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The trinity of so-called “canonical” wall-bounded turbulent flows, comprising the zero
pressure gradient turbulent boundary layer, abbreviated ZPG TBL, turbulent pipe flow,
and channel/duct flows has continued to receive intense attention as new and more
reliable experimental data have become available. Nevertheless, the debate on whether
the logarithmic part of the mean velocity profile, in particular the Kármán constant κ , is
identical for these three canonical flows or flow-dependent is still ongoing. In this paper,
the asymptotic matching requirement of equal κ in the logarithmic overlap layer, which
links the inner and outer flow regions, and in the expression for the centerline/free-stream
velocity is reiterated and shown to preclude a universal logarithmic overlap layer in the three
canonical flows. However, the majority of pipe and channel flow studies at friction Reynolds
numbers Reτ below ≈ 104 extract from near-wall profiles the same κ of 0.38–0.39 as in the
ZPG TBL. This apparent contradiction is resolved by a careful reanalysis of high-quality
mean velocity profiles in the Princeton “Superpipe” and other pipes, channels, and ducts,
which shows that the mean velocity in a near-wall region extending to around 700 “+” units
in channels and ducts and 500 “+” units in pipes is the same as in the ZPG TBL. In other
words, all the “canonical” flow profiles contain the lower end of the ZPG TBL log-region,
which starts at a wall distance of 150–200 “+” units with a universal κ of κZPG ≈ 0.384.
This interior log-region is followed by a second logarithmic region with a flow specific
κ > κZPG, which increases monotonically with pressure gradient. This second, exterior
log-layer is the actual overlap layer matching up to the outer expansion, which implies
equality of the exterior κ and κCL obtained from the evolution of the respective centerline
velocity with Reynolds number. The location of the switch-over point implies furthermore
that this second log-layer only becomes clearly identifiable, i.e., separated from the wake
region, for Reτ well beyond 104 (see Fig. 1). This explains the discrepancies between the
Kármán constants of 0.38–0.39, extracted from near-wall pipe profiles below Reτ ≈ 104

and the κ’s obtained from the evolution of the centerline velocity with Reynolds number.
The same analysis is successfully applied to velocity profiles in channels and ducts even
though experiments and numerical simulations have not yet reached Reynolds numbers
where the different layers have even started to clearly separate.

DOI: 10.1103/PhysRevFluids.2.094602

I. INTRODUCTION

After the formulation of the mixing length hypothesis and the logarithmic law U+ = κ−1 ln(y+) +
B for a part of the mean velocity profile in wall-bounded turbulent flows by Prandtl [1] and von
Kármán [2], the latter originally determined a value of 0.38 for κ , as pointed out by Segalini et al. [3].
Subsequently, however, κ = 0.41 became for a long time the most used value and almost acquired
the aura of a fundamental physical constant. Here and in the following, “+” superscripts denote the
usual wall scaling with friction velocity ûτ ≡ (̂τwall/ρ̂)1/2 and kinematic viscosity ν̂, where “hats”
denote dimensional quantities. The main reasons for this long period of constant κ has been the
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limited range of experimental Reynolds numbers and, probably more importantly, the use of the
Clauser chart (Clauser [4], Wei et al. [5]) to determine the wall shear stress in turbulent boundary
layers (TBLs).

With the advent of wall wires and, more commonly, the oil film technique, developed by Tanner
and Blows [6], Fernholz et al. [7], and others, experimentalists have started to measure ûτ in TBLs
directly and most κ’s determined from high Reynolds number data have dropped into the 0.38–0.39
range. In pipes and channels, on the other hand, the spread of κ’s extracted from data has remained
rather large, going from the original κ = 0.436 for the Princeton “Superpipe” (Zagarola and Smits
[8]) to as low as 0.35–0.36 (Nagib and Chauhan [9]) for channels and high aspect ratio ducts. Despite
a growing awareness of the effect of the log-law fitting range and other experimental parameters on
κ (see, e.g., Örlü et al. [10], Segalini et al. [3]), the discrepancies have not gone away and today’s
turbulence community appears to be divided into essentially two camps: one advocating a universal
κ , such as, for instance, Marusic et al. [11], and the other advocating flow-specific κ’s as expressed
most clearly by Nagib and Chauhan [9].

In the context of singular perturbation theory, the logarithmic region is the link between inner
and outer asymptotic expansions of the mean velocity U+

inner(y
+) and U+

outer(Y ≡ y+/Re), where Re
is the Reynolds number Reδ∗ ≡ Û∞ δ̂∗/̂ν based on free stream velocity and displacement thickness
for the ZPG TBL and the friction Reynolds number or Kármán number Reτ for channels and pipes.
More precisely, the classical log-law is the common part U+

cp of U+
inner and U+

outer within the overlap
layer 1 � y+ � Re. Since there are no independent “a priori” length scales, i.e., scales based on
the operating parameters of the flow facility, between the inner scale ν̂/ûτ and the boundary layer
thickness, the two-term asymptotic expansion in powers of ln(Re) of the free stream or centerline
velocity necessarily has to be of the form κ−1 ln(Re) plus a flow dependent constant, with the same κ

as in the overlap layer. This is by no means new as it follows directly from Coles’ [12] decomposition
of the outer velocity into log-law and “wake” U+

outer = κ−1 ln(Re Y ) + W (Y ) evaluated at Y = const.
Therefore, a universal κ for the log-laws in the zero pressure gradient turbulent boundary layer (ZPG
TBL), the channel and the pipe necessarily implies that the free stream or centerline velocities in
all three canonical flows must have the same logarithmic slope, which is contrary to the bulk of
experimental evidence. The only possibility to reconcile a universal κ with the different Reynolds
number dependence of the free stream or centerline velocities in the three flows considered here is
to make the Coles wake function Re-dependent, of the form W (Y,Re), i.e., to add higher-order terms
to the outer expansion. Such a possibility has been considered by Monkewitz and Nagib [13] and is
further explored in Appendix B, without success.

Since experimental mean centerline and free stream velocities are the least affected by probe
corrections, the present data reanalysis starts by fitting the available free stream or centerline data U+

∞
or U+

CL with κ−1 ln(Re) + C and then proceeds to the near-wall log-laws. These freestream/centerline
κ’s are distinctly different in the three canonical flows under study. So one must conclude that the
log-law parameters, in particular the Kármán “coefficients” κ , are flow dependent. However, this
conclusion is only final if one assumes, without necessity, that the velocity profile U+(y+) contains
only a single log region. As will be shown in this paper, the inner region of the overwhelming
majority of high-quality mean velocity profiles in the Superpipe (Sec. III) and in channels/ducts
(Sec. IV) is well described by inner expansions comprising two distinct parts: An interior near-wall
part identical to the inner expansion of the ZPG TBL, reviewed in Sec. II, and an exterior log region
with a flow specific Kármán “parameter” equal to the respective centerline κCL. For the pipe, this
subdivision of the inner region is not entirely new, as both Zagarola and Smits [14] and McKeon
et al. [15] have identified a change of the pipe velocity profiles from a power law to a log-law at
y+ ≈ 500 without, however, connecting the interior part to the ZPG TBL profile. As the switch-over
between the two regions is found at wall distances y+

int−ext of around 700 in channels and 500 in
pipes, the interior region contains the beginning of the ZPG TBL log-law with its Kármán constant
of κ ∼= 0.384. Hence, in this restricted sense, the ZPG TBL log-law and its Kármán constant are
universal. Beyond y+

int−ext, however, the channel and pipe velocity profiles switch to flow specific
logarithmic laws with flow specific Kármán “parameters” equal to the respective centerline κCL’s,
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FIG. 1. The two logarithmic regions, as identified in Sec. III for the pipe: universal interior log region
(horizontal hatching) with κ = 0.384 for 200 � y+ � y+

int−ext ≈ 500, exterior (vertical hatching) overlap layer
with κ = κCL for y+

int−ext � y+ � 0.1 Reτ and transition layer (shaded). . . . , minimum Reτ ’s to see one half and
one decade of “clean” overlap log-law.

as shown in Fig. 1. The figure also shows that the exterior log layers, which are the actual overlap
layers matching up to the respective outer expansions, require relatively high Reτ , in excess of 104,
to clearly separate from the wake. Only in the ZPG TBL, the interior and exterior log regions are
one and the same.

II. THE MEAN VELOCITY PROFILE IN THE ZPG TBL

The point to be reiterated here is the equality in the ZPG TBL of the κ’s in the log-law and in the
expression for the free-stream velocity U+

∞(Reδ∗ ).
This is achieved by showing that the mean velocity data set used by Bailey et al. [16], which is

probably the most thoroughly checked data set, together with the data of Kulandaivelu [17] are nearly
perfectly matched by a composite expansion consisting of the modified “Musker” fit for U+

inner,ZPG,
developed by Chauhan et al. [18] and reproduced for convenience in Appendix A, and a new fit for
the outer velocity U+

outer(η), with η ≡ y+/Reδ∗ the outer wall-normal coordinate according to Rotta
[19]:

U+
outer,ZPG(η) = ln{3.50 Reδ∗ × tanh1/2[f (η)]}

0.384
, with

f (η) =
(

5.05 η

3.50

)2 1 + (10.7 η)4 + (11.9 η)5 + (10.7 η)8

1 + (11.9 η)5
(1)

U+
outer,ZPG(η � 1) ∼ U+

log,ZPG + (11.4 η)4 + · · · , with

U+
log,ZPG ≡ U+

cp,ZPG = 1

0.384
ln(y+) + 4.22, (2)

U+
outer,ZPG(η → ∞) ≡ U+

∞ = 1

0.384
ln(Reδ∗ ) + 3.26. (3)

Eq. (1) is simpler than most previous fits, avoids the introduction of a rather arbitrary boundary
layer thickness δ, has equal κ’s in the common part U+

log,ZPG [Eq. (2)] of inner and outer expansions

and U+
∞ [Eq. (3)] and satisfies the asymptotic consistency requirement

∫ ∞
0 (U+

∞ − U+
outer,ZPG) dη = 1

within 0.15% (see Monkewitz et al. [20]). The near perfect data fit can be appreciated in Fig. 2. Note
also that the fit by Eq. (1) is likely the first to correctly reproduce the departure from the log-law ∝ η4

at large y+, shown in Fig. 2(a) and achieved by the “trick” of using the square root tanh1/2(η2...) in
Eq. (1).
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FIG. 2. (a) Nineteen ZPG TBL mean velocity profiles used by Bailey et al. [16] to elucidate Pitot corrections
and six profiles of Kulandaivelu [17] minus the Musker inner fit U+

inner,ZPG [Eq. (A1)]. •, Reδ∗ � 2 × 104; ,
2 × 104 < Reδ∗ � 4 × 104; , Reδ∗ > 4 × 104. · · ·, leading term (11.4 η)4 of the small-η expansion [Eq. (2)] of
(U+ − U+

inner,ZPG) for Reδ∗ = 1.65 × 104 (last black profile), 3.26 × 104 (last blue profile), and 7.84 × 104 (last
red profile). (b) Corresponding experimental profiles minus the composite expansion (U+

inner,ZPG + U+
outer,ZPG −

U+
cp,ZPG) [Eqs. (A1), (1) and (2)] versus η. The gray bands indicate deviations of up to ±0.2 from the inner

expansion in (a) and from zero in (b).

Before moving on to the analysis of pipe and channel data, a few comments are called for. Here
and in the following, the value of κ = 0.384 determined by Monkewitz et al. [20] is used for the
ZPG TBL and the interior log-laws to be identified in pipes and channels. It is clear that the third
digit of κ depends on the choice of data, but its value is now generally thought to be in the interval
[0.38,0.39] (see, e.g., Marusic et al. [21]). As the standard oil film technique to measure wall shear
stress leads to a slight systematic over-estimate of κ (Segalini et al. [22]), the value of 0.384 is
preferred over 0.39.

Finally, since past comparisons with pipe and channel have often been made on the basis of
equal Reτ , variously defined in the TBL as η.99 × Reδ∗ or η.995 × Reδ∗ , it is useful to recall that
these quantities, besides being strongly affected by measurement uncertainties and/or data fits, do
not correspond to fixed values of the outer variable η. In other words, scaling arguments based on
Reδ∗ and Reτ are not equivalent if they are supposed to be valid to infinite Reynolds number. For
the present fit by Eq. (1), η.99 and η.995 decrease appreciably from 0.232 and 0.245 at Reδ∗ = 104 to,
respectively, 0.213 and 0.231 at Reδ∗ = 109, as shown in Fig. 3.

III. THE MEAN VELOCITY PROFILE IN PIPES, WITH EMPHASIS
ON THE PRINCETON SUPERPIPE

There exists a large number of turbulent pipe flow experiments, the best known early study being
the one by Nikuradse [23]. As the aim of this section is to investigate the relation between the
κ’s extracted from the logarithmic region of U+(y+) and from the centerline velocity U+

CL,P(R+),
with R+ ≡ (R̂ ûτ /̂ν) ≡ Reτ the nondimensional pipe radius and relevant Reynolds number, the
requirements on the data are severe. On the one hand, the Reynolds numbers must be sufficiently
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FIG. 3. Boundary layer thicknesses η.99 (—) and η.995 (- -) versus Reδ∗ for the outer fit [Eq. (1)].

high, at least of the order of 104, to obtain a substantial logarithmic region in the profile U+(y+). On
the other hand, the data must cover a large range of R+: As U+

CL,P is asymptotically ∝ ln(R+), one
decade of R+ corresponds to an increase of U+

CL,P by only about 5, so that an uncertainty of ±0.2 in
U+

CL,P translates to a 7% uncertainty in κ . For these reasons, the following data analysis will focus
on the Superpipe data (see Zagarola and Smits [8,14] for a description of the facility).

Other investigations of high Reynolds number pipe flow are under way, but have not yet produced
data sets comparable to the Superpipe. Among them is an effort by a Japanese group (Furuichi
et al. [24]) which has so far published mean velocity data up to R+ ≈ 104 (corresponding to the
lowest blue Superpipe profile in Fig. 5). Furthermore, the publication concentrates on friction factor
correlations based on bulk velocity and does not directly provide data for the centerline velocity. The
CICLoPE experiment (see Talamelli et al. [25]), with a somewhat smaller Reynolds number range
than the Superpipe, is currently starting up in Italy and the first preliminary centerline data of Fiorini
[26] in the range 104 � R+ � 4 × 104 yield a κ of 0.437 (see Fig. 4), which is significantly larger
than the κ of 0.39 deduced from the near-wall log-layer by Örlü et al. [27] in the same facility. This
discrepancy between the κ’s determined from the logarithmic region of U+ and from the centerline
velocity has already been noticed by Zanoun et al. [28], despite a limited Reynolds number range
of R+ < 9000.

The Superpipe data have had a major impact on turbulence research due to the dramatic increase
of R+ over previous studies, but two features of these experiments have given rise to much scrutiny
and debate:

FIG. 4. Experimental pipe centerline velocities versus R+ with a Hama-like roughness correction
(2κ)−1 ln[1 + (0.14 k+

s )2] ( k̂s = 0.45 μm) minus the fit [Eq. (4)] for U+
CL,P in panel (a); minus the fit

(1/0.436) ln(R+) + 7.65 of Zagarola and Smits [8] in (b). •, Superpipe data corrected according to McKeon;
◦, same data without roughness correction; , Superpipe data of Zagarola and Smits [8] with same roughness
correction; ×, Superpipe NSTAP data of Hultmark et al. [34]; �, Perry and Abell [35]; �, Zanoun et al. [28];
�, Monty [36]; , preliminary CICLoPE correlation (1/0.437) ln(R+) + 8.06 of Fiorini [26]; , ±0.5%
of reference U+

CL,P. · · ·, slope corresponding to κ = 0.384.
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(1) One problem was the very large diameter of the Pitot probes in viscous units, which decrease
to 0.6 μm at the higher R+’s, and required the extension of the correction schemes for mean shear,
viscous effects and turbulence intensity into uncharted territory. This issue has been addressed by
McKeon and Smits [29] and McKeon et al. [30], using the argument that U+(y+) in the wall
region is universal and must be independent of the Pitot probe diameter, and more recently by an
international collaboration (Bailey et al. [16]), which relied on the comparison between Pitot and
hot-wire measurements in ZPG TBL’s. In addition, Vinuesa et al. [31] have investigated the effect
of possible Pitot positioning errors. These different efforts have led to a fair agreement on the most
appropriate corrections, albeit the uncertainty of the Superpipe data remains relatively large for
y+ � 103 in comparison with data sets at lower Reynolds numbers, such as those included in Fig. 4.
Beyond y+ ≈ 103, however, the corrections quickly become small.

(2) The second issue was the influence of roughness at the higher R+ which has been thoroughly
studied by Allen et al. [32]. As a result, there is now widespread agreement that only the profiles
with R+ � 2 × 105 are significantly affected by roughness.

A. The log-law for the pipe centerline velocity

Starting with the centerline velocity U+
CL,P and excluding the lowest as well as the three highest

R+, where the roughness correction increases the uncertainty, the Pitot data are least-squares fitted
by

U+
CL,P = 1

0.42 ln(R+) + 6.84, (4)

with an R2 value of 0.9993. As can be appreciated in Fig. 4(a), all the Superpipe Pitot data beyond
the lowest Reynolds number are within ±0.5% of the fit Eq. (4), if corrected for roughness with
a Hama-like roughness correction (2κ)−1 ln[1 + (0.14 k+

s )2] and k̂s = 0.45 μm, in line with the
investigation of Allen et al. [32]. If all 19 data points are used, the least-squares κ increases
insignificantly to 0.423. As evidence from CICLoPE (see Fiorini [26]) is mounting that the centerline
κCL,P may be as high as 0.44, in almost perfect agreement with the original data of Zagarola and
Smits [14], the same data as in (a) minus the fit U+

CL,P = (1/0.436) ln(R+) + 7.65 of Zagarola and
Smits [14] are shown in Fig. 4(b). What is obvious from Fig. 4 is that determining the centerline
κ within, say, ±0.01 from any individual data set requires a Reynolds number span of a decade or
more and an extreme attention to all, even small, systematic errors. Nevertheless, Fig. 4 demonstrates
convincingly, that κCL,P = 0.42 is the lowest value compatible with data, i.e., that κCL,P in the pipe
is significantly larger than the κ in the ZPG TBL.

Comparing with other experiments, it is remarkable that the fit by Eq. (4) is essentially identical
to the fit of U+

CL,P in Fig. 38 of Nikuradse [23] over the range 102 � R+ � 5 × 104 and given as
(1/0.417) ln(R+) + 6.84 (note the typo 5.84 instead of 6.84 for the additive constant on p. 66 of the
NASA translation). The κ in Eq. (4) is also virtually identical to the κ = 0.421 fitted by McKeon
et al. [15] to the logarithmic region beyond y+ � 600 and is consistent with the values estimated
by Bailey et al. [33, see in particular their Fig. 4(b)], except for the values extracted from the new
NSTAP “micro-hotwire” data of Hultmark et al. [34]. The latter data are also included in Fig. 4
to support the opinion of this author that the NSTAP technology is not yet sufficiently validated to
reliably deduce Kármán constants: Using all eight NSTAP data points yields a least-squares κ of
0.41, while the four lowest and highest R+ yield κ’s of 0.47 and 0.36, respectively. Finally, it is
noted that the various data sets in Fig. 4 below R+ of 104 are compatible with κ 	 0.42, but too
short to extract a reliable value.

B. The “interior” and “exterior” log regions

Turning the attention to the near-wall region of U+(y+), the Superpipe data are less helpful below
y+ ≈ 103 for the reasons discussed at the beginning of Sec. III. At low y+, below around 600, both
Zagarola and Smits [14] and McKeon et al. [15] see a power law, but the latter authors remark that
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in the interval 350 < y+ < 950 a log-law with κ = 0.385 and an additive constant of 4.15 “fits the
data quite well.”

From the point of view of balance of terms in the Reynolds averaged momentum equation,
the mean velocities in pipe and channel flows should, in wall units, be virtually identical to the
ZPG TBL mean velocity in the region where the viscous and Reynolds stresses dominate over the
pressure gradient, which is of order O(1/R+). In pipe flow, this is the region outside a very thin wall
sublayer in which the viscous stress is balanced by the pressure gradient (see Klewicki et al. [37]
and references therein). The thickness y+

pgsl, with “pgsl” for pressure gradient sublayer, is obtained
as the wall distance at which the pressure gradient term is equal to the second derivative of the (y+)4

term in the Taylor series of the ZPG TBL mean velocity about the wall. Using table 2 of Monkewitz
and Nagib [38], one obtains y+

pgsl ≈ 102/
√

R+, which is so small that this layer has no measurable
effect on experimental velocity profiles much beyond y+

pgsl. So the dominant balance in the inner
region of pipe flow, outside of this pressure gradient sublayer, is the same as in the ZPG TBL, where
the convective terms and the stream-wise stress derivatives in the inner, near-wall region are small
of order O[Reδ∗ ln2(Reδ∗ )]−1 (see Monkewitz and Nagib [38]).

Therefore, as long as the pressure gradient in the momentum equation remains sufficiently
smaller than the viscous and Reynolds stresses, one expects to see in the pipe (and in the channel)
the same mean velocity profile as in the ZPG TBL with a logarithmic region of slope 1/0.384
beyond y+ ≈ 150−200. Indeed, such a logarithmic region with κ’s in the range 0.38–0.39 has
been clearly identified in many pipe flow studies at lower R+ � 104, where the logarithmic overlap
layer does not extend beyond y+ ≈ 103 and probe correction problems are minor compared to the
Superpipe: Monty [36], for instance, identified a log-law for y+ � 150 with κ = 0.384 and 0.386,
using hot-wires and Pitot tubes, respectively, Zanoun et al. [28] found κ’s between 0.38 and 0.39
depending on the fitting range, Furuichi et al. [24] deduced a κ of 0.382 from their profiles and Örlü
et al. [27] found 0.39 from CICLoPE near-wall profiles for R+ � 3.2 × 104.

As there is no reason for the near-wall profiles U+(y+) in the Superpipe to be different from
the profiles in experiments with R+ between 103 and 104, such as the ones mentioned above, the
Superpipe profiles must also have an interior log region with a κ of around 0.384 which is just
somewhat difficult to identify due to the residual uncertainty of the Pitot corrections. To reveal this
interior log region, the inner expansion U+

inner,ZPG [Eq. (A1)] of the ZPG TBL is first subtracted
from the Superpipe Pitot data, corrected according to McKeon et al. [30] and the result is shown in
Fig. 5. The implementations of the Pitot corrections by Bailey et al. [16] and Vinuesa and Nagib
[39], included in Fig. 5 for y+ � 103, are seen to mainly shift the graphs down by 0.1–0.15.

The most striking feature of Fig. 5 is the rather abrupt and simultaneous switchover at y+ =
O(103) of all the profiles with R+ � 104 to an exterior log-law, the actual logarithmic overlap layer,
with the same logarithmic slope of (1/0.420) as in Eq. (4) for U+

CL,P. Note again that the data for
R+ < 104 cannot show this second log region, because y+ = 103 corresponds already to Y 	 0.1,
which is at or beyond the upper end of any log-law.

The smooth switch from interior to exterior log region in Fig. 5 is well modeled by

�U+
log,P =

(
1

0.384
− 1

0.420

)
ln[1 + (0.002 y+)3]

3

∼ 0.223 ln[0.002 y+] for (0.002 y+) � 1, (5)

which places the boundary between the two log regions at y+
int−ext = 1/0.002 = 500.

To reinforce the point about the Pitot corrections becoming noncontroversial beyond y+ ≈ 103,
the Pitot data, corrected according to both McKeon and Bailey, minus U+

inner,ZPG [Eq. (A1)] are shown
in Fig. 6 for the interval 3(R+)1/2 � y+ � 0.15R+. This is the extent of the unique and universal
logarithmic region with κ = 0.39, claimed by Marusic et al. [11] to exist in all three canonical flows.
To understand this claim, the Superpipe data in their Fig. 1, together with the original NSTAP data
of Hultmark et al. [34], are included in Fig. 6(a). These latter data are seen to be the only ones
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FIG. 5. Nineteen Superpipe profiles minus the ZPG TBL inner expansion [Eq. (A1)], U+ − U+
inner,ZPG,

versus y+, with Pitot corrections according to McKeon and the Hama-like roughness correction given in the
caption of Fig. 4. +, R+ = 1.82 × 103 considered low Reynolds number; •, R+ = {3.31,5.08,6.58,8.49} ×
103; , R+ = {1.09,1.48,1.97,2.51,3.27,4.21} × 104; , R+ = {0.542,0.761,1.02,1.27,1.65} × 105; +, R+ =
{2.16,2.83,5.27} × 105 where roughness effects become significant. Corresponding large symbols mark the
centerline. Gray •, , same data for 3 × 103 < R+ < 2 × 105 corrected according to Vinuesa-Nagib and Bailey,
respectively. − − −, U+

CL,P − U+
inner,ZPG for R+ � 1; − · −, (−�U+

log,P) given by Eq. (5) for R+ � 1.

supporting a single universal log-law with κ = 0.39 beyond y+ of 103. As they were obtained with
a radically new probe for which experience is still limited and which does not yield a clear log-law
for U+

CL,P, as discussed in Sec. III A, they will not be considered further in the present study.
Returning to the Pitot data with the two log regions of Fig. 5, the basic question arises whether

the first or the second logarithmic region corresponds to the common part of the inner and outer
expansions of U+:

(1) The fact that the switch over occurs, within experimental error, at a fixed y+ is a strong
indication that the overlap region corresponds to the second log region with κ = 0.420, consistent
with the logarithmic slope of U+

CL,P in Eq. (4).
(2) The alternative, i.e., a universal common part with κ = 0.384, implies that the asymptotic

expansion of U+
CL,P would have to be of the form (1/0.384) ln(R+) + const. + HOT, where HOT

FIG. 6. (U+ − U+
inner,ZPG) [Eq. (A1)] versus y+ for 3(R+)1/2 � y+ � 0.15R+. (a) Symbols of Fig. 5: Pitot

data corrected according to McKeon et al. [30]; , original NSTAP data from Hultmark et al. [34]; , NSTAP
data for R+ = 9.82 × 104 from Marusic et al. [11]. Slopes corresponding to κ = 0.425 (−−), 0.42 (—) and
0.415 (− · −). (b) Analogous to (a) but with Pitot data corrected according to Bailey et al. [16].
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stands for higher-order term, because the two-term expansion without the HOT is not defendable on
the basis of Fig. 4 and the discussion in Sec. III A. As shown by Monkewitz and Nagib [13] (see
Fig. 10 in Appendix B), a third term of order O(ln R+)−1 in Eq. (B1) does a good job at fitting
the available centerline data, but the corresponding outer expansion Eq. (B2) fails to describe the
observed outer profiles.

The conclusion from the above discussion is that the interior log region with κ = 0.384 in pipe
flow is a feature of the inner expansion of U+

P and that the log region with κ = 0.420 is the actual
overlap region, i.e., the common part of inner and outer pipe expansions. In other words, the inner
expansion for the mean velocity in the pipe is given by

U+
inner,P ≡ U+

inner,ZPG − �U+
log,P, (6)

with �U+
log,P given by Eq. (5). Finally, the common part of inner and outer expansions for U+

P is
obtained by taking the limit y+ � 500 of Eq. (6),

U+
cp,P ≡ lim

y+→∞
U+

inner,P ∼ 1
0.42 ln(y+) + 5.604, (7)

which has to correspond to the limit Y � 1 of U+
outer,P developed in the next section.

C. The outer expansion

The remaining task is to find a suitable outer expansion for U+
P . For this, the complete inner pipe

expansion U+
inner,P [Eq. (6)] is subtracted from U+

P , as shown in Fig. 7(a), which is obtained from
Fig. 5 by “lifting” the data by �U+

log,P. This yields U+
outer,P − U+

cp,P, which is easily fitted by

U+
outer,P(Y ) − U+

cp,P = 1

0.420
ln

[(
π

2
Y

)−1

sin

(
π

2
Y

)]
+ 2.30 sin2

(
π

2
Y

)
. (8)

As seen in Fig. 7(b), the composite expansion U+
comp,P(Y ) ≡ U+

inner,P + U+
outer,P − U+

cp,P fits all the
Superpipe profiles with an absolute error below ±0.2 . Furthermore, it follows from the Taylor series
expansion of U+

outer,P that the initial deviation of U+
outer,P from U+

cp,P in the pipe is much more gradual
than in the ZPG TBL, i.e., ∝ Y 2 as opposed to ∝ η4 in the ZPG TBL.

IV. THE MEAN VELOCITY PROFILE IN CHANNELS AND DUCTS

Below Reτ ≡ H+ ≈ 1000 (H+ being the nondimensional channel/duct half height) the U+-
profiles in ducts become progressively affected by the duct aspect ratio, as documented by Vinuesa
et al. [40] and [41]. Hence, attention is focused here on the Reynolds number range H+ 	 950,
where the difference between U+ from channel DNS and duct experiments is of the order of the
experimental uncertainty. For the following analysis, six profiles from channel DNS’s of Hoyas and
Jiménez [42], Lozano-Durán and Jiménez [43], Lee and Moser [44], and Thais et al. [45], with
950 � H+ � 5200, are used, together with four experimental profiles of Zanoun et al. [46] for
2155 � H+ � 4783 and another four of Schultz and Flack [47] for 1010 � H+ � 5900.

For channels and ducts there are no data at high enough H+ to reveal a double log region as in Fig. 5
for the Superpipe. As a matter of fact, the available H+ are still too low to even see a clear log-law
in the U+(y+) profiles and so there has not yet been any controversy about a difference between κ’s
extracted from the near-wall logarithmic region and from U+

CL,Ch, even though Schultz and Flack [47]
found a κ from the friction factor which was higher by 0.02 than the one obtained from their profiles.
The fortunate difference to the pipe is the availability of high quality DNS channel data over the entire
H+-range of the laboratory experiments, which allow a reliable fit of U+

CL,Ch, despite the limited
range of H+. The best fit for the DNS channel data above H+ = 950, with an R2 value of 0.9998 is

U+
CL,Ch = 1

0.413 ln(H+) + 5.88. (9)
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FIG. 7. (a) Superpipe profiles of Fig. 5 plus �U+
log,P (Eq. 5). Thin gray lines, (U+

outer,P − U+
cp,P) [Eq. (8)]. · · ·,

leading term (4.70 Y 2) of the Taylor expansion of (U+
outer,P − U+

cp,P) for R+ = 3.31 × 103 (first black profile),
1.09 × 104 (first blue profile), 4.21 × 104 (last blue profile), and 1.65 × 105 (last red profile). (b) Data minus
the composite expansion U+

comp,P ≡ U+
inner,P + U+

outer,P − U+
cp,P [Eqs. (6), (8) and (7)]. The gray band indicates

deviations of up to ±0.2 from zero. See caption of Fig. 5 for other symbols.

As seen in Fig. 8, the experimental U+
CL,Ch have a much larger scatter and fall generally below the

DNS fit, which is interpreted as a remnant of the aspect ratio effect.
Focussing on the DNS by Lee and Moser [44] at H+ = 5200, a nascent interior log-law with

the ZPG TBL parameters is evident in Fig. 9(a), but there is no sign yet of an exterior logarithmic
overlap layer with κ = 0.413 to match U+

CL,Ch. From the asymptotic matching argument in Sec. I,
one must therefore conclude that, at the available H+’s, the exterior log region is “telescoped” into
the wake and that the two regions will only separate at considerably higher H+’s (see Fig. 1). This
does, however, not preclude the use of the same asymptotic description of the mean velocity profile
as for the pipe, since asymptotic expansions generally provide useful approximations already before

FIG. 8. Channel/duct centerline velocity of the profiles in Fig. 9 minus the fit by Eq. (9) for U+
CL,Ch versus

H+. �, DNS channel data for H+ 	 950; , Schultz and Flack [47]; , Zanoun et al. [46]. See caption of Fig. 9
for more details. +, DNS data at H+ = 550 and 590 not considered for the fit. , ±0.2% of U+

CL,Ch [Eq. (9)].
· · ·, slope corresponding to κ = 0.384.
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FIG. 9. Six DNS profiles of Hoyas and Jiménez [42] ( ), Thais et al. [45] ( ) and Lee and
Moser [44] ( ), four profiles of Schultz and Flack [47] ( ) and four profiles of Zanoun et al. [46] ( ). (a)
(U+ − U+

inner,ZPG) [Eq. (A1)] versus y+; − · −, −�U+
log,Ch (Eq. 10); − − −, centerline velocity [Eq. (9)] minus

U+
cp,ZPG [Eq. (2)]. (b) U+ − U+

inner,Ch [Eq. (11)]. (c) U+ − U+
comp,Ch [Eqs. (11) plus (12)]. The grey band indicates

deviations of up to ±0.2 from zero.

the different regions (here the exterior log region and the wake) are clearly separated [see, e.g., the
surprisingly good outer fit of the low-R+ data in Fig. 7(a)].

Hence, proceeding as for the pipe, the inner expansion for U+
inner,ZPG [Eq. (A1)] is again subtracted

first from the data and the remainder is “lifted” by the channel equivalent of Eq. (5),

�U+
log,Ch =

(
1

0.384
− 1

0.413

)
ln[1 + (0.0014 y+)3]

3

∼ 0.183 ln[0.0014 y+] for (0.0014 y+) � 1, (10)

to yield the inner expansion for the channel

U+
inner,Ch = U+

inner,ZPG − �U+
log,Ch. (11)
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TABLE I. Summary for the three canonical flows of the parameters for the interior log-law κ−1
int ln(y+) +

Bint, the switch-over point y+
int−ext from interior to exterior log-law, the parameters for the exterior log-law

κ−1
ext ln(y+) + Bext and the additive constant for U+

∞, respectively, U+
CL = κ−1

ext ln(Reτ ) + C.

β κint Bint y+
int−ext κext Bext C

ZPG TBL 0 0.384 4.22 — 0.384 4.22 3.26
Channel 1 0.384 4.22 ≈700 0.413 5.42 5.88
Pipe 2 0.384 4.22 ≈500 0.420 5.60 6.84

Note that in Eq. (10) the switch-over point between the interior and exterior log layers has
been placed at y+ = (0.0014)−1 ≈ 700, as opposed to ≈500 in the pipe (see discussion in Sec. V).
Analogous to Eq. (8), the difference U+

outer,Ch − U+
cp,Ch is fitted by

U+
outer,Ch(Y ) − U+

cp,Ch = 1

0.413
ln

[(
π

2
Y

)−1

sin

(
π

2
Y

)]
+ 1.55 sin2

(
π

2
Y

)
, (12)

with

U+
cp,Ch = 1

0.413
ln(y+) + 5.419. (13)

As in Figs. 5 and 7 for the pipe, Fig. 9(a) shows selected channel and duct mean velocity profiles
minus U+

inner,ZPG [Eq. (A1)] and Fig. 9(b) the profiles minus the complete inner expansion [Eq. (11)].
Figure 9(c) for (U+

Ch − U+
comp,Ch), finally, demonstrates the excellent quality of the composite fit

U+
comp,Ch ≡ U+

inner,Ch + U+
outer,Ch − U+

cp,Ch for the DNS channel profiles in particular. As in Fig. 8, all
but one experimental difference (U+ − U+

comp,Ch) remain slightly negative at all Y , most probably
due to finite duct aspect ratios.

V. DISCUSSION

The starting point for the present study was the observation that it is hardly possible to fit the
free-stream velocity in the ZPG TBL [Eq. (3)] and the centerline velocities in channels [Fig. 8 and
Eq. (9)] and pipes [Fig. 4 and Eq. (4)] with a single universal Kármán constant. From standard
asymptotic matching principles (see Sec. I), it follows that the κ’s of the external log-regions, which
are the overlap layers or common parts of the inner and outer expansions of the three canonical
flows, must also be different and related to the different pressure gradients. Indeed, the parameters
κext and Bext of the three exterior logarithmic overlap layers U+

cp = κext ln(y+) + Bext extracted in
this study and collected in Table I, together with the additive constants C in the log-laws for U+

∞
and U+

CL, are found to be a monotonically increasing function of the favorable pressure gradient.
Furthermore, they closely follow the correlation

κextBext = 1.6 [exp(0.163 Bext) − 1], (14)

which is virtually identical to Eq. (13) of Nagib and Chauhan [9] based on a wide range of pressure
gradient boundary layers. It is worth noting that the positive curvature of the graph κextBext versus
Bext necessarily implies the monotonic increase of κext with increasing favorable pressure gradient,
which is at odds with the low κ given by Nagib and Chauhan [9] for the channel.

Beyond the correlation Eq. (14), the increase of κext relative to its value in ZPG TBL’s can now
be directly related to the Clauser pressure gradient parameter based on Reτ , β = −Reτ (dp+/dx+)
with p+ ≡ p̂/(ρ̂ û2

τ ), which is equal to 1 and 2 for channel and pipe flow, respectively. The simple
power law

κext − 0.384 = 0.029 βn, (15)
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with n = (1/3) provides a good fit for the values of κext in Table I. However, the value of (1/3) for
the exponent in Eq. (15) needs to be taken “with a grain of salt” as it is based on only two points and
the uncertainty of κext for the pipe in particular is large. If, for instance, κext for the pipe is increased
to 0.442, the exponent n in Eq. (15) increases to unity. Interestingly, 0.442 is within the error bars of
the original value of 0.436 obtained by Zagarola and Smits [14] in the Superpipe, and of the 0.437
of Fiorini [26] and the latest value of 0.446 obtained by Nagib et al. [48] in the new CICLoPE pipe.

Looking for a theoretical underpinning of the observed increase of κext with β, one may first
consider the integrated momentum balance in inner variables, in the region where the mean velocity
profile is logarithmic,

− β

Reτ

y+ + 1

κ y+ − 〈uv〉+ = 1. (16)

From the balance of the first two terms, one would conclude that the pressure gradient becomes
significant beyond a y+ of order O(Reτ /β)1/2 which is not borne out by the data. Figure 5, in
particular, clearly excludes y+

int−ext ∝ Re1/2
τ . This points to a possible indirect action of the pressure

gradient, which modifies the turbulence structures generating the Reynolds stress above y+
int−ext and

causes an adaptation of the logarithmic slope of U+ to balance the equation.
A more formal argument for the effect of β on turbulent wall-bounded flows has recently been

proposed by Luchini [49]. In his paper, Luchini generalizes Millikan’s dimensional matching
argument to parallel flows with weak pressure gradients and obtains the modified overlap
profile U+

cp = (1/κ) ln(y+) + 4.48 + A1 β (y+/Reτ ) with the parameters κ = 0.392 and A1 = 1
determined from low Reynolds number DNS without clean log regions [his Eq. (7) with g ≡ β]. The
first observation is that Luchini’s overlap profile actually steepens with increasing β. If one were to
locally fit the usual (1/κ) ln(y+) + B to Luccini’s expression, one would find κ’s that decrease with
β, which is clearly contrary to the present findings, i.e., incompatible with the observed increase of
centerline κ’s with β. The problem can be traced back to Luchini’s assertion that his Eq. (6) is the
only dimensionally correct extension of the original Millikan matching argument to weak pressure
gradients. This is because only the wall friction τ̂wall was included in the list of available dimensional
quantities to obtain a dimensionally correct Eq. (6), while the overall dimension L̂ of the flow
cross-section (pipe radius or channel half height) was excluded without good reason: replacing A1 in
Luchini’s Eq. (6) by −0.197 (L̂/ŷ) actually yields, for κ = 0.384, the present Eq. (15) with n = 1.

So, what remains of universality is the buffer layer and an interior log layer with the same (within
fitting accuracy) κint = 0.384 and additive constant Bint = 4.22 as in the ZPG TBL, as sketched
in Fig. 1. However, this region with universal U+(y+) has been found to shrink with increasing
pressure gradient: While it extends to y+

int−ext ≈ 700 in the channel, its thickness is reduced to ≈ 500
wall units in the pipe (see Table I). Note, however, that in the channel the exterior log-law, i.e., the
logarithmic overlap layer, remains “buried” in the wake at all the available H+, so that y+

int−ext ≈ 700
can only be a rough estimate. Despite the large uncertainty of these switch-over points, the trend
appears rather clear and consistent with an increasing pressure gradient becoming significant in the
momentum balance closer and closer to the wall.

The proposed double log-layer structure for wall-bounded flows with weak pressure gradients,
specifically pipe and channel flows, resolves the apparent conflict between the log-law parameters
extracted from centerline data and those obtained from near-wall velocity profiles, especially from
profiles at Reynolds numbers below Reτ ≈ 104, where in the overwhelming majority of experiments
and computations the Kármán constant κ is found to be within ±0.005 of the ZPG TBL value of 0.384.

Considering the observed trend of y+
int−ext with pressure gradient, one may speculate that the

interior logarithmic region will disappear for pressure gradients not much larger than in the pipe.
Conversely, one would expect an expansion of the universal interior logarithmic region when
reducing the pressure gradient below the channel value. Exploring these ideas experimentally appears
exceedingly difficult, but it may be interesting to explore high Reynolds number channel flows with
artificially altered friction on one of the walls by high resolution DNS.
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APPENDIX A: MODIFIED MUSKER FIT FOR THE INNER PART OF THE ZPG TBL

For convenience, the “Musker” fit for the inner part U+(y+) of the ZPG TBL mean velocity
profile up to and including the logarithmic overlap layer, as modified by Chauhan et al. [18] is
reproduced below:

U+
inner,ZPG = 1

κ
ln

(
y+ + a

a

)
− γ 2

a(4α + a)

[
(4α − a) ln

(
a
√

(y+ − α)2 + β2

γ (y+ + a)

)

+ α(4α − 5a)

β
arctan

(
βy+

α2 + β2 − αy+

)]
+ 1

2.85
exp[− ln2(y+/30)], (A1)

with α = (a − 1/κ)/2, β = √
2aα − α2 and γ =

√
α2 + β2. With κ = 0.384 and a = 10.3538, the

common part of inner and outer expansions is given by Eq. (2).

APPENDIX B: AN ATTEMPT TO FIT THE SUPERPIPE DATA
WITH THE ZPG TBL OVERLAP LAYER

As discussed in Secs. I and III, the asymptotic matching argument for equal κ’s in Eq. (4) for
the pipe centerline velocity and in the overlap layer adjacent to the wake hinges on the assumption
that the outer expansion can be limited to two terms of order O(ln R+) and O(1). This assumption
is strongly supported by the following failed attempt to develop an outer expansion, which has the
same common part, Eq. (2), as the ZPG TBL.

Starting again with the centerline, the fit proposed by Monkewitz and Nagib [13],

U+
CL,alt = 1

0.384
ln(R+) + 2.35 + 22

ln(R+)
, (B1)

is seen in Fig. 10 to be as good as Eq. (4) over the R+-range of available data.
A general outer fit reducing to Eq. (B1) on the centerline is

U+
alt outer,P = 1

0.384
ln

{
5.05

0.5 π
R+ sin

(
π Y

2

)}
+ f (Y ) + g(Y )

ln(R+)
, (B2)

implying that f (1) = −0.69 and g(1) = 22. If the fit by Eq. (B2) is to be universal, f and g must be
universal functions of Y . They can be determined from pairs of experimental profiles U+

P − U+
inner,ZPG

in Fig. 5. The results for f and g, obtained by pairing the seven lowest and the six highest R+ with

FIG. 10. Superpipe Pitot centerline velocities minus U+
CL,alt [Eq. (B1)] versus R+. •, ◦, same as in Fig. 4.

· − · (red), ±0.5% of U+
CL,alt.
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FIG. 11. f (Y ) and g(Y ) of the alternate outer fit Eq. (B2) obtained by pairing the seven lowest and the
six highest R+ of Fig. 5 with the reference 11th profile (R+ = 4.21 × 104). , f (1) = −0.69 and g(1) = 22
required to match the centerline fit [Eq. (B1)]. Other symbols as in Fig. 5.

the 11th profile for R+ = 4.21 × 104 as reference and using only data for y+ > 200, are seen in
Fig. 11 to be rather noisy. Nevertheless, the figure clearly shows that the data are not compatible
with universal f (Y ) and g(Y ) in Eq. (B2). The difference between the f (Y ) obtained from low and
high Reynolds number profiles is particularly marked in the region Y � 0.1, i.e., in the region of
the exterior log region of Fig. 5 with κ = 0.42, where the difference between f (Y ) from low and
high Reynolds number pairs reaches 2, whereas the new fit in Sec. III fits the data within ±0.2, as
seen in Fig. 7(b). Of course, one could try gauge functions other than (1/ ln R+) in Eqs. (B1) and
(B2), but it is clear that no corrective term in the outer expansion with a gauge function � 1 can
properly describe a function of the inner variable alone, such as the deviation Eq. (5) from the ZPG
TBL log-law.
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