 8.97. These are then the values used in the BV model assessed in the present work.
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