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We analyze the temporal dynamics associated with axisymmetric coherent structures in
a turbulent jet. It has long been established that turbulent jets comprise large-scale coherent
structures, now more commonly referred to as “wave packets” [Jordan and Colonius,
Annu. Rev. Fluid Mech. 45, 173 (2013)]. These structures exhibit a marked spatiotemporal
organization, despite turbulence, and we aim to characterize their temporal dynamics by
means of nonlinear statistical tools. The analysis is based on data presented Breakey et al.,
in Proceedings of the 19th AIAA/CEAS Aeroacoustics Conference, AIAA Paper 2013–2083
(AIAA, Reston, VA, 2013), where time series of the wave-packet signatures are extracted
at different streamwise locations. The experiment runs at Ma = 0.6 and Re = 5.7 × 105.
A thorough analysis is performed. Statistical tools are used to estimate the embedding
and correlation dimensions that characterize the dynamical system. Input-output transfer
functions are designed as control-oriented models; and for this special case, consistent
with other recent studies, we find that linear models can reproduce much of the convective
input-ouput behavior. Finally, we show how surrogate models can partially reproduce the
nonlinear dynamics.
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I. INTRODUCTION

Following the early studies of Mollö-Christensen [1–3], a considerable body of work has been
devoted to exploring the nature of organized motions that are observed in turbulent jets [4–8]. It was
hypothesized early on that this component of the flow might be understood in terms of an instability
of the turbulent mean [4,9–13], and the importance of such flow structures for sound radiation has
been suggested in numerous studies [6,14–19].

It is only more recently, however, thanks largely to progress in theory, numerical simulations, and
experimental diagnostics, that it has been possible to explore these hypotheses in a comprehensive
manner. Exhaustive comparison of the results of theory with experimental measurements has
confirmed that the average characteristics of coherent structures in turbulent jets are remarkably
well described by solutions of the Navier-Stokes equations linearized about the turbulent mean
[20–22]; these solutions are synonymous with globally stable modal solutions [23–25], which,
physically, amount to hydrodynamic waves that are convectively amplified in the upstream region
of the flow but become neutrally stable and then decay farther downstream. It is for this reason
that they are referred to as “wave packets” [41]. An example of a modal solution, from Ref. [25], is
shown in Fig. 1, where it is compared with a realization taken directly from the large eddy simulation
(LES) [26] that provided the mean flow. The wave packets can be seen to comprise a hydrodynamic
component, with an amplitude envelope as described above, and an acoustic component that takes
the form of a directive beam radiating to shallow angles. Considering the Reynolds number of the
jet, Re = 1 × 106, and the fact that it issues from a nozzle with fully turbulent boundary layers, the
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FIG. 1. Left: realization taken from large eddy simulation (axisymmetric component of pressure at St =
0.37). Right: Global mode (m,St) = (0,0.37). Courtesy of Ref. [25].

agreement between the LES realization and the linear global mode is striking. One is compelled to ask
how, despite the nonlinear, orderless character of the turbulence that dominates the fluctuation energy
of this flow, such organization can exist and how a linear model can capture so many of its features.

Something less clear from the images, however, is the considerably lower acoustic efficiency of
the linear wave packet. As shown in a number of recent studies Refs. [22,27,28], the intensity of the
sound field of the linear solution, once the hydrodynamic fluctuation levels of LES and model have
been matched, can be as much as 40 dB below that of the LES. Such a large discrepancy, in the face
of such compelling organizational similarity, is intriguing and the subject of a number of ongoing
research efforts, which we summarize briefly in what follows.

The present understanding is that the linear dynamics do not contain the acoustically important
degrees of freedom: The average wave packet does not generate the average sound [22,27,29–31].
The essential sound-producing motions are those associated with higher order statistics of the
wave-packet dynamics. These motions have been denoted as “jitter” in Ref. [29] and would appear
to be underpinned by nonlinearity [22,27,32,33]. Note that this applies in particular for subsonic
jets, while in supersonic jets sound emission is less sensitive to jitter.

The nature of this nonlinearity remains to be clarified. Do wave packets jitter on account of
nonlinear wave-wave interactions [34,35], or is it rather due to stochastic forcing of linear waves by
background turbulence that leads to the activation of these higher order degrees of freedom [32,33]?

A useful conceptual framework for discussing these different scenarios, and which we will use
throughout the paper when discussing the results, is that of an inhomogneous linear system. In
operator notation, Lq q = f , where Lq is the Navier-Stokes operator linearized about the mean flow,
q; the variable q comprises wave-packet fluctuations and f contains the nonlinear terms, usually
discarded in a linear analysis but which are here retained and considered together as a forcing term.
What this forcing term contains and what role it plays is, as discussed above, a question that many
groups are presently trying to answer. Two hypothetical scenarios are as follows: (1) The nonlinear
forcing term is dominated by wave-wave interactions and comprises thus some degree of order, or
(2) it is dominated by stochastic turbulence interactions and is devoid of order. In order to facilitate
discussion of the results, we will refer to these scenarios as involving, respectively, “endogenous”
or “exogenous” nonlinear processes. Conceptually, wave packets are the flow objects that we are
primarily concerned with, and the question is whether the nonlinear dynamics that underpins the
jitter evoked above arises from endogenous wave-wave interactions or, rather, via forcing by a
disorganized exogenous turbulence. In reality, of course, the forcing can never be truly exogenous,
as it is an inherent part of the total flow. But, in the same way that one frequently appeals to a scale
and energy separation between wave packets and energy containing turbulent eddies in order to
justify use of the time-average mean as an equivalent laminar flow on which wave packets evolve,
this ad hoc distinction between two kinds of nonlinear process is useful.

A further issue, that motivates both the modeling efforts evoked above and the work we undertake
in this paper, is that of control. Given the success of linear models in predicting both the average
wave-packet structure, in frequency space, and the real-time evolution in an experimental context
[36], it is legitimate to ask if the tools provided by linear control theory might be sufficient. Such
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FIG. 2. Overview of the experiment, adapted from Ref. [39].

possibilities are presently being explored [37]. But if it were to be necessary to directly manipulate the
more subtle dynamics associated with jitter (the energetically unimportant but acoustically essential
degrees of freedom), then a nonlinear control framework would be required (machine learning,
etc. [38]). The question of the dimension of the space spanned by the dynamics must be asked: Is
this small enough for control to be realistic in an experimental context?

Consideration of the above issues via qualitative dynamical analysis has, to the best of our
knowledge, not previously been attempted. We therefore consider the same turbulent jets studied by
Refs. [21,39,40], using a variety of nonlinear signal processing and system identification techniques,
in order to explore dynamics of low-frequency wave packets. Particular attention is given to pressure
signals dominated by fluctuations at Strouhal numbers St < 0.2, where linear models are found to
perform most poorly.

Our analysis starts with a brief description of the experimental setup in Sec. II. The remainder of
the paper is organized in two parts. The behavior of the time series obtained from the experimental
campaign is discussed in Sec. III, where statistical tools and spectral analysis are introduced for a
preliminary characterisation of the temporal dynamics. In the second part, we pursue an alternative
approach by analyzing reduced-order models of the time series, based on system identification;
the approach is introduced in Sec. IV, while the dynamical analysis is reported in Secs. IV B and
IV C. Further technical details of the techniques and data are provided in dedicated appendixes.
Conclusions are summarised in Sec. V.

II. EXPERIMENTAL DATA

We consider an unforced, isothermal, subsonic jet issuing from a round nozzle with fully turbulent
boundary layers. In particular, we consider the near-field pressure fluctuations measured by Ref. [39].
The setup is shown in Fig. 2(a), and a schematic of the near-field microphone array used for
identifying the axisymmetric wave-packet signature is sketched in Fig. 2(b). The experiments were
carried out in the anechoïc free jet facility of the PPRIME Institute, Poitiers, France. The jet
Mach number ranged from Ma = 0.4 to Ma = 0.6. In what follows, the diameter of the nozzle,
D = 0.05 m, is taken as the reference length scale, while the exit velocity, U , is the reference speed.
Time is scaled as τ = tU/D. The corresponding Reynolds number Re = ρUD/μ ranges between
4.2 × 105 < Re < 5.7 × 105, where ρ is the density and μ the air viscosity. The end of the potential
core of the jet is placed between 5 < x/D < 5.5. Azimuthal rings of six microphones recorded
pressure fluctuations from the near field of the jet, on a conical surface. Two data sets were analyzed.

(1) The first was obtained by simultaneous measurements at 7 different streamwise locations
in the near field. At each location, an azimuthal ring, each with 6 microphones, is positioned. The
array thus comprises a total of 42 microphones, placed on a conical surface in the near field of
the jet, as shown in Fig. 2(b). The spacing between the rings is x/D = 0.75, within the range
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FIG. 3. The near-field signal is shown as a function of the distance from the nozzle exit (x/D) and the
time τ , scaled with the velocity U and the diameter D. The measured quantity is the pressure related to the
axisymmetric mode mθ = 0. The time series are obtained from the POD projection described in Ref. [39] and
Appendix A.

1.25 < x/D < 5.75. At each x/D location, a Fourier-series decomposition is performed in the
azimuthal direction.

(2) The measurements of the second campaign are performed using a ring of 4 equi-spaced,
azimuthal rings, which are displaced in the streamwise direction over the range 0.5 < x/D < 8.9
with a streamwise resolution of x/D = 0.4. These measurements are not simultaneous but allow
computation of the cross-spectral-density matrix, an eigen-decomposition of which provides POD
modes.

The POD basis is used for projection of the data from the first campaign. In Ref. [39], it is
shown that much of the energy of the axisymmetric mode is captured in the first POD mode (up to
45–65%). The postprocessing and projection are detailed in Appendix A. The POD projection has
some advantages, one of which is the provision of space-time information with a finer streamwise
resolution and a larger streamwise domain. In what follows, the original time series is denoted
TS-Raw while data projected onto the POD basis is denoted TS-POD.

The study focuses on the temporal dynamics of the axisymmetric mode mθ = 0. We study runs at
Ma = 0.6 and Reynolds number Re = 5.7 × 105, and consider different streamwise locations. We
focus on the axisymmetric structures due both to their relevance for sound emission [40,41] and their
dominance of the hydrodynamic near field where measurements have been performed; we further
comment on this choice in the next section.

The analysis is carried out by considering time series extracted for each of the data sets. By
definition, a time series is a sequence of equispaced data points, a function of time. The sample rate
is 105 Hz, and the total number of points for each series is N = 2.4 × 105. The temporal dynamics
is shown in Fig. 3, as a function of time τ and streamwise position. This space-time picture is
complementary to the frequency-space realization shown in Fig. 1. Both show clearly the organized
nature of wave packets in these high-Reynolds-number, fully turbulent jets. We postulate that the
near-field measurements provide a faithful signature of wave packets, which are radially extended
flow entities, and particularly so where the pressure field is concerned. Indeed, the measurement in
the near field provides a good measure of the dynamics inside the potential core of the jet (as shown
in Fig. 1).

In the following section, analysis of the temporal series is performed by means of spectral analysis
and estimation of the embedding and correlation dimensions.

III. PART I: TIME-SERIES ANALYSIS

We here consider the time series connected to the axisymmetric mode (TS-Raw) and the data is
postprocessed by projecting on POD modes (TS-POD). The main goal is to characterise the time
series from a dynamical-systems point of view. In principle, a dynamical system can be qualitatively
analyzed by reconstructing the—unknown—underlying attractor from a sequence of observables
of its state, for instance, the time series. This idea is at the heart of the Takens’s theorem [42],
an embedding theorem providing the conditions under which the reconstructed dynamics preserve
the properties of the original system and ensure a diffeomorphism between the hypothesized phase
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space and the reconstructed phase space. The reconstructed dynamics is globally characterized by
two geometrical properties:

(1) the minimal embedding dimension m, i.e., the dimension of the projection phase space of the
reconstructed dynamics, and

(2) the correlation dimension d2, a measure of the fractal dimension of an attractor; see Ref. [43].
According to Takens’s theorem, the correlation dimension d2 is related to the embedding

dimension m as

m � 2d2 + 1. (1)

We stress that although we are considering a fully turbulent jet at high Reynolds number, we are not
directly probing turbulence but instead the dynamics of the wave packets. These entities carry only a
small fraction of the fluctuation energy in comparison with the entire flow, despite their important role
in the generation of sound [41]. Thus, we limit our analysis to the low-order dynamics underpinned
by these structures, in the spirit of what has been suggested in Ref. [44]. Indeed, from a more
physical point of view, it is the presence of such coherent structures that make this analysis relevant.
A similar application is described in Ref. [45], where the presence of vortex pairing and large
coherent structures in a transitional jets enabled a direct estimation of the correlation dimension.

A. Embedding and correlation dimensions: Definitions

The available time series are univariate; the embedding is thus the first step for the qualitative
analysis. We rely on the classical approach: Choosing an embedding dimension m, each coordinate
is obtained by a time delay �t . From the time series, y(t), the embedding vector is

Y(m,�t) = [y(T ),y(T + �t),y(T + 2�t), . . . ,y(T + m�t)], (2)

where T indicates the time span; note that the last channel will have a total shift of m�t with respect
to the first one.

Once an embedding vector is obtained, we must identify the minimal embedding dimension m

that allows determination of the dimension of the (hypothesized) attractor. A small m indicates
the possibility of unfolding the attractor. A robust method for estimating the minimum embedding
dimension is the false nearest algorithm [46]. Following the description given in Ref. [47], we can
define the parameter a as

a(i,m) = ‖yi(m + 1) − yn(i,m)(m + 1)‖
‖yi(m) − yn(i,m)(m)‖ , (3)

using the time series in Eq. (2) with i = [1,2, . . . ,N − m�t] and ‖ · ‖ being a measure of the
Euclidian distance; note that the subscript n(i,m) indicates an integer value such that yn(i,m) is the
nearest neighbor of yi .

Based on this definition, two points close in the m-dimensional space that are still close in the
(m + 1)-dimensional space are called true neighbors; if this is not true then they are false neighbors.
Embedding is achieved in the absence of false neighbors. The presence of false neighbors can be
estimated using the parameter a(i,m) in Eq. (3); details are provided in Sec. III C 1.

The second dimension of interest is the correlation dimension, d2, providing an estimate of the
fractal dimension of an attractor. First, a correlation sum is defined as the fraction of all possible
pairs of points (Y i ,Y j ) closer than a given distance ε as

C(ε) = 1

Np

N∑
i=1

N∑
j=i+1

�(ε − ‖Y i − Y j‖), (4)

where � is the Heaviside step function and Np = N (N − 1)/2 is the number of pairs. The correlation
sum C(ε) contains only the pairs with a distance smaller than ε. The correlation dimension d2 is
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FIG. 4. Temporal behavior for the mode mθ = 0 at x/D = 5.7. In the inset (a) the original signal (TS-Raw)
is compared to the result of the POD postprocessing (TS-POD), at a location x/D = 5.75. A second nonlinear
filter is applied to both the series as shown in the insets (b) and (c), where the original time series (black solid
line) is compared to the POD-projected one (red dashed line); the resulting error is shown as a blue dash-dotted
line. Finally, in the inset (d) the spectrum of the four time series is shown using the logarithm of the energy
spectrum density (ESD) as a function of St. A difference between TS-Raw and the TS-POD is observed for
St > 0.6, while good agreement is obtained at St numbers relevant for our analysis.

proportional to C ∝ εd2 and is estimated using the formula

d2 = lim
ε→0

lim
x→∞

∂C(ε,N )

∂lnε
; (5)

see Ref. [43,46]. In what follows, we adopt statistical tools implemented by Kantz and Schreiber
[46] and Cao [47].

B. Filtering and spectral analysis

We first perform nonlinear noise reduction. Indeed, noise is a limiting factor for the embedding
procedure as it tends to increase the dimensions of the state space and reduces the reliability of the
measurements [46]. The denoising algorithm is a moving-average filter, applied along the trajectory
identified in the embedding space, on the assumption that the dynamics be continuous. In Fig. 4, the
time series is shown at x/D = 5.7. In particular, we are interested in assessing to what extent the
applied filters modify the essential dynamics of the time series.

In Fig. 4(a), the TS-Raw data are compared with the TS-POD set in the time domain. A quantitative
assessment is reported in Fig. 4(d) using Welch’s estimate. In the figure, the energy spectral density
(ESD) is shown as a function of the St number; the energy spectral density is obtained from the power
spectral density (PSD) estimate, normalized by premultipling it twice with the rate of frequency
sampling �f . At the significant Strouhal numbers, St = f D/U , it can be seen that the POD
projection does not strongly modify the dynamics of the time series. Differences can be observed
only at St > 0.55 (where the data are dominated by acoustic rather than hydrodynamic fluctuations),
while at lower St the cutoff is due to high-pass filtering of the original data applied to remove energy
below the anechoïc cutoff frequency of the wind tunnel. The two data sets are filtered using the
nonlinear tools and results are reported in Figs. 4(b) and 4(c). By definition, the nonlinear filter
does not act on specific bandwidths, but on the whole spectrum, while preserving the foliation of
the attractor in the embedded space. Welch analysis confirms this behavior: In Fig. 4(d) we can
observe that the nonlinear filter acts on the whole range of St numbers. The standard deviation
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2.1, x/D = 3.3, x/D = 4.5, and x/D = 5.7. Only the series projected on the PODs are considered. It can be
observed that the peak shifts from St ≈ 0.50 to St ≈ 0.15 when considering downstream locations.

of the removed noise is σ = 0.075 and σ = 0.063, for TS-Raw and TS-POD, respectively. The
spectral content of the TS-POD data at x/D = [2.1, 3.3, 4.5, 5.7] is compared in Fig. 5. We observe
that the maximum fluctuation levels move progressively to lower frequencies as the observation
position moves downstream, from St ≈ 0.50 at x/D = 2.1 to St ≈ 0.15 at x/D = 5.7. A change
in the maximum amplitude can also be observed. A complementary analysis is provided by the
spectrogram in Fig. 6(a) for the TS-POD at x/D = 5.7. All the spectrogram analyses contained in
this paper are computed using the short-time Fourier transform (STFT), implemented in the MATLAB

toolbox for signal processing. The graph is in two dimensions: The horizontal axis represents the
time scale, while the St number is reported along the vertical axis. The amplitudes are shown as a
color map of the PSD: At each instant, the intensity of the fluctuation is shown as a function of St.
The Welch estimate can be regarded as an average along the time span of the results shown in the
spectrogram. In particular, in Figs. 6(b) and 6(c), two instants are shown at τ ≈ 170 and τ ≈ 240,
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FIG. 6. Spectrogram for the time-series based on the POD projection at x = 5.7. In the insets (b) and (c),
the power spectrum is shown as a function of the Strouhal number St at τ ≈ 170 and τ ≈ 240. Frequency in
Hz is also reported.
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FIG. 7. The estimates of the embedding dimension m and the correlation dimension d2 are summarized as
function of x/D for both the datasets under investigation. The minimal embedding dimension m is computed
for two different time delays, defining the confidence intervals indicated with shadowed areas: a smaller time of
embedding, �t = 0.21, defines the upper limit, while a longer time, �t = 0.29, is related to the lower bound.
The red area is obtained for the TS-Raw series, while the gray one is associated with the results of the dataset
TS-POD. The nominal estimate for m (dotted curves) is obtained by averaging the results of different runs.
The correlation dimension d2 is indicated with a squared-dotted black curve and a squared-dotted red curve for
TS-POD and TS-Raw, respectively. A green line indicates the Eckmann-Ruelle limit: Values of d2 above this
bound are not physical.

respectively. The instantaneous amplitudes of certain frequencies in the bandwidth can be observed;
this behavior is a time-frequency view of the organized behavior manifest in space-time in Fig. 3.
These behaviors are the signature of the amplifier nature of the flow: Wave packets are hydrodynamic
instability waves that exist on the turbulent mean flow. The waves acquire initial amplitudes and phase
at upstream stations—either from disturbances issuing from the turbulent motions within the nozzle
or from distributed turbulence that acts as a volume force—and evolve in the downstream direction
according to the stability properties of the linear operator, possibly subject also to distributed forcing,
either from endogenous or exogenous forcing, as discussed in the introduction.

C. Embedding dimension and correlation dimension

The correlation dimension d2 and embedding dimension m are computed for both TS-Raw and
TS-POD data sets, filtered nonlinearly. The results are summarized in Fig. 7, where the two quantities
are shown as a function of the streamwise direction x/D.

1. Minimal embedding dimension

The minimal embedding dimension m is estimated using the algorithm described by Cao in
Ref. [47]. Starting from the parameter a(i,m) in Eq. (3), the Cao function is defined as

e(m) = 1

N − m�t

N−m�t∑
i=1

a(i,m). (6)

This function corresponds to an average of a(i,m) performed over the channels of the embedding
vector Y ; in this way, spurious evaluation of the embedding dimensions are avoided. The algorithm
does not strongly depend on the length of the time series and it is capable of estimating the embedding
dimension also for time series describing high-dimensional attractors. The method starts with low
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FIG. 8. Example of minimum embedding dimension m estimation. The POD-projected data are used,
in x/D = 5.7. The saturation of the parameter e1 (blue curve) indicates the minimal embedding m; the
complementary parameter e2 (red curve) confirms the determinism of the dataset, as e2 �= 1 for m < 13.

values of m and proceeds by increasing m until the number of false neighbors decreases. The
minimum embedding dimension m is estimated by analyzing the behavior of the parameter e1(m),

e1(m) = e(m + 1)

e(m)
, (7)

whose saturation indicates the minimal embedding dimension and is obtained for e1 → 1. In our
case, we consider a threshold value δ = 0.99. Cao’s algorithm allows a clear determination of
whether the signal is deterministic or stochastic, using

e2(m) = e∗(m + 1)

e∗(m)
, (8)

where

e∗(m) = 1

N − m�t

N−m�t∑
i=1

|yi+m�t − yn(i,d)+m�t |. (9)

As already mentioned, the operator n(i,·) indicates an integer value such that yn(i,d)+m�t is the nearest
neighbor of yi+m�t . Random series will be characterized by e2(m) = 1, for any m. For deterministic
data, e2 cannot be constant.

Our computations provide the two values e1 and e2 estimated for each of the positions x/D. An
example is shown in Fig. 8, where the TS-POD series is analysed in x/D = 5.7. We observe that
m = 13, using e1; more importantly, the values of e2 are not constantly unitary: This is a first clue
that we are analyzing deterministic time series.

A critical aspect is the choice of the embedding delay, �t , and the number of samples. In principle,
the embedding dimension, m, is independent of �t ; in practice, the minimum embedding dimension
estimate may depend on this choice and needs to be verified case by case. In Fig. 7, we identify a
confidence interval for the m estimates; the upper bound corresponds to a time delay �t = 0.21,
while the lower bound is obtained for �t = 0.29. The choice of the embedding delay is done by
analyzing the autocorrelations. We verified that the estimated m is negligibly affected by the length
of the series; for our computation, we considered N = 1.0 × 104 points.

The confidence intervals are shown using shadowed areas. Each point corresponds to the value
where the parameter e1 saturates, as discussed in Fig. 8. Dotted curves identify the minimal
embedding dimension computed by averaging the results obtained with N = [1.0, 1.5, 2.0] × 104

points and �t = 0.21. It can be observed that the TS-Raw series is characterized by a rather
constant value of m, oscillating between a minimum value m = 12 at x/D = 5 and maximum
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values m = 13–14 further upstream, at x/D = 2. This estimate follows closely the upper bound of
our confidence interval. The lowest value is found at x/D = 5.7, for the runs at �t = 0.29.

The TS-POD series provide higher values of both d2 and m. This counterintuitive behavior is
discussed in Sec. III D. For values x/D > 5.7, the minimal embedding dimension is practically
constant until x/D = 8; however, note that in this region the data have been extrapolated.

2. Correlation dimension

The correlation dimension, d2, is estimated using the routines included in Refs. [46,48], based
on the Grassberger-Procaccia algorithm; see Eqs. (4) and (5). A limit characterizes the computation
of the correlation dimension; in particular, the value of the correlation dimension d2 over a decade
cannot exceed d2 = 2log10N , where N is the number of points in the time series (Eckmann-Ruelle
limit [49]). The amount of data available allows us to get a value of dmax ≈ 11. This means that when
we approach this upper bound, it is not legitimate to conclude that the d2 value corresponds to the
dimension of the inner dynamics. Moreover, a consistent estimation of the correlation sum C should
cover a random sample of independent pairs: In the time series, successive elements are generally
not independent and can be highly correlated. To limit this effect, which could lead to inconsistent
results, a time shift indicated with Tw—the Theiler window—is introduced to reduce the correlation
between points during the pair counting. The Np pairs are chosen as

Np = (N − m)(N − m − Tw − 1)/2 (10)

in Eq. (4). In this way, we discard all pairs of points whose time indices are less than Tw, avoiding
the oversampling.

Convergence tests were performed over the input parameters of the algorithm: the range ε, the
embedding quantities m, the time delay, and the Theiler window. In Fig. 7, the results are shown with
squared-dotted curves. For each of the positions considered, we analyzed two subsequent blocks of
data containing a total of N = 105 points; thus, only values of correlation dimension, d2 < 10, are
considered relevant (a green shadowed area indicates the limit). The final value of d2 is obtained by
averaging the results of the blocks. We observe that the time delay, �t , imposed for the embedding
procedure does not influence the final result. A Theiler window of Tw ≈ 0.4 was chosen; we do not
observe significant changes on increasing this parameter.

For the series TS-Raw, we observe a behavior similar to m, with 7 � d2 � 9 in the span 1.25 �
x/D � 5.75. For the TS-POD, consistent with the previous estimate of m, we found that the values
of d2 are slightly higher. In the upstream region, x/D ≈ 2, the value close to the upper bound
d2 ≈ 10 does not allow us to conclude that this is the effective value of the correlation dimension.
However, the dimension d2 with respect to the embedding dimension m is bounded by the limits
imposed by Takens’s theorem.

A decrease is observed in the vicinity of the nozzle x/D < 1 and far downstream in the
extrapolated region, x/D > 6, where important dynamics have been suppressed by the projection
and extrapolation (see Ref. [39]).

D. Estimated dimensions: A brief discussion

The preliminary analysis of the minimal embedding dimension m and the correlation dimension
d2 indicates deterministic behavior, despite the limitations that both algorithms pose. Interestingly,
the values of m and d2 are higher when considering the POD-projected data. This result has been
found also by computing the embedding dimension with a different version of the false nearest
strategy (results are not reported). We believe that the behavior may be due to the physics educed
by the measurement procedure, rather than to a numerical artefact. As mentioned in Sec. II, the
simultaneous pressure measurements of TS-Raw are projected on a POD basis obtained using
two-point flow statistics obtained using a larger number of more finely spatially resolved points. Our
working hypothesis is that projection on the more finely resolved POD basis leads to the eduction
of a richer dynamics, due to the greater finesse of the educed two-point wave-packet structure.
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FIG. 9. Phase-space projection for two positions taken from the TS-POD series. The embedding space
is obtained by time-delayed coordinates, using �t ≈ 0.4. (a) Phase space, x/D = 2.5 and (b) Phase space,
x/D = 4.1.

On the other hand, for x/D � 5.75, we observe a rather low correlation dimension and a
constant embedding dimension until x/D ≈ 8. We attribute this effect, as discussed earlier, to
the extrapolation of the data in this region of the flow resulting in a fictitious low dimensionality of
the system. For this reason, in the following sections we focus only on the points x/D < 5.75.

The embedding space that should be used according to the Takens criterion is rather large. In
Figs. 9 and 10(a), we show three phase portraits reconstructed in a three-dimensional embedding
space obtained by imposing a delay of �t ≈ 0.4, between each of the three coordinates. In all
cases, at a first glance, the reconstructed phase space suggests a toroidal nature for the dynamical
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FIG. 10. Phase-space projection for the TS-POD series at x/D = 5.7 (left) and first return map obtained
by stacking the local peaks of the time series. The embedding space is obtained by time-delayed coordinates,
using �t ≈ 0.4. (a) Phase space, x/D = 5.7 and (b)First return map, x/D = 5.7.
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FIG. 11. Sketch of a input-output system adapted to the jet configuration analyzed in the paper. The input u
is indicated by a blue arrow, while a red symbol indicates the output y. These elements are contained within the
potential core length. As explained in Sec. II, we consider the dynamics related to the coherent axysimmetric
waves, graphically indicated with a red solid line. The connection between the input and the output indicates a
transfer function between them.

system; unfortunately, the projection is poor due to the high dimensionality and cannot be further
investigated. Moreover, the first return map in Fig. 10(b) suggests contamination of the dynamics
due to exogenous processes. Similar results were obtained for all the positions along x/D regardless
of which embedding strategy was used (Singular value decomposition embedding and derivative
embedding). In other words, although the embedding and correlation dimensions are consistent with
determinism of the time series and suggest that the dynamics is relatively low dimensional, their
values are still too large for useful characterization of the attractor geometry.

Finally, note that the strong spatiotemporal organization characterizing mθ = 0 is also observed
in single-point measurements, because of the aforesaid dominance of the axisymmetric mode in the
near field. This observation leads us to believe that analysis of the mθ = 0 dynamics is appropriate
for eduction of the essential dynamics.

IV. PART II: SYSTEM IDENTIFICATION FOR CONTROL AND MODELING

The preliminary study of the time series based on statistical tools and Fourier analysis suggests
that the underlying temporal dynamics of the axisymmetric coherent structures is deterministic.
However, the dynamics educed locally is rather rich and cannot be analyzed by simply using the
standard tools from dynamical system theory. For this reason, we resort to system identification,
which aims at building mathematical representations of dynamical systems from set of observables,
i.e., measured data. This approach can also be useful for the provision of control-oriented models.

The problem is shown schematically in Fig. 11 where we introduce inputs and outputs, graphically
indicated as blue and red markers, respectively. In the following, the variable (or output of the system)
will be denoted by the scalar-valued vector y(t) and will be represented by the measurements taken
at different streamwise locations. The inputs will be indicated by the vector u(t).

In the last ten years or so, system identification has been extensively used in fluid mechanics,
mainly for control purposes (see Refs. [50,51]). Such applications consist in identifying reduced-
order models that describe the input-output behavior, between u(t) and y(t). On the other hand, in an
effort to understand the underlying dynamics of the system, one can also identify surrogate models
that reproduce the dynamics of the system (or part of it) by statistical inference based solely on the
outputs y(t) [46,52]. As will be shown in the following, the two tasks are rather different, although
they share the same tools.

The basic model we consider consists of nonlinear Volterra series of polynomials, written as

y(tn) =
nα∑
i=1

αn−iy(tn−i) +
nβ∑
i=1

βn−iu(tn−i) + NL[u(t),y(t)] + e(tn). (11)
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This relation is called the equation error model. On the right-hand side, the first term relating the past
outputs with the present y(t) is referred to as the autoregressive term; the second term reproduces
the dynamics between the inputs u(t) and the outputs y(t) (exogenous part). The unknowns of the
model are the set of coefficients α, β, the coefficients of the non-linear part (here represented by
high-order polynomials), and the error e(t).

In this section, we will refer to noise as indicating the external forcings driving the system
dynamics. As already said, turbulent jets are convectively unstable, so strongly sensitive to external
forcings; measurement noise will be generally indicated as error or residual in the context of the
identification problem and modeled or extracted with the variable e(t). A classical way to model the
error e(t) is to consider it as a moving average of unknown white noise. The resulting algorithm for
the identification of the unknowns of the equation error model 11 is the nonlinear (N) autoregressive
(AR) exogenous (X) with moving average (MA) algorithm, usually referred as N-ARMAX. An
overview of the algorithm is provided in Appendix B, while for a deeper discussion we refer to
Refs. [53–55].

A. Identification of the models and choice of the inputs

We start from the hypothesis that our observables properly represent a relevant part of the jet
dynamics; the hypothesis is corroborated by numerous companion works on the stability analysis of
the wave packets associated with these temporal series (see Refs. [21,41,56,57]). The identification
procedure involves numerous parameters that need to be evaluated; first, we choose the polynomial
structure based on Volterra series and identify the unknowns (namely the coefficients) using the
NARMAX algorithm (Appendix B). The second step is the model validation: Among all the possible
models, only a few allow a proper characterization of the dynamics. The validation is necessary in
order to discard the models unable to reproduce a dynamics close to the real one; we list the main
parameters of the validation procedure in Appendix C. Finally, the model is available for prediction
and/or dynamical-systems analysis.

A distinction can be made here between nonautonomous and autonomous models:
(1) Nonautonomous models are driven by the inputs u(t); when the inputs are correlated with

the outputs y(t), most of the dynamics will be contained in the inputs themselves. In this case, the
model will result in an optimal transfer function between these elements (see Fig. 11); we will refer
to this approach also as input-output system identification. This approach is control oriented.

(2) Autonomous models are obtained when the exogenous (X) part represented by the input u(t)
is neglected. The algorithm used for the identification is the ARMA. The approach is also referred to
as output-only system identification and it relies on partial information: In this case, the system is not
arbitrarily driven and/or the input cannot be measured. The dynamics of the system is represented
by the autoregressive (AR) part of the model.

In the following, we identify transfer functions (i.e., input-output models) that minimize the
prediction error in terms of best mean-squared errors over a time horizon, given a measurement as
input, u(t) (Sec. IV B). Moreover, we attempt to characterize the dynamical mechanisms at work
using nonlinear, output-only ARMA models in Sec. IV C. We will consider the TS-POD at x/D =
5.7, nonlinearly filtered (see Sec. III B). The TS-POD series are less affected by measurement noise,
in the range where the simultaneous data from TS-Raw are available; moreover, the nonlinear filter
preserves the dynamics across all the frequencies. The chosen locations for the outputs correspond
roughly to the end of the potential core. All the models discussed in the next sections are computed
using the tools developed by Aguirre and coworkers (see Ref. [52]). The linear limit was cross
validated with in-house scripts [55].

B. Nonautonomous models: Transfer functions for control design

When the input term u(t) is highly correlated with the output y(t), the model obtained by
applying system identification will represent a transfer function (cf. Ref. [36]). Because of the
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FIG. 12. Reduced-order model vs. original time-series. Solid, black lines indicate the original signal at
x/D = 5.7; the red dots indicate the prediction based on the identified linear filter. Four inputs are considered,
at x/D = [2.5, 3.3, 4.1, 4.9]. (a) Input u(τ ) at x/D = 2.5, (b) Input u(τ ) at x/D = 3.3, (c) Input u(τ ) at x/D =
4.1, and (d) Input u(τ ) at x/D = 4.9.

convective nature of the flow, we consider a setting where the inputs are upstream of the outputs, as
in Fig. 11. We use the output at x/D = 5.7 and assume as input terms u(t), the outputs being placed
at four different positions, x/D = [2.5, 3.3, 4.1, 4.9]. The models include only one input at each
time (single-input–single-output, SISO). The time series resulting from the simulations are compared
with the original time series in Figs. 12(a)–12(d). The window of assimilation is t ∈ [0,164]. The
validation is performed by integrating the model in the window t ∈ [0,620].

The application of the full nonlinear ARMAX algorithm results in fully linear models (similar to
those obtained by Ref. [36]), based on a limited number of coefficients α and β, Nα = Nβ = 20. As
will be further explained later, the linearity of the filters is not an a priori choice, but it is a result of
the chosen optimization procedure.

We introduce as parameters for the performance assessment the normalized root-mean square
defined as

ey(t) = 1

A

⎡
⎣

√√√√ 1

N

N∑
i=1

(yi − ỹi)2

⎤
⎦, (12)

where ỹ(t) indicates the signal obtained from the linear filter driven by the input u(t). The parameter is
scaled using an estimate of the signal amplitude A = [max( y) − min( y)]. Note that ỹ(t) is computed
by running a 1-step-ahead prediction: Indeed, we rely on knowledge of the input in the previous
[1,2, . . . ,N − 1] steps. In Fig. 13(a), the results are summarized for a number of outputs along the
streamwise direction. In particular, six different positions along x/D are introduced as inputs, in
the range 2.9 � x/D � 4.9, while as outputs are considered the locations downstream of the inputs
between x/D = 3.3 and x/D = 5.7. For transfer functions with inputs at x/D = 2.9–3.3 and output
at x/D = 5.7, a standard deviation, ey(t) ≈ 0.05–0.08 is observed; for all other cases, ey(t) < 0.04.
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FIG. 13. Left: The normalized root mean square ey(t) between the models and the time series is analyzed.
The x axis indicates the location of the output, while in the legend the six lines correspond to the inputs. In
total, 27 models are analyzed, most of which are characterized by a standard deviation σ < 0.25. Right: The
model is computed between the input at x/D = 4.5 and the output at x/D = 5.7; the same model, is tested by
using different inputs between x/D = 3.3 and x/D = 5.7; the test shows the lack of robustness with respect
to the time delays of the system. (a) Models’ performance and (b) Robustness.

The linear models are found to perform well. As discussed earlier, in the presentation of the
spectral analysis (cf. Fig. 5), the convective nature of the flow implies a progressive drift of the
main frequency of amplification and a slight variation of the maximum amplitude in the spectrum
as we move further downstream. In this sense, with a limited number of degrees of freedom it is
possible to describe the modulation of amplitudes and frequencies, and the time delays associated
with convection. The result confirms and extends those obtained by Ref. [36], where linear ARMAX
modeling, parabolized stability equation (PSE), and empirical transfer function were compared for
the estimation of downstream-propagating wave packets. With respect to Ref. [36], in our analysis
the linearity of the model is a result of the optimization process and not a working hypothesis. The
candidate models introduced in the identification procedure were nonlinear and characterized by all
the terms of Eq. (11) up to order n = 3. The identification procedure makes use of the orthogonal
least-squares (OLS) algorithm; see Ref. [58]. This iterative scheme ranks the terms of the initial
candidate model according to their relative importance and discards those that contribute negligibly
to approximation of the initial time series. We found that the nonlinear dynamic terms are relatively
unimportant for an optimal representation of the convection-dominated transfer functions; thus,
linear modeling is found to be sufficient for characterization of the input-output behavior of the
system.

1. Discussion: Robustness and control design

The good performance of the linear models has interesting implications for the control design.
In particular, with respect to the convective nature of the flow, feed-forward control strategies can
be envisaged, with self-tuning and adaptive controllers being used to deal with model uncertainties.
Indeed, special attention must be paid to the robustness issue: The transfer functions only retain
information regarding the time delays of the system, the modulation of the amplitude and the
frequency bandwidth; moreover, the set of coefficients is obtained as a least-squares solution from
the assimilation datasets at a given amplitude. As an example, in Fig. 13(b), we illustrate the lack of
robustness with respect to time delays, due to the convective time of propagation of the perturbations.
The model assimilated using the input at x/D = 4.5 is applied with different inputs, taken in the
range 3.3 � x/D � 5.3. The validity of the models quickly deteriorates.
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A lack of robustness can be compensated for using different strategies. Control design can be
conceived that can deal with robustness issues arising from uncertainties of the system, either using
techniques from the robust-control framework [51] or from adaptive control theory [59]. The latter
strategy is particularly well suited for convective flows. Adaptive controllers are characterized by
two time scales: a fast time scale, for the real-time estimation of the input u(t), and a slow time
scale, based on feedback measurements of the flow necessary for correcting off-design conditions.
Examples of these strategies can be found for weakly nonlinear transitional flows [60] or nonlinear,
turbulent cases [61].

Finally, note that the linearity of these models allow us to isolate azimuthal Fourier modes,
although input-output estimation based on linear transfer function can also successfully predict
the downstream behavior when the signals are characterized by fully three-dimensional test cases
(see Refs. [59,60] and citations therein). In either cases, our choice of restricting the analysis to the
axisymmetric mode does not lead to loss of generality where control-oriented modeling is concerned.

C. Autonomous models: Qualitative dynamics of the observables

In this section, we consider nonlinear autoregressive modeling with moving average (N-ARMA).
With respect to the equation error model in Eq. (11), we neglect the exogenous terms (X) and
consider the following basic model:

y(tn) =
nα∑
i=1

αn−iy(tn−i) + NL[y(t)] + e(tn). (13)

The model is autonomous and based solely on the output y(t). The algorithm described in Appendix B
identifies the number of necessary terms and coefficients α = (α1,α2, . . . ,αnα

); the unmodeled part
is accounted for in the error term e(t).

Note that output-only models have to rely on partial information. Known inputs, decorrelated from
the outputs, maximize the information educed in the identification process; indeed, a true external
stochastic input would improve the identifiability of the system and the quality of the regression
method and allow exploring in a systematic way the state space. An optimal choice is represented
by inputs modeled as stochastic white noise or random binary sequences. This third choice will
be subject of future work, based on an actuated experiment where the dynamics is forced: Here,
we pursue an alternative path. In particular, we aim at computing models that optimally represent
a portion of the dynamics of the system within narrow windows of assimilation, with the idea of
probing short flow cycles that are difficult to identify on account of the jitter discussed earlier, and
in the spirit of the observations of [4]: “three or four puffs form and induct themselves downstream,
an interval of confused flow ensues, several more puffs form, and so on” (p. 556). Following this
reasoning, the limitations imposed by the N-ARMA applied to our dataset are circumvented by only
focusing on the dynamics that can be properly analyzed by means of these tools, i.e., the short-lived
events.

1. Selection of the models

The selection of the most appropriate models is performed in two steps: First, we compute a large
number of them by varying the parameters defining the N-ARMA approximation. A brief discussion
is included in Appendix C. During this step, the algorithm minimizes the error between the original
series and the model within the assimilation window by applying a 1-step prediction. As a result of
the parametric analysis, we identified a total of 36 000 models.

Once the models are available, we apply a temporal simulation not driven by known inputs,
based on the N -step prediction; thus, when the simulation is performed on a longer time horizon,
the nonlinear models quickly deviate from the original time series after a short transient roughly
corresponding to the initial conditions. For this reason, it is also important to extract the spectral
features. Because of the short time window of assimilation, we apply a power spectral density
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estimation based on the Yule-Walker method [62], implemented in the MATLAB signal processing
toolbox. This method estimates the spectral content by fitting an autoregressive linear prediction
filter to the signal. By doing this and then comparing the results, we can discard models that are
badly conditioned or unstable. Around 21% of the models show periodicity, quasiperiodicity, toroidal
features, or chaotic behavior. Thus, despite the large number of initial candidates, after the validation,
we finally retain ≈100 models, belonging mainly to three families. With families, we indicate cluster
of models characterized by a comparable polynomial structure and coefficients behaving in similar
manner from the qualitative point of view. We picked up three representative examples. For each of
these, we discuss a representative model, labeled as follows

(1) Model T: In Fig. 14 the model is characterized by nα = 26. It is a toroidal (T) example that
settles on the frequencies characterising the windows of learning.

(2) Model LC: In Fig. 15 the model is characterized by nα = 25. After a rather long transient (up
to τ ≈ 150), it ends up on a stable limit cycle (LC); see Fig. 16.

(3) Model S: In Fig. 18 the model is characterized by nα = 6. It is a chaotic model, as can be
seen from the first-return map. We believe that it reproduces some short (S) time dynamics related
to the jittering.

The first two cases are characterized by a long window of correlation nα . The third model
is obtained considering the shortest possible correlation length. In the following paragraphs, we
comment on their relevance from the phenomenological point of view.

2. Models T and LC

In Fig. 14, the properties of the model T are analyzed. As already mentioned, none of these models
are predictive: After a short time, the dynamics quickly deviate from the original one [Fig. 14(a)].
However, the system is characterized by high sensitivity to noise, while the model behavior is dictated
by the endogenous dynamics educed during the assimilation process. The quality of the model can
be assessed by analyzing the spectral properties in the window of assimilation: In Fig. 14(b), the
power spectral density is shown based on autoregressive modeling; the model reproduces the peak
frequency St = 0.25; a second peak appears at St ≈ 0.35. However, we can also observe that model
T is not properly reproducing the low frequencies St → 0. The long-time behavior is characterized
by a toroidal behavior in phase space, shown with a red solid line in Fig. 14(d). The Fourier analysis
in Fig. 14(c) and the first-return map built with the relative maxima in Fig. 14(e) confirm the phase
space representation. In particular, in Fig. 14(e), the black dots correspond to the beginning of the
trajectory, while the superimposed blue dots show the final part.

Model T is characterized by a limited match in the autoregressive PSD; for this reason, a second
model is presented in Fig. 15, labeled as model LC. In this case, we observe a good agreement at low
Strouhal numbers, St < 0.5 [see Fig. 15(b)]. We note a rather different behavior when comparing the
transient with the asymptotic state. During the transient, the spectrum is not characterized by distinct
frequencies [see Fig. 15(c)], although we observe the dominance of frequencies around St = 0.35
and St = 0.15 (due to the assimilation windows). The overall dynamics is more complex as shown
in the phase-space portrait in Fig. 15(d); the corresponding first-return map in Fig. 15(e) can be
understood by considering the long-time behavior of the system reported in Fig. 16. Indeed, after
a transient of τ ≈ 150, the model settles on a limit cycle [Figs. 16(a) and 16(b)]; the dominating
frequencies in Fig. 16(c) are the same as those observed in the Welch PSD analyzed in Fig. 15(c).
Having the long-time behavior in mind, it is easier to understand the first-return map in Fig. 15(e).
In particular, the blue dots are representative of the limit-cycle trajectory: We can observe that the
model during the transient progressively settles on the limit cycle that “attracts” the trajectory.

The transient has a qualitative behavior similar to the original model also if observed from the
spectrogram. In Fig. 17, it is possible to compare the original time series [Fig. 17(a)] with the model
[Fig. 17(b)], in the same time span. It is evident that on average the length of the organized events is
similar, while a significant difference is seen in the spectral energy distribution. As already discussed,
this feature is an attribute of the exogenous dynamics at work on the dynamical system.
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FIG. 14. Comparison between N-ARMA model T (in red for all the insets) and original time series TS-POD
at x/D = 5.7 (in black). The surrogate data are obtained by integrating the model in time. The comparison
in time domain (a) is only qualitative. Spectral analysis [(b), (c)] and phase-space reconstruction provide a
more quantitative assessment of the performance of the model. The embedding space for the phase space
reconstruction (d) is obtained with a delay �t ≈ 0.3. The first-return map is obtained using the maximum
values in the model (e); the black dots correspond to the beginning of the trajectory, while the superimposed
blue dots show the last points of the simulation.
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FIG. 15. The comparison between the data obtained from the N-ARMA model LC (in red for all the insets)
and the original time-series TS-POD at x/D = 5.7 (in black) is shown in panel (a). Spectral analysis and phase
space reconstruction are shown in panels (b) and (c). The embedding space for the phase space reconstruction
(d) is obtained with a delay �t ≈ 0.3. The first-return map is obtained using the maximum values in the model
(e); the black dots correspond to the beginning of the trajectory, while the superimposed blue dots show the last
points of the simulation.

These two models suggest that if only the endogenous dynamics were considered, the dynamics
due to nonlinear interactions among wave packets would be dominated by the organised behavior
that characterizes the short-lived events observed in the spectrogram. In particular, the dynamics
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FIG. 16. Asymptotic behavior for N-ARMA model LC shown in Figs. 15(a)–15(e): After the transient, the
system settles on a stable limit cycle. In panel (a) the phase space is shown (embedding delay �t ≈ 0.3); in
panel (b) the first-return map is shown [blue dots of Fig. 15(e)].

would evolve after some transient on the surface of a 2-torus (T2) or a limit cycle. In models T-LC,
however, one limit cycle (at least) is stable and attracting. Therefore, the hypothetic underlying
chaotic toroidal set is only transient, in the sense that the resulting dynamics is due to nonattracting
sets in the phase space.

3. Model S

In this section, we analyze a third model, depicted in Fig. 18 and based on a shorter window
of correlation. Also in this case, the peak in frequency occurs at St ≈ 0.25, as shown in the
autoregressive PSD analysis in Fig. 18(b); this same dominance is observed in the Welch analysis
in Fig. 18(c). The resulting behavior in phase space and in the first-return map is rather distinctive
and different than the previous models. In particular, this model appears to slowly evolve in time as
shown by the first return map; we can conjecture that the model captures some inherent mechanisms
associated with wave-packet interactions driven by stochastic turbulence.

FIG. 17. Spectrogram: Comparison between the original time series and the model LC. (a) TS-POD at
x/D = 5.7 and (b) Model 2 at x/D = 5.7
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FIG. 18. The comparison between the data obtained from the N-ARMA model S (in red for all the insets)
and the original time-series TS-POD at x/D = 5.7 (in black) is shown in panel (a). Spectral analysis and phase
space reconstruction are shown in panels (b) and (c). The embedding space for the phase space reconstruction
(d) is obtained with a delay �t ≈ 0.3. The first-return map is obtained using the maximum values in the model
(e); the black dots correspond to the beginning of the trajectory, while the superimposed blue dots are the last
points of the simulation.

D. Discussion: Limits, robustness, and interpretation of the autonomous models

The identified models provide a qualitative, partial, representation of the dynamics. The results
need to be discussed and analyzed from both numerical and theoretical points of view. First of all, we
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need to stress that for convective systems, analysis on long windows of assimilation is only possible in
the presence of an exogenous, known forcing, decorrelated from the outputs, that enhances the
identifiability of the system. In Sec. IV B we considered a rather different case, where the inputs were
highly correlated with the output; as shown, this allows for the computation of transfer functions,
poor from the point of view of educing the internal dynamics but suitable for control design. In
principle, one should either consider a decorrelated input or neglect this entirely and cautiously
choose short learning windows.

Considering the available dataset, we pursued the second choice, identifying autonomous, output-
only polynomial models. In particular, we explored the dynamics of the organized behavior observed
in the spectrogram of Fig. 6, trying to separate the endogenous dynamics observable in short
windows of observation from the effects of noise sensitivity. We deemed it adequate for analysis of
the endogenous dynamics to consider a time length roughly corresponding to the organized events
observed in the spectrogram (see Appendix C).

Starting from these choices, we obtain a qualitative picture of the dynamics, which we summarize
here. We conjecture that the jittering behavior discussed in the introduction is a mixture of stochastic
and deterministic components. Model T and model LC indicate that frequencies can lock together,
leading to nonlinear wave-wave interactions. Eventually, in the absence of exogenous stochastic
forcing, these could converge on to limit cycles or trajectories embedded on a toroidal surface in
phase space. This is also corroborated by the robustness of the models with respect to the initial
conditions; i.e., they show the same asymptotic behavior in the presence of uncertainties in the initial
conditions. Also, we observed that the present models are rather robust with respect to the position
x/D; the optimization procedure leads to models with different coefficients α, but similar dynamics
can be observed from the phenomenological point of view for positions close to the one considered
here. Following this rational, one might imagine the phase space as a dense ensemble of trajectories
evolving on limit cycles and toroidal surfaces, associated with wave-wave interactions.

Due to the sensitivity of the system to endogenous forcing, however, the system will continuously
and erratically deviate from these attracting solutions without setting on any one of them as observed
in the spatiotemporal plots and the spectrogram in Sec. III. This picture is consistent with the high
sensitivity to exogenous forcing, typical of the convective flows and can be linked to recent ideas
regarding wave-packet theory: the organization observed is understood as being due to the resolvent
operator forced by background turbulence. In this sense, the resolvent operator is an organizer
of the flow, while the turbulence that forces wave packets via this operator is a disorganizer. In
other words, the jitter signature is deterministic, but it is randomized due to continuous forcing
by stochastic background turbulence. The dynamical systems reproduced by model T and model
LC evolve according to initial conditions and a dynamic law that cannot evacuate the information
convectively, as the jet does. Finally, note that the exogenous term may also include contributions
from higher order azimuthal modes mθ > 0 and their nonlinear interactions, due to our choice of
restricting the analysis to the axisymmetric perturbation.

V. CONCLUSIONS AND FINAL REMARKS

Coherent large-scale structures in turbulent jets—wave packets—have been the subject of
numerous investigations because of the role they play in sound radiation. It has been established
that certain aspects of the wave-packet dynamics can be modeled by means of a linear ansatz
[41]. In this work, we consider an unforced, isothermal, subsonic jet issuing from a round nozzle
with a fully turbulent boundary layers at Re = 5.7 × 105 and Ma = 0.6. The temporal behavior of
the axisymmetric wave packets is analyzed; starting from the studies in Ref. [39], we investigate
the experimental, spatiotemporal measurements from a dynamical-systems point of view. The key
point is the remarkable spatiotemporal organisation of the measurements despite the high Reynolds
number. This observation raises questions regarding the underlying dynamics of the wave packets,
the nature of the nonlinearities involved, and the possibility of designing control strategies starting
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from this knowledge. With this in mind, a variety of strategies ranging from statistical tools to system
identification have been implemented to analyze the data.

Estimation of the correlation and embedding dimensions of the dynamical system confirmed that
the organized temporal behavior is low dimensional and deterministic. The minimal embedding
ranges from m = 10 to m = 15, while the correlation dimension is rather low at locations
corresponding to the end of the potential core, d2 ≈ 7. These dimensions are nonetheless too large
for useful characterization of the attractor geometry.

Given the convective character of the flow, system identification is used to compute nonau-
tonomous, input-output models, where the inputs are represented by local measurements taken
upstream of the outputs. These models are filters that account for (i) the time delays and (ii)
modulation of the amplitudes and frequencies that exist in the inputs. Interestingly, we find that
for the convective, input-output modeling nonlinear terms are not necessary: If the inputs already
contain a large part of the dynamics, a linear filter is enough to optimally reproduce the temporal
behavior at downstream locations. This is an important result as it makes these models particularly
well suited for control design based on linear estimators. The lack of robustness is the main limit for
these linear filters; however, in our opinion, this might be more of a problem of controllability of the
flow, rather than a lack of observability and predictability. By applying strategies such as adaptive
control or loop-shaping robust control one might tackle these difficulties, possibly including the
effects of the actuation on the real flow during the modeling step.

We have also attempted to characterize the nonlinear dynamics of the time series, considering
single-point measurements at different streamwise locations; we replace the original dynamics with
surrogate, autonomous, nonlinear models. From the modeling point of view, these surrogate models
correspond to an ideal case where only endogenous nonlinear interactions are considered. In that
sense, these models can only reproduce a limited part of the dynamics. By comparing the results from
three different classes of model, we suggest that the jittering wave-packet dynamics be described
in terms of a combination of exogenous and endogenous mechanisms. In this limit, the dynamics
of the system would be dominated by wave-wave interactions leading to stable limit cycles and/or
solutions lying on toroidal attractors. Evidence for this behavior is provided by the spectral analysis
of the transient dynamics of these solutions that qualitatively reproduces the local (in time) dynamics
of the original system.

Based on this modeling one can argue that, in the real flow, while the endogenous dynamics are
present in the system, wave-wave interactions can never fully take over and the asymptotic behavior
of the ideal models can never happen. This interpretation is consistent with the short-lived periods
of organized behavior observed in the time-frequency analysis. Short-lived periods of organization
cannot be sustained because of the noise-amplifier nature of the jet: Because of the high sensitivity
of the system, the trajectory in phase space will continuously escape from these attracting solutions.
The organised puffs of Ref. [4] are continuously kicked off their attractors by exogenous forcing by
turbulence.

Future work should be devoted to further improving the nonlinear models for the dynamical
analysis. While accepting the impossibility of capturing all the features of the system in low-
dimensional models, a possible path to improve our understanding of the jittering would be
the identification of surrogate models where a stochastic excitation is also included as external
forcing. The resulting model would be a nonautonomous one, where the inputs and the outputs are
scarcely correlated; in principle, this strategy would help in separating the endogenous mechanisms
from the exogenous ones. Moreover, higher order azimuthal modes can be considered, although
the interactions among the dominant azimuthal modes within the nonlinear framework would
substantially increase the complexity of the problem. Considering the N-ARMAX error equation
in Eq. (11), candidate models exploiting the azimuthal interactions would require a polynomial,
nonlinear approximation for each of the azimuthal modes and cross terms accounting for the
nonlinear interactions. Such a model would result in a rather large optimization problem prone
to ill conditioning, due to the presence of null or nearly null entries in the regression matrices. We
believe that machine learning techniques may be robust alternatives to classical nonlinear system
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identification for properly accounting for the azimuthal interactions among dominant modes and the
stochastic forcing. These techniques are quickly spreading in the community as a powerful tool for
system identification (see Ref. [63]).
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APPENDIX A: PRESSURE SIGNAL: PROJECTION ONTO POD MODES

We briefly summarize the postprocessing of the pressure signals. First, a Fourier decomposition
is applied such that the series are decomposed into azimuthal modes and frequency components as

p̃mθ
(x,t) = p̃(x,mθ ,t) =

∫
p′(x,φ,t)eimθ θdθ, (A1)

Pmθ ,ω(x) = P (x,mθ ,ω) =
∫

p̃mθ
(x,t)e−iωtdt, (A2)

where ω is the angular frequency. We limit our analysis to the axisymmetric mode, mθ = 0. The
two-point cross spectral matrix (CSM) is formed as

Rmθ ,ω(x,x2) = 〈Pmθ ,ω(x)P ∗
mθ ,ω

(x2)〉, (A3)

where ∗ indicates the complex conjugate. The Fredholm integral equation on the cone surface (Fig. 2)
is given by the relation

2π

cos α

∫
Rmθ ,ω(x,x2,r,r2)ξmθ ,ω(x,r2)r2dx2 = λmθ ,ωξmθ ,ω(x,r), (A4)

with r = [(x − X0) tan α], where X0 corresponds to the virtual origin of the antenna array and α is
the cone half-angle. The eigenvalues and the eigenvectors are given by λ(i)

mθ ,ω
(x) and ξ (i)

mθ ,ω
(x),

respectively. The kernel Rmθ ,ω(x,x2,r,r2) is not Hermitian, but it can be made Hermitian by
premultipling it with

√
rr2; see Ref. [21].

The projection of the complex azimuthal coefficients Pmθ ,ω onto the basis is performed as

b(i)
mθ ,ω

=
∫

Pmθ ,ω(x)ξ (i)∗
mθ ,ω

(x)dx. (A5)

The estimate of the pressure signal in time domain, ˆ̃pmθ
(x,t) is obtained by inverse Fourier transform

using the sum

ˆ̃pmθ
(x,t) = 1

2π

∫ [
J∑

i=1

b(i)
mθ ,ω

ξ (i)
mθ ,ω

(x)

]
eiωtdω. (A6)

When the number of modes used for the projection equals the number of eigenvectors, J = Nλ,
the estimate ˆ̃pmθ

(x,t) corresponds to the original time series if the computation is performed with
the same resolution. Here, different resolutions are adopted for the two campaigns described in
Sec. II. In particular, the measurements available from the 4-ring setup provides only a statistical
information on a finer, extended grid composed by 22 points. The extrapolation is possible as the
first several POD modes on the extended grid are in agreement with the same quantities extracted
using the 7-ring setup. For this reason, the data of the coarser mesh of the 7-ring can be properly
resampled into the higher resolved 22 points mesh.
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APPENDIX B: SYSTEM IDENTIFICATION USING POLYNOMIALS EXPANSION

We have introduced in Sec. IV the basic ideas behind the application of system identification.
These tools are used for the qualitative analysis of the observables of the dynamical system and the
definition of quantitative control-oriented models. Here, we provide details on the algorithms. We
aim at defining polynomial approximation reproducing the temporal behavior of the output y(t).
More specifically, we consider the following:

(1) Nonlinear, autoregressive models reproducing the temporal behavior of the outputs y(t).
(2) Transfer functions between the inputs u(t) and the outputs y(t).

Here, we discuss the single-input–single-output (SISO) case for sake of conciseness; the extension
to the multiinputs-multioutputs (MIMO) cases is rather straightforward from the theoretical point of
view. More details can be found in the literature; see Refs. [53–55,58,64].

1. Polynomial models

The equation error model is written using nonlinear Volterra series, based on a polynomial
expansion [58]. For instance, at the first order, the polynomial model reads

y(tn) = y0 +
nα∑
i=1

α(1,i)y(tn−i) +
nα∑
i=1

nα∑
i=j

α(2,i,j )y(tn−i)y(tn−j ) +
nβ∑
i=1

β(1,i)u(tn−i)

+
nβ∑
i=1

nβ∑
i=j

β(2,i,j )u(tn−i)u(tn−j ) +
nα∑
i=1

nβ∑
j=1

η(1,i,j )y(tn−i)u(tn−j ) + e(tn) + O(2), (B1)

where αi, βi, ηi are the ith-order Volterra coefficients. We can note that the complete model consists
of a linear combination of three groups of terms:

(1) the autoregressive terms, y(tn) = f (y(tn),y(tn−1),...,y(tn−nα
));

(2) the exogenous terms, y(tn) = f (u(tn),u(tn−1),...,u(tn−nβ
));

(3) the error e(tn).
Additionally, the nonlinear combinations are introduced in the full model. The error is computed as
a moving average of white-noise process w(t)

e(tn) = w(tn) +
nγ∑
i=1

γiw(tn−i). (B2)

Both w(t) and the coefficients γi are unknowns of the problem.

2. The NARMAX algorithm

The coefficients and the unknown error w(t) can be identified applying the nonlinear
autoregressive moving average with exogenous algorithm (NARMAX). Let us consider the sketch in
Fig. 19. The identification procedure is based on a regression performed on the available data. Two
time windows are identified. The number of coefficients n identifies the window of correlation: The
(n + 1)-th value of the time series is computed as linear combination of the previous n points. All the
terms of Eq. (B1) are approximated in this way. The second time length is the window of assimilation
L: By sliding of a step �t the window of correlation, it is possible to capture the dynamics of the
system by reducing the local bias and averaging over a time horizon indicated by L. Thus, we can
form a matrix in Hankel form where L rows of data are gathered; each of the row is composed by n
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FIG. 19. The sketch exemplifies the identification procedure. The time series n + 1 point of the series y(t)
is approximated using the previous n entries, included in the correlation window. The assimilation window L is
spanned with constant �t steps, such that the last correlation window covers the entries from y(tL) to y(tn+L).

entries. If we consider the linear SISO case, the following Hankel matrix HN ∈ RL×nt is formed:

HN =

⎡
⎢⎢⎢⎢⎣

y(t1) y(t2) . . . y(tnα+1) u(t1) u(t2) . . . u(tnβ+1)
y(t2) y(t3) . . . y(tnα+2) u(t2) u(t3) . . . u(tnβ+2)

...
...

...
...

...
...

y(tL) y(tL+1) . . . y(tnα+L) u(tL) u(tL+1) . . . u(tnβ+L)

⎤
⎥⎥⎥⎥⎦,

where both inputs u and outputs y are included and n = nα + nβ .
The first step of the identification procedure consists of a the preliminary computation of the

coefficients θ � = [α1, α2, . . . ,αn, β1, β2, . . . ,βn]. We assume that the error term e(t) is null, such
that the least-squares regression can be performed as

θ � = H†
N y. (B3)

The preminary estimation of θ � allows the error estimation

e(t) = y − HNθ �, (B4)

This procedure is prone to inconsistencies; the error e(t) is modeled as a moving average of white
noise w(t), having expected value E[e(t)] �= 0. Due to the expected value of the error e(t), the
estimate of the coefficients θ will be biased. This limitation is circumvented by introducing a matrix
ZN of the same dimensions as the Hankel matrix HN such that

E[ZN y − ZN HNθ �] = 0. (B5)

With a proper choice ZN , the debiased estimate of θ � is computed as

θ � = (
ZT

N HN

)−1
ZT y, (B6)

if ZN HN is invertible. This generalization of the least-squares problem is known as instrumental
variable (IV). The IV method is iterative. For the first iteration, a rather effective choice for the
instruments consists in choosing η(t) = u(t − nd ), i.e., the delayed input. These values are relaxed
until convergence (see Refs. [54,55]).

In the presence of nonlinear terms of higher order, nearly null entries of the Hankel matrix can
lead to the ill condition of the least-squares process. An iterative orthogonalization can be adopted for
preventing the issue. The method, named the orthogonalized least-square (OLS), is adopted in this
work [52,58]. The procedure enables us to rank and select only the terms of the original candidate
models which are necessary for an optimal representation of the original system.
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APPENDIX C: PARAMETERS SPACE OF THE IDENTIFIED MODELS

The NARMAX algorithm described in Appendix B involves numerous choices, leading to a rather
large parameter space to be scrutinized. Moreover, due the nonlinear terms and the complexity of the
system, we expect multiple minima for the optimization process. Here, we report and motivate our
choices. In particular, we peruse the following parameters: (i) the polynomial order; (ii) the window
of assimilation; (iii) the maximum number of coefficients nα; and (iv) the optimization parameters.
Most of the considerations of this section are done considering the nonlinear models of Sec. IV C.
The transfer functions analyzed in Sec. IV B, due to their inherent linearity, result in a much simpler
validation analysis.

Polynomial order. We consider as limiting nonlinear order NL = 3; the choice is a compromise
between numerical and computational issues and the physical description of the system. Preliminary
results did not show substantial improvements when introducing higher order nonlinearities in the
models. On the other hand, numerical inconsistencies due to singular entries in the Hankel matrices
were found when NL > 3.

Assimilation window. The spectrogram in Fig. 6 shows that the dynamics is characterized by
events at given frequencies corresponding to organized behavior in the time domain. In principle,
one should consider more windows of assimilation, stacked over the entire time span, and average
the results obtained in these windows of assimilations; however, we consider shorter time windows
of assimilation roughly corresponding to the average length of the high-amplitude events observed
in the spectrogram. This choice is motivated from the physical point of view by the convective nature
of the system, not characterized by specific frequencies of oscillations. We tested windows of length
τaw = [20.5, 30.9, 41.2, 61.8, 82.3]; in the present paper, we consider τaw = 41.2, which provided
best results. The assimilation windows dictate one of the two the dimensions of the Hankel matrix.

Coefficients nα and nβ . The total number of these coefficients dictate the second dimension of the
regression matrix, the first being the assimilation window. More importantly, it relates past entries
with the actual value y(t) during the autoregression process. We consider the range nα = [1, 30];
the maximum value in convective time corresponds to τ ≈ 1.25 and it is based on the analysis of
the autocorrelation. Larger values would lead to erroneous correlations between past and present
dynamics. The range for nβ is dictated by the convective velocity.

Optimization process parameters. For the optimization process, we consider a maximum of
Ni = 20 iterations for each model and a maximum of Ne = 60 elements for the resulting models,
whose 10 terms are related to the error part.
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