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Exact statistical equations are derived for turbulent advection of a passive scalar
having diffusivity much larger than the kinematic viscosity, i.e., small Schmidt number.
The equations contain all terms needed for precise direct numerical simulation (DNS)
quantification. In the appropriate limit, the equations reduce to the classical theory for
which the scalar spectrum is proportional to the energy spectrum multiplied by k−4,
which, in turn, results in the inertial-diffusive range power law, k−17/3. The classical theory
was derived for the case of isotropic velocity and scalar fields. The exact equations are
simplified for less restrictive cases: (1) locally isotropic scalar fluctuations at dissipation
scales with no restriction on symmetry of the velocity field, (2) isotropic velocity field
with averaging over all wave-vector directions with no restriction on the symmetry of
the scalar, motivated by that average being used for DNS, and (3) isotropic velocity field
with axisymmetric scalar fluctuations, motivated by the mean-scalar-gradient-source case.
The equations are applied to recently published DNSs of passive scalars for the cases
of a freely decaying scalar and a mean-scalar-gradient source. New terms in the exact
equations are estimated for those cases and are found to be significant; those terms cause
the deviations from the classical theory found by the DNS studies. A new formula for
the mean-scalar-gradient case explains the variation of the scalar spectra for the DNS
of the smallest Schmidt-number cases. Expansion in Legendre polynomials reveals the
effect of axisymmetry. Inertial-diffusive-range formulas for both the zero- and second-order
Legendre contributions are given. Exact statistical equations reveal what must be quantified
using DNS to determine what causes deviations from asymptotic relationships.
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I. INTRODUCTION

Batchelor, Howells, and Townsend (BHT) [1] derived a theory for the spectrum of a scalar having
a small Schmidt number (Sc) in isotropic turbulence: Sc ≡ ν/D, where ν is kinematic viscosity and
D is molecular diffusivity. If the scalar is heat, i.e., temperature, then the Prandtl number Pr ≡ ν/D

is relevant, where D is thermal diffusivity. The BHT derivation was for freely decaying scalar
fluctuations. For the asymptotic case of large Peclet number, Pe, and large Reynolds number, Re,
and very small Sc, they obtained Eφ(k) = (χ/3D3)k−4E(k), where Eφ(k) is the scalar’s spectrum,
E(k) is the energy spectrum, and χ is the scalar-variance dissipation rate. A further asymptote is:
if the energy spectrum has an inertial range, E(k) ∝ k−5/3, then an inertial-diffusive range can exist
for which Eφ(k) ∝ k−17/3. Clay [2] measured temperature fluctuations in turbulent mercury for
which Pr = 0.018. Howells’ [3] model of the scalar spectrum applies to any Sc and contains the
BHT theory for Sc � 1. A solution of Howells’ model resulted in finding that “the inertial-diffusive
range asymptotic form, k−17/3, cannot appear even for Pr as small as that of mercury (Pr = 0.018)”
[4], which agreed with a previous modeling study [5] that stated “the inertial-diffusive range
of temperature fluctuations in mercury (Pr � 0.02) is of very limited extent” and “a convincing
measurement of an inertial-diffusive range would require ν/D � 10−3 .” Verification of those
statements was obtained from DNS [6,7] (direct numerical simulation) which shows Eφ(k) osculating
k−17/3 for Sc = 1/128 = 7.8 × 10−3 and a clear Eφ(k) ∝ k−17/3 for Sc � 1/512 = 2 × 10−3. [6]

DNSs of scalar fluctuations that are freely decaying [6] and those produced from a mean scalar
gradient [7] have shown deviations from the BHT asymptotic formulas; such deviations likely
result from the limited Pe attainable from existing computers. [6,7] What must be calculated to
quantify those deviations is determined herein. Yeung and Sreenivasan [6] (hereinafter YS1) followed
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the derivation method of BHT for freely decaying scalar fluctuations; Yeung and Sreenivasan [7]
(hereinafter YS2) did not follow the derivation method of BHT for their source; that is done here.

DNS is capable of evaluating all terms in statistical equations that are derived without
approximations, i.e., exact statistical equations. Such exact equations are derived here. Other types
of sources of scalar fluctuations can be calculated in the future. Therefore, a general derivation for
any source is timely; it is given here. Exact equations reveal what must be quantified using DNS to
determine what causes deviations from asymptotic relationships. This author considers quantifying
the approach toward asymptotes more interesting than attaining the asymptote; that perspective
supports alleviating the computational difficulties [6,7] of very small Sc.

Bos et al. [8] calculated two-dimensional (2D) turbulence with a uniform mean scalar gradient
of magnitude G and deduced, in their equations (30) and (31), that Eφ(k) = (G2/3D2)k−4E(k) and
Eφ(k) ∝ (G/D)2ε2/3k−17/3 for Sc � 1. They show the k−17/3 power law in their Fig. 5. Bos [9]
formulates the scalar advection in terms of an isotropic vector field for the case of a uniform mean
scalar gradient and obtains results in terms of isotropic and second-order Legendre polynomials.
Herr et al. [10] use an eddy damped quasinormal Markovian (EDQNM) calculation for the case
of a uniform mean scalar gradient for a range of Sc values; for Sc = 8 × 10−3 they show the
−17/3 power law in their Fig. 14; they also discuss anisotropy caused by a mean scalar gradient
in terms of expansion in Legendre polynomials. Both Chasnov [11] and O’Gorman and Pullin
[12] use large eddy simulation (LES) of the velocity field to create an extensive inertial range to
investigate the inertial-diffusive range of the scalar for cases of freely decaying as well as a uniform
mean-scalar-gradient source. For a uniform mean scalar gradient G, Chasnov [11] finds that the
BHT formula must be modified by replacing χ with the factor (χ + 2DG2); that factor is also in
Eq. (3.17) of O’Gorman and Pullin [12], who derive it based on an asymptotic approximation in
their Appendix A. Herein, that factor is obtained effortlessly without approximation and appears
below as 1 + D/DT and 1 + DT /D; DT /D ≡ χ/2DG2.

The derivation below retains dependence on the wave vector k such that it applies to the anisotropic
case. The wave number k appears below where the equations are to be compared with the DNS results
of YS1 [6] and YS2 [7] because they averaged over all directions of k. Herring [13] introduced the
use of Legendre-polynomial expansion to describe axisymmetry of velocity spectra. Gotoh et. al.
[14] used expansion of statistics in Legendre polynomials to investigate axisymmetric passive-scalar
advection for Pr � 1. Here, their method [14] is extended to the small-Sc case.

Further introduction is unnecessary because of the extensive introductions and literature
references given by Yeung and Sreenivasan [6,7] and Gotoh et. al. [14]. The structure of this
paper is evident from the section titles.

Statistical homogeneity and temporal stationarity have not been assumed in Sec. VI. Wherever
isotropy is used for the velocity field, homogeneity is also assumed for the velocity. Where local
isotropy is assumed for the scalar field, local homogeneity is also assumed for the scalar field. The
axisymmetric scalar case in Sec. VIII can have axially symmetric inhomogeneity (spatially periodic
for DNS), an example of which is a mean-scalar-gradient source that is constant in direction but not
in magnitude. The uniform scalar-gradient case in Secs. IX and XI is homogeneous.

II. DERIVATION GENERALIZED TO INCLUDE A SOURCE

The equation for the scalar fluctuation φ(x,t) that includes any source s(x,t) of scalar fluctuation
is [7]

∂φ

∂t
+ u · ∇φ = s + D∇2φ. (1)

The time-derivative term ∂φ/∂t and the source term s are subtracted from both sides of Eq. (1) for
reasons explained in Appendix A. In Fourier space, using incompressibility, Eq. (1) then gives

i

∫
k′
i ûi(k − k′)φ̂(k′)dk′ − ŝ(k) = −∂φ̂(k)

∂t
− Dk2φ̂(k). (2)
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Multiplying Eq. (2) by its complex conjugate and averaging, which is denoted by angle brackets,
gives 〈(

i

∫
k′
i ûi(k − k′)φ̂(k′)dk′ − ŝ(k)

)(
−i

∫
k′′
j û

∗
j (k − k′′)φ̂∗(k′′)dk′′ − ŝ∗(k)

)〉

=
〈(

−∂φ̂(k)

∂t
− Dk2φ̂(k)

)(
−∂φ̂∗(k)

∂t
− Dk2φ̂∗(k)

)〉
. (3)

The distributive law of multiplication produces many terms from Eq. (3). We define the following
simple notation (repeated subscripts imply summation over vector components) for most of the
statistics that must be evaluated using DNS:

Qφ(k) ≡ 〈φ̂(k)φ̂∗(k)〉, Q(k) ≡ 1

2
〈̂ui(k)̂u∗

i (k)〉, χ ≡ 2D

〈
∂φ

∂xi

∂φ

∂xi

〉
, (4)

T(k) ≡
〈
∂φ̂(k)

∂t

∂φ̂∗(k)

∂t

〉
, (5)

Y(k) ≡ Dk2

〈
∂φ̂(k)

∂t
φ̂∗(k) + ∂φ̂∗(k)

∂t
φ̂(k)

〉
= Dk2

〈
∂(φ̂(k)φ̂∗(k))

∂t

〉
, (6)

X(k) ≡
〈
−̂s(k)

(
−i

∫
k′
j û

∗
j (k − k′)φ̂∗(k′)dk′

)
− ŝ∗(k)

(
i

∫
k′
i ûi(k − k′)φ̂(k′)dk′

)〉
, (7)

S(k) ≡ 〈̂s(k)̂s∗(k)〉. (8)

V(k) ≡
〈∫ ∫

k′
ik

′′
j ûi(k − k′ )̂u∗

j (k − k′′)φ̂(k′)φ̂∗(k′′)dk′dk′′
〉
, (9)

Z(k) ≡ 〈̂ui(k)̂u∗
j (k)〉

〈
∂φ

∂xi

∂φ

∂xj

〉
, (10)

e2(k) ≡ V(k) − Z(k). (11)

Then Eq. (3) is

X(k) + V(k) + S(k) = T(k) + Y(k) + D2k4Qφ(k). (12)

III. DEFINITIONS OF WAVE-NUMBER SPECTRA AND COSPECTRA
AND LEGENDRE-POLYNOMIAL COEFFICIENTS

Integrating the spectral and cospectral densities in Eqs. (4)–(11) over a spherical surface in k
space defines wave-number spectra and cospectra that do not contain information about anisotropy.
Scalar and energy wave-number spectra are defined by

Eφ(k) ≡
∫ 2π

0
dϕ

∫ π

0
dθk2 sin(θ )Qφ(k), E(k) ≡

∫ 2π

0
dϕ

∫ π

0
dθk2 sin(θ )Q(k), (13)

wherein ϕ and θ are the azimuthal and polar angles of vector k. To avoid many new symbols, let

T (k), Y (k), X(k), S(k), V (k), Z(k), e2(k), 
axiφ(k), etc., (14)

denote the wave-number spectra and cospectra obtained by integrating, as in Eq. (13), the spectral
and cospectral densities in Eqs. (5)–(11) and Eq. (43), etc. Integrating Eq. (12) over a spherical
surface in k space, as in Eq. (13), gives

X(k) + V (k) + S(k) = T (k) + Y (k) + D2k4Eφ(k). (15)
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For axisymmetry, Qφ(k) can be expressed as a function of k and μ ≡ cos(θ ); hence, as Qφ(k,μ)
such that the integral over ϕ in Eq. (13) gives 2π . Write Qφ(k,μ) as an expansion in Legendre
polynomials denoted by

Qφ(k,μ) = Q0th
φ (k)P0(μ) + Q1st

φ (k)P1(μ) + Q2nd
φ (k)P2(μ) + · · ·, (16)

wherein the Q0th
φ (k), Q1st

φ (k), Q2nd
φ (k), etc., are the coefficients of the expansion, and the Legendre

polynomials are P0(μ) = 1, P1(μ) = μ, P2(μ) = (3μ2 − 1)/2, etc. Substitution of Eq. (16) into
Eq. (13) causes only the 0th order to be nonzero. Then

Eφ(k) = 4πk2Q0th
φ (k). (17)

For axisymmetry, every quantity in Eq. (14) is their zero-order Legendre-polynomial coefficient
multiplied by 4πk2; e.g.,

T (k) = 4πk2T 0th(k), Y (k) = 4πk2Y 0th(k), . . . , 
axiφ(k) = 4πk2
0th
axiφ(k), etc. (18)

IV. ISOTROPIC RELATIONSHIPS

For isotropy, Qφ(k) and Q(k) are functions of k such that Eq. (13) becomes

Eφ(k) = 4πk2Qφ(k), E(k) = 4πk2Q(k). (19)

For isotropy, 〈̂ui(k)̂u∗
j (k)〉 has a simple form that follows from the incompressibility condition

kiûi(k) = 0 (i.e., the component of ûi(k) parallel to k is zero); namely,

〈̂ui(k)̂u∗
j (k)〉 =

(
δij − kikj

k2

)
E(k)

4πk2
, (20)

from which 4πk2〈̂ui(k)̂u∗
i (k)〉 = 2E(k), ki 〈̂ui(k)̂u∗

j (k)〉 = 0, etc.

V. BHT ASYMPTOTIC ASSUMPTIONS

Batchelor, Howells, and Townsend [1] made three assumptions that are clearly described by
YS1 [6]. The first BHT assumption is to neglect the time-derivative term in Eq. (2); here, that
is equivalent to T(k) = 0, and Y(k) = 0; we do not apply the first BHT assumption because we
derive exact statistical equations for precise DNS analysis. The second BHT assumption is statistical
independence of scalar fluctuations and velocity field; i.e., “decoupling of velocity and scalar
modes” [6], and that velocity contributes to V(k) at relatively high wave numbers, and that the scalar
contributes to V(k) at relatively low wave numbers [6]. Combined with orthogonality of the Fourier
components (see YS1 [6]), which follows from assuming homogeneity, the second BHT assumption
gives (see YS1 [6])

V(k) = 〈̂ui(k)̂u∗
j (k)〉

〈
∂φ

∂xi

∂φ

∂xj

〉
+ e2(k) ≡ Z(k) + e2(k). (21)

Here, we retain the error of assumption 2, namely, e2(k); e2(k) must be evaluated from Eq. (11)
using DNS such that our statistical equations remain exact (hence independent of the assumption of
homogeneity). The third BHT assumption is isotropy of velocity and scalar fields at all scales; we
do not assume isotropy.

Integrating Eq. (21) over the spherical surface in k space, as in Eq. (13), and using notation
Eq. (14) gives

V (k) = Z(k) + e2(k). (22)
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VI. LOCAL ISOTROPY OF THE SCALAR FIELD AT DISSIPATION SCALES
WITH NO RESTRICTION ON THE VELOCITY FIELD

Assuming local isotropy of the scalar field at dissipation scales such that〈
∂φ

∂xi

∂φ

∂xj

〉
= 1

3
δij

〈
∂φ

∂xn

∂φ

∂xn

〉
= 1

3
δij

χ

2D
, (23)

substitution of which into Eq. (21) and using 〈̂ui(k)̂u∗
j (k)〉δij = 〈̂ui(k)̂u∗

i (k)〉 = 2Q(k) gives

V(k) = Q(k)
χ

3D
+ eisoφ(k) + e2(k), (24)

where

eisoφ(k) ≡ 〈̂ui(k)̂u∗
j (k)〉

〈
∂φ

∂xi

∂φ

∂xj

〉
− Q(k)

χ

3D
. (25)

Since substituting Eq. (25) into Eq. (24) reproduces Eq. (21), we see that eisoφ(k) is the error of
assuming local isotropy of the scalar field at dissipation scales; i.e., Eq. (23), as well as inhomogeneity,
if any; eisoφ(k) must be evaluated from Eq. (25) using DNS such that our statistical equation remains
exact. Substitute Eq. (24) into Eq. (12) and divide by D2k4. Then Eq. (12), which is the same as
Eq. (3), can be written, without approximation, as

∑
isoφ(k) + S(k)

D2k4
+ Q(k)

χ

3D3k4
= Qφ(k), (26)

∑
isoφ(k) ≡ −T(k) − Y(k) + X(k) + eisoφ(k) + e2(k)

D2k4
. (27)

The subscript isoφ on two quantities above is a mnemonic for this locally isotropic scalar case; the
other quantities could have that subscript; that excessive notation is avoided here and similarly in the
following sections as well. Note that Eqs. (26) and (27) are obtained without any assumption about
the symmetry of the velocity field, e.g., without isotropy, and there is no assumption about symmetry
of the scalar field except at dissipation scales. Gathering five statistics into

∑
isoφ(k) in Eq. (27) is

useful because
∑

isoφ(k) will be shown below to be the deviation from asymptotic formulas.

VII. ISOTROPIC VELOCITY FIELD WITH NO RESTRICTION ON THE SCALAR FIELD
AND THE OUTCOME OF AVERAGING OVER ALL DIRECTIONS OF k

The DNS velocity fields in YS1 [6] and YS2 [7] are isotropic, and their average includes averaging
over all directions of k. Substituting Eq. (20) into the first term in Eq. (21) gives

〈̂ui(k)̂u∗
j (k)〉

〈
∂φ

∂xi

∂φ

∂xj

〉
=

(
δij − kikj

k2

)
E(k)

4πk2

〈
∂φ

∂xi

∂φ

∂xj

〉
=

(
χ

2D
− kikj

k2

〈
∂φ

∂xi

∂φ

∂xj

〉)
E(k)

4πk2
.

(28)

Integrating kikj /k2 over a spherical surface in k space, as in Eq. (13), gives zero if i �= j and 4πk2/3
if i = j , i.e., (4πk2/3)δij . Then,∫ 2π

0
dϕ

∫ π

0
dθk2 sin(θ )

(
χ

2D
− kikj

k2

〈
∂φ

∂xi

∂φ

∂xj

〉)
E(k)

4πk2
= χ

3D
E(k). (29)

Thus, that same integration applied to Eq. (21) and using the notation in Eq. (14) gives

V (k) = E(k)
χ

3D
+ eisou(k) + e2(k), (30)
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where

eisou(k) ≡ Z(k) − E(k)
χ

3D
. (31)

Substituting Eq. (31) into Eq. (30) reproduces Eq. (22); thus, we see that eisou(k) is the error of
assuming isotropy of the velocity field combined with an average over all directions of k, as well as
inhomogeneity, if any. To retain exact statistical equations, eisou(k) must be evaluated from Eq. (31).

Substituting Eq. (30) into Eq. (15) and dividing by D2k4 gives


isou(k) + S(k)

D2k4
+ E(k)

χ

3D3k4
= Eφ(k), (32)


isou(k) ≡ −T (k) − Y (k) + X(k) + eisou(k) + e2(k)

D2k4
. (33)

The statistics in Eqs. (26) and (27) are spectral and cospectral densities, whereas the statistics in
Eqs. (32) and (33) are wave-number spectra and cospectra. That difference is very significant because
Eqs. (32) and (33) rely on averaging over all directions of k, whereas Eqs. (26) and (27) do not.
Thus, Eqs. (26) and (27) are applicable to investigation of anisotropy effects; Eqs. (32) and (33) are
not. Note that Eqs. (32) and (33) require no assumption about the symmetry of the scalar field, in
contrast to Eqs. (26) and (27).

VIII. AXISYMMETRIC SCALAR FLUCTUATIONS WITH ISOTROPIC VELOCITY FIELD

Consider that the source s(x,t) of the scalar has a single axis of symmetry, such as the direction
of a spatially uniform mean scalar gradient. That gradient can be time dependent. Alternatively, the
scalar fluctuations could be axisymmetric and freely decaying, etc. A unit vector in the direction
of that axis is denoted z and kz ≡ z · k = k cos(θ ); θ is the angle between z and k. In this section,
the average cannot be over all directions of k, although averaging over directions of k that are
perpendicular to z can be applied. Also,

k2
z

k2
= cos2(θ ) = μ2, where μ ≡ cos(θ ). (34)

Statistics can be given as functions of arguments k,kz, or equivalently, k,θ , or k,μ as simplifications
to dependence on k. Below, for statistics that depend on the isotropic velocity field, but not on the
scalar fluctuation, the argument is k only. With x and y the coordinate axes perpendicular to z, we
have

∂φ

∂xi

∂φ

∂xi

= ∂φ

∂z

∂φ

∂z
+ ∂φ

∂x

∂φ

∂x
+ ∂φ

∂y

∂φ

∂y
. (35)

The ratio of parallel to perpendicular scalar-gradient variances is

gφ ≡
〈
∂φ

∂z

∂φ

∂z

〉/〈
∂φ

∂x

∂φ

∂x

〉
=

〈
∂φ

∂z

∂φ

∂z

〉/
1

2

〈
∂φ

∂x

∂φ

∂x
+ ∂φ

∂y

∂φ

∂y

〉
. (36)

Within Eq. (21) we have the contraction of an isotropic second-rank tensor 〈̂ui(k)̂u∗
j (k)〉 with an

axisymmetric second-rank tensor 〈 ∂φ

∂xi

∂φ

∂xj
〉; the result is given in Appendix B as follows:

〈̂ui(k)̂u∗
j (k)〉

〈
∂φ

∂xi

∂φ

∂xj

〉
= χ

3D

E(k)

4πk2
− P2(μ)F

χ

3D

E(k)

4πk2
, (37)

wherein

P2(μ) = 3

2
cos2(θ ) − 1

2
= 3

2

(
μ2 − 1

3

)
(38)
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is the second-order Legendre polynomial, and

F ≡ gφ − 1

gφ + 2
. (39)

The new term proportional to F in Eq. (37) arises because of the axisymmetry of the scalar field
at dissipation scales independent of the cause of that axisymmetry. Local isotropy of the scalar at
dissipation scales corresponds to gφ = 1 [see Eq. (36)], in which case, from Eq. (39) F = 0. Note
that the two terms in Eq. (37) are zero- and second-order terms of a Legendre-polynomial expression.
Substitute Eq. (37) into Eq. (21); then the exact equation for V(k,μ) is

V(k,μ) = χ

3D

E(k)

4πk2
− P2(μ)F

χ

3D

E(k)

4πk2
+ eaxiφ(k,μ) + e2(k,μ), (40)

where

eaxiφ(k,μ) ≡ 〈̂ui(k)̂u∗
j (k)〉

〈
∂φ

∂xi

∂φ

∂xj

〉
−

[
χ

3D

E(k)

4πk2
− P2(μ)F

χ

3D

E(k)

4πk2

]
. (41)

Since substituting Eq. (41) into Eq. (40) reproduces Eq. (21), we see that eaxiφ(k,μ) is the error of
assuming local axisymmetry of the scalar field and isotropy of the velocity field; eaxiφ(k,μ) must be
calculated from DNS to maintain exact statistical equations. Substitute Eq. (40) into Eq. (12) and
divide by D2k4; then the exact theory for axisymmetric scalar fluctuations at dissipation scales with
an isotropic velocity field is

∑
axiφ(k,μ) + S(k,μ)

D2k4
+ E(k)

4πk2

χ

3D3k4
− E(k)

4πk2
P2(μ)F

χ

3D3k4
= Qφ(k,μ), (42)

∑
axiφ(k,μ) ≡ −T(k,μ) − Y(k,μ) + X(k,μ) + eaxiφ(k,μ) + e2(k,μ)

D2k4
. (43)

If the scalar is locally isotropic at dissipation scales, i.e., F = 0, then Eqs. (42) and (43) become
Eqs. (26) and (27), except E(k)/4πk2 appears in Eq. (42) instead of Q(k) in Eq. (26) because the
velocity field is assumed isotropic to obtain Eqs. (42) and (43). An average over all directions of k,
as in Eq. (13), includes an average over θ from 0 to π such that the average of P2(μ) is 0 and also
eliminates dependence on μ; then Eqs. (42) and (43) become Eqs. (32) and (33).

IX. UNIFORM SCALAR-GRADIENT SOURCE WITH ISOTROPIC VELOCITY FIELD

Applying Reynolds decomposition to the equation for a scalar � = �0 + φ, where �0 is the mean
and φ is the scalar fluctuation, the advective term gives u · ∇� = u · ∇�0 + u · ∇φ, which would
appear on the left side of Eq. (1). Hence, the source on the right side of Eq. (1) is s(x,t) = −u · ∇�0,
as in YS2 [7]. Let the scalar mean gradient be uniform of magnitude G ≡ |∇�0| and in the direction
of unit vector z, and uz ≡ z · u = ziui ; then s(x,t) = −Gziui in Eq. (1), and using Eq. (20), Eq. (8)
gives

S(k) = S(k,μ) = G2zizj 〈̂ui(k)̂u∗
j (k)〉 = G2zizj

(
δij − kikj

k2

)
E(k)

4πk2

= G2(1 − μ2)
E(k)

4πk2
= 2

3
G2 E(k)

4πk2
− 2

3
G2P2(μ)

E(k)

4πk2
. (44)

We used 1 − μ2 = 2
3 − 2

3 [ 3
2 (μ2 − 1

3 )] = 2
3 − 2

3P2(μ). From Eq. (38), P2(μ) is the second-order
Legendre polynomial, and the two terms in Eq. (44) are the first two terms of a Legendre-polynomial
expansion. This Eq. (44) is similar to Eq. (36) of Herr et al. [10]. Whereas Eq. (37) contains a term
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containing P2(μ)F caused by local axisymmetry of scalar-gradient variances, which might vanish
at infinite Peclet number, Eq. (44) contains the direct effect of the mean scalar gradient that is also
proportional to P2(μ), which is expected to not vanish at infinite Peclet number. The integration of
Eq. (44) over a spherical surface in k space, as in Eq. (13), gives the wave-number spectrum

S(k) = 2

3
G2E(k). (45)

Consider the study of anisotropy using expansion in Legendre polynomials as was done by
Gotoh et al. [14]. Expansion in Legendre polynomials reveals the anisotropy of Qφ(k,μ) and makes
clear what would be discarded by averaging over all directions of k. Averaging over directions of
k perpendicular to the mean scalar gradient can be applied. Below, only zero- and second-order
Legendre polynomials appear; however, if

∑
axiφ(k,μ) is not neglected, then that term can generate

nonzero Legendre-polynomial terms in Qφ(k,μ) of even order fourth and greater, as well as modify
the zero- and second-order Legendre-polynomial terms in Qφ(k,μ). Herr et. al. [10] state that
“the total root mean square fluctuation is conserved by the angular redistribution.” A uniform
scalar-gradient source causes the scalar fluctuations to be axisymmetric; also, the DNS velocity field
is isotropic. Then Eqs. (42) and (43) apply with S(k,μ) as in Eq. (44). Substituting Eq. (44) into
Eq. (42) and neglecting

∑
axiφ(k,μ) and multiplying by 4πk2, Eq. (42) becomes

E(k)

(
χ

3D3k4
+ 2

3

G2

D2k4

)
− E(k)P2(μ)

(
F

χ

3D3k4
+ 2

3

G2

D2k4

)
= 4πk2Qφ(k,μ). (46)

Factoring from Eq. (46) the BHT formula, i.e., Eφ(k) = (χ/3D3)k−4E(k), and using the definition
of DT /D in Eq. (62), then Eq. (46) becomes

4πk2Qφ(k,μ) = (χ/3D3)k−4E(k)

[(
1 + D

DT

)
− P2(μ)

(
F + D

DT

)]
(47)

= 4πk2Q0th

φ (k) + P2(μ)4πk2Q2nd

φ (k). (48)

In Eq. (48) we have defined the zero- and second-order coefficients of the expansion of 4πk2Qφ(k,μ)
in Legendre polynomials as follows:

4πk2Q0th

φ (k) = Eφ(k) = (χ/3D3)k−4E(k)

(
1 + D

DT

)
, (49)

4πk2Q2nd

φ (k) = −(χ/3D3)k−4E(k)

(
F + D

DT

)
. (50)

Of course, Q0th

φ (k) and Q2nd

φ (k) are not functions of μ. Consider the case of local isotropy of
scalar gradients (i.e., F → 0) and the mean-squared scalar gradient much greater than G2 (i.e.,
D/DT → 0), then Eφ(k) = 4πk2Q0th

φ (k) → (χ/3D3)k−4E(k) and 4πk2Q2nd

φ (k) → 0. That is, the

BHT formula is obtained provided that
∑

axiφ(k,μ) is negligible. The ratio of −Q2nd

φ (k) to Q0th

φ (k) is

a ≡ −Q2nd

φ (k)

Q0th

φ (k)
= F + D

DT

1 + D
DT

, (51)

which does not depend on k, provided that
∑

axiφ(k,μ) is negligible. The term
∑

axiφ(k,μ) can cause
a to depend on k as well as cause higher-order Legendre polynomial terms in 4πk2Qφ(k,μ); that is
similar to the effect of those EDQNM terms in Herr et al. [10] that “redistribute the scalar in the
angular direction in k space.”
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Inertial-diffusive range formulas are obtained by substituting the inertial-range formula E(k) =
CKε2/3k−5/3 into Eq. (47) or equivalently into Eqs. (49) and (50). We obtain

4πk2Q0th

φ (k) = Eφ(k) = CK

3
χε2/3D−3k−17/3

(
1 + D

DT

)
, (52)

4πk2Q2nd

φ (k) = −CK

3
χε2/3D−3k−17/3

(
F + D

DT

)
. (53)

The dependence of Eqs. (52) and (53) on F and D/DT shows that Rλ can be large enough to give an
inertial range, but if Sc is small enough, then Pe can be sufficiently small that the assumed asymptotic
conditions F → 0 and D/DT → 0 are not fulfilled.

X. FREELY DECAYING SCALAR FLUCTUATIONS

For a freely decaying scalar, this section considers the locally isotropic scalar and thus Eqs. (26)
and (27). For freely decaying scalar fluctuations, s(x,t) = 0 such that X(k) = 0, and S(k) = 0 such
that Eqs. (26) and (27) become ∑

isoφ(k) + Q(k)
χ

3D3k4
= Qφ(k), (54)

∑
isoφ(k) = −T(k) − Y(k) + eisoφ(k) + e2(k)

D2k4
. (55)

Spectral and cospectral densities appear in Eq. (54) and (55) rather than wave-number spectra
and cospectra because we do not assume isotropy of the scalar at all wave vectors. If

∑
isoφ(k) is

neglected, and Eq. (54) is integrated over a spherical surface in k space, as in Eq. (13), then Eq. (54)
becomes the BHT theory; i.e., Eφ(k) = (χ/3D3)k−4E(k).

A. Comparison with DNS of freely decaying scalar fluctuations with averaging over all directions of k

The freely decaying case has been investigated using DNS by YS1 [6], where the velocity field is
isotropic and the scalar fluctuations became more isotropic as time increased. They integrate over a
spherical surface in k space, as in Eq. (13); if the scalar field is anisotropic, then only the zero-order
Legendre-polynomial term remains. Performing that integration on Eqs. (54) and (55) gives the
wave-number spectral result


isoφ(k) + E(k)
χ

3D3k4
= Eφ(k), (56)


isoφ(k) = −T (k) − Y (k) + eisoφ(k) + e2(k)

D2k4
. (57)

They state the inertial range formula E(k) = CKε2/3k−5/3, and CK = 1.62. Substituting E(k) =
CKε2/3k−5/3 in Eq. (56) results in the BHT inertial-diffusive range formula

Eφ(k) = CK

3
χε2/3D−3k−17/3 + 
isoφ(k), (58)

which agrees with Eq. (1.1) of YS1 [6] if 
isoφ(k) is neglected.
Of the terms in Eq. (57), YS1 [6] graph T (k); T (k) is seen to be negligible for Sc = 1/512 and

Sc = 1/2048 in their Figs. 4(b) and 5. The freely decaying DNS is statistically steady for the velocity
but not for the scalar. If the average does not include a time average, then Y (k) = Dk2∂Eφ(k)/∂t �= 0
(if the average does include a time average, see Sec. VII of Hill [15]). From Eqs. (56) and (57) we
want to determine if Y (k)/D2k4 is small relative to Eφ(k); the ratio of those two quantities is

[Y (k)/D2k4]/Eφ(k) = [∂Eφ(k)/∂t]/Dk2Eφ(k) = 1

Dk2

∂ ln[Eφ(k)]

∂t
. (59)
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YS1 [6] find that after a transient period, the scalar variance decays approximately exponentially. Let
the exponential decay be proportional to exp (−t/τ ); Fig. 1(a) of YS1 can be used to give τ = 1.7TE

for Sc = 1/512 and τ = 0.90TE for Sc = 1/2048, where TE is their large-eddy turnover time. With
exp (−t/τ ) as an estimate for the decay of Eφ(k), we have ∂ ln [Eφ(k)]/∂t = −1/τ such that Eq. (59)
is −1/Dk2τ . The estimate by BHT is that 1/Dk2 � τ , so that 1/Dk2τ is very small. Although we
expect that the time scale of Eφ(k) decreases relative to the time scale of the scalar variance with
increasing k, 1/Dk2 also decreases with increasing k. Hence, from Eq. (59), Y (k)/D2k4 is small
relative to Eφ(k) in Eqs. (56) and (57); quantification of Y (k) by DNS is desirable. The comparison
of the right side of equation (4.5) in YS1 [6] with the spectral density of the advective term V (k)
(triangles and diamonds in their Figs. 4 and 5) suggests that e2(k)/D2k4 is small relative to Eφ(k).
The isotropy of their DNS and their average over all directions of k causes eisoφ(k) to be negligible.
Therefore, all terms in Eq. (57) are expected to be much smaller than the other terms in Eq. (56);
thus, 
isoφ(k) is a relatively small term in Eq. (56).

In their Fig. 7, YS1 [6] show the ratio of the two right-most terms in Eq. (56), namely,
Eφ(k)/[E(k)χ/(3D3k4)]. The deviations from unity in that figure are caused by 
isoφ(k) in Eq. (57);
that cannot be otherwise (unless there is a computational error) because Eqs. (56) and (57) are
obtained without approximation. In the inertial range, near kη = 0.05, their Fig. 7(b) shows
about 50% and 20% deviation from the BHT formula for Sc = 1/512 and 1/2048, respectively.
With reference to their Fig. 3(d), they state an approximately 20% deviation relative to the BHT
inertial-diffusive range formula (CK/3)χε2/3D−3k−17/3 in Eq. (58) for Sc = 1/2048; that deviation
is caused by 
isoφ(k). Their Fig. 3(d) shows little deviation from the −17/3 power law at kη = 0.05
for Sc = 1/512 and 1/2048, which suggests that 
isoφ(k) has a nearly −17/3 power law in an
inertial-diffusive range. Quantification of 
isoφ(k) and its constituent terms is needed to understand
their observed deviations from BHT theory.

Chasnov [11] calculates an LES-velocity-field simulation to obtain extensive inertial-diffusive
ranges. Note that his values of Sc are not known; but he states that they are much less than unity.
Consider his Fig. 3(b) that shows the scalar spectrum for the freely decaying case. At wave numbers
corresponding to the inertial range in YS1 [6], his scalar spectra are above the BHT inertial-diffusive
range formula by amounts that are very similar to those in Fig. 3 of YS1 for their smaller Sc =
1/512 and 1/2048. Furthermore, Chasnov’s Fig. 3(b) shows that the scalar spectra are close to the
BHT inertial-diffusive range formula for k/kC−O � 40, where kC−O ≡ (ε/D3)

1/4 = Sc3/4/η and
η ≡ (ν3/ε)

1/4
. For Sc = 1/512, k/kC−O = 40 is kη = 0.37, and for Sc = 1/2048, kη = 0.13. At

those two wave numbers for those smallest Sc values, we see in Fig. 7 of YS1 [6] that their scalar
spectra are also close to the BHT inertial-diffusive range formula. That is so despite the fact that
kη = 0.37 and 0.13 are in the energy spectrum’s dissipation range for the DNS of YS1.

XI. MEAN-SCALAR-GRADIENT CASE WITH AVERAGING OVER ALL DIRECTIONS OF k

The mean scalar gradient causes the scalar fluctuations to be axisymmetric such that the required
equations are Eqs. (42) and (43). Now consider the DNS of the mean-uniform-scalar-gradient case
by YS2 [7], who used the integral over a spherical surface in k space, as in Eq. (13). That integration
causes the terms containing P2(μ) in Eqs. (42) and (44) to be zero; e.g., S(k,μ) becomes Eq. (45).
Also, only the zero-order Legendre-polynomial term is nonzero for all quantities, as in Eqs. (17)
and (18). Thus, all statistics become wave-number statistics having argument k, not k,μ. After
multiplying by 4πk2 and using Eqs. (17) and (18), Eqs. (42) and (43) become


axiφ(k) + E(k)

(
2G2

3D2k4
+ χ

3D3k4

)
= Eφ(k), (60)


axiφ(k) = −T (k) − Y (k) + X(k) + eaxiφ(k) + e2(k)

D2k4
. (61)
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TABLE I. Values obtained from Table III of YS2 [7]; note that Pe = ReSc, and Re = R2
λ/15. F and a are

calculated from DT /D and gφ .

Rλ 140 140 240 240 240 390
Sc 1/128 1/512 1/128 1/512 1/2048 1/2048
Pe 11 2.8 32 7.9 2.0 4.9
DT /D 3 0.4 7.4 1.38 0.17 0.66
gφ 0.91 0.66 1.03 0.79 0.63 0.61
F −0.031 −0.13 0.01 −0.075 −0.14 −0.15
a 0.23 0.68 0.13 0.70 0.87 0.54

With neglect of 
axiφ(k), Eq. (60) retains the proportionality Eφ(k) ∝ k−4E(k) of the BHT theory.
If G = 0 and 
axiφ(k) is neglected, then Eq. (60) is the BHT theory; i.e., Eφ(k) = (χ/3D3)k−4E(k).

A. Comparison with DNS having a uniform scalar-gradient source
with averaging over all directions of k

The uniform mean-scalar-gradient case was calculated using DNS by YS2 [7], who had an
isotropic velocity field. Although Eq. (23) is reasonable for very large Pe, for the anisotropic
(axisymmetric) case of production by a mean scalar gradient, YS2 show in their Table III that
Pe = R2

λSc/15 is not large for the smaller Sc cases and that the ratios of scalar-gradient variances
Eq. (36) (i.e., gφ in their Table III) are not near equality for those smaller Sc cases. That is, local
isotropy of the scalar field at dissipation scales and therefore Eq. (23) are not accurate for those DNS
cases of smaller Sc.

They [7] averaged over all directions of k such that Eqs. (60) and (61) apply. In their Fig. 8, YS2
show that T (k) is negligible for Sc = 1/2048; see also their Figs. 9(c) and 9(d) for their other Sc
cases. The uniform scalar-gradient-source DNS of YS2 is statistically steady. Hence, if the average
does not include a time average, then Y (k) = Dk2∂Eφ(k)/∂t = 0. (If the average does include a time
average, see Sec. VII of Hill [15]). From Eqs. (60) and (61) we want to compare Y (k)/D2k4 with
Eφ(k); the ratio, {[Y (k)/D2k4]/Eφ(k)} ÷ 2, i.e., [∂Eφ(k)/∂t]/[2Dk2Eφ(k)], is plotted in Fig. 13 of
YS2 [7]; that ratio is seen to be very close to zero. Therefore, Y (k)/D2k4 is either zero or very
small relative to Eφ(k). In Fig. 8 of YS2, the spectrum of the advective term is about 1/8 of the
gradient-production spectrum; see also their Fig. 9(b) versus Figs. 9(a) and 9(c) for their smaller Sc.
Hence, the assertion that the gradient-production-advective cospectrum X(k)/D2k4 is small relative
to Eφ(k) is less certain; DNS quantification is needed. For the same reasons given in Sec. IX A,
eaxiφ(k)/D2k4 and e2(k)/D2k4 are expected to be small relative to Eφ(k). This concludes discussion
of all terms in 
axiφ(k) in Eq. (61).

Despite the average over all directions of k in YS2 [7], we can determine from their data the
anisotropy parameters F and a as follows. Recall that F defined in Eq. (39), which appears in, e.g.,
Eqs. (42) and (46), parametrizes the axisymmetry of the scalar field at dissipation scales independent
of the cause of that axisymmetry. Recall that a defined in Eq. (51) is the ratio of the second- and
zero-order coefficients of the expansion of 4πk2Qφ(k,μ) in Legendre polynomials. The ratio of
eddy diffusivity to molecular diffusivity, denoted DT /D, is needed here because its value is given
in Table III of YS2

DT

D
≡ χ

2DG2
=

〈
∂φ

∂xi

∂φ

∂xi

〉/
G2. (62)

The values of a in Table I obtained from Eq. (51) are not significantly much less than unity. Thus,
by their average over all directions of k, YS2 [7] deleted from their analysis the significant term
Q2nd

φ (k) and any higher-order Legendre polynomial terms.
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TABLE II. Values of the three terms in Eq. (63) are in rows 3–5 as obtained from Fig. 16 of YS2 [7] at the
inertial-range wave number kη = 0.05. Values of the three terms in Eq. (64) are in rows 6–8, as obtained from
Fig. 15 of YS2 [7] at Chasnov’s [11] suggested wave numbers kη = 0.74 for Sc = 1/512 and kη = 0.26 for
Sc = 1/2048.

Rλ 140 240 240 390

Sc 1/512 1/512 1/2048 1/2048

Eφ(k)(D/G)2(3/2ε2/3)k17/3 3.45 6.04 2.31 3.54

(1 + DT

D
)CK 2.27 3.86 1.90 2.69


axiφ(k)/Eφ(k) 0.34 0.36 0.18 0.24

Eφ(k)/k−4E(k) 0.440 4.76 0.159 1.47
2
3 (G/D)2(1 + DT

D
) 0.454 5.00 0.154 1.38


axiφ(k)/Eφ(k) −0.032 −0.050 0.031 0.061

Next, examine the inertial-diffusive range shown in Fig. 16 of YS2 [7]. In an inertial range where
E(k) = CKε2/3k−5/3, using Eq. (62), Eq. (60) can be written as

Eφ(k)(D/G)2(3/2ε2/3)k17/3 =
(

1 + DT

D

)
CK + 
axiφ(k)(D/G)2(3/2ε2/3)k17/3. (63)

This is an exact equation for the wave-number spectrum for the inertial range and the case of a
uniform mean-scalar-gradient source. For their lowest Rλ = 140, the smallest value of kη in the
inertial range of the energy spectrum shown in Fig. 1 of YS2 is kη = 0.03; for kη � 0.06, the energy
spectrum has its spectral bump, i.e., “bottleneck effect,” and dissipation range. Thus, to quantify
terms in Eq. (63), only the narrow range of wave numbers 0.03 < kη < 0.06 is the relevant inertial
range. Figure 16 of YS2 is a plot of the left-hand side (LHS) of Eq. (63) with a dashed line at
CK = 1.62 (the ordinate of Fig. 16 of YS2 is mislabeled). Only their curves for their smallest Sc
of 1/512 and 1/2048 show nearly constant values of LHS ≡ Eφ(k)(D/G)2(3/2ε2/3)k17/3 in the
relevant range 0.03 < kη < 0.06. The LHS of Eq. (63) is obtained from their Fig. 16 at kη = 0.05;
(1 + DT

D
)CK is obtained using the values of DT /D from Table I; the right-most term in Eq. (63)

is obtained from the difference of those two quantities. The result is given in rows 3–5 in Table II
for the relevant Sc = 1/512 and 1/2048. The ratio of the term at the far right in Eq. (63) to
Eφ(k)(D/G)2(3/2ε2/3)k17/3 gives 
axiφ(k)/Eφ(k) in row 5.

Rows 3–5 in Table II show, as found by YS2 [7], that the original BHT formula, LHS = CK =
1.62, does not apply to this uniform-mean-gradient-source case. The term (1 + DT

D
)CK accounts for

most of the value of LHS. However, values of 
axiφ(k)/Eφ(k) in row 5 in Table II show that the
right-most terms in Eqs. (60) and (63) are not negligible such that the assumed asymptotic state in
which 
axiφ(k) becomes negligible is not attained in the inertial range of YS2.

Consider the LES velocity-field simulation by Chasnov [11] for an estimate of how closely
BHT inertial-diffusive asymptotic formulas are approached. For the mean-scalar-gradient case, he
calculates the wave-number spectrum, i.e., the zero-order Legendre-polynomial term, such that
the second- and higher-order terms are not known. Referring to the wave-number spectra in his
Fig. 5, Chasnov states that the BHT inertial-diffusive result “in the far subrange (k/kC−O � 80)
is well predicted,” where kC−O ≡ (ε/D3)

1/4 = Sc3/4/η and η ≡ (ν3/ε)
1/4

. A value of Sc is not
available from his LES, but if Sc = 1/512, then k/kC−O = 80 corresponds to kη = 80Sc3/4 = 0.74;
if Sc = 1/2048, then k/kC−O = 80 corresponds to kη = 80Sc3/4 = 0.26. Now, Eq. (60) can be
written as

Eφ(k)

k−4E(k)
= 2G2

3D2

(
1 + DT

D

)
+ 
axiφ(k)

k−4E(k)
. (64)
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kη kη kη
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4
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φ
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Λ

FIG. 1. Left-hand side of Eq. (65) is plotted. � ≡ E(k) 2G2

3D2 (1 + DT

D
). Diamonds and filled circles denote

Sc = 1/512 and Sc = 1/2048, respectively. From left to right the three graphs correspond to Rλ = 140, 240,
and 390, respectively.

Since YS2 [7] used G = 1, we have G/D = 1/D = ν−1Sc, and ν is in their Table I. The ordinate
of Fig. 15 of YS2 is Eφ(k)/k−4E(k) which we read at Chasnov’s [11] suggested wave numbers
kη = 0.74 for Sc = 1/512 and kη = 0.26 for Sc = 1/2048. The first term on the right-hand side of
Eq. (64) is known from DT /D in Table I and the known values of G/D. The difference of those
two terms in Eq. (64) gives the right-most term in Eq. (64). Finally, the right-most term in Eq. (64)
divided by the left-most term is 
axiφ(k)/Eφ(k). The result is given in rows 6–8 in Table II for the
relevant Sc = 1/512 and 1/2048. Rows 6–8 in Table II show that Eqs. (64) and (60) nearly balance
without the terms containing 
axiφ(k) when the data of YS2 [7] are evaluated at Chasnov’s [11]
wave numbers. As 
axiφ(k) becomes insignificant, the generalized BHT asymptote is approached.
Chasnov determined his wave numbers from the inertial range of his LES, whereas kη = 0.74 and
kη = 0.26 are in the dissipation range of the energy spectrum of the YS2 DNS (a possible name
is “dissipation-diffusive range” at those wave numbers). Despite that distinction, Chasnov’s wave
numbers apparently are the transition to the asymptotic condition that 
axiφ(k) becomes negligible
for the DNS of YS2.

Write Eq. (64) as

k4Eφ(k)

E(k) 2G2

3D2

(
1 + DT

D

) = 1 + 
axiφ(k)

k−4E(k) 2G2

3D2

(
1 + DT

D

) . (65)

Figure 1 shows the same data with the same symbols as appear in Fig. 15 of YS2 [7] for Sc = 1/512
and 1/2048, except that here their Fig. 15 data [i.e., k4Eφ(k)/E(k)] are divided by 2G2

3D2 (1 + DT

D
);

that is, the left-hand side of Eq. (64) is plotted in Fig. 1 with a dashed line at unity indicating

axiφ(k) = 0.

Chasnov [11] calls the range 3 � k/kC−O � 80 the near inertial-diffusive subrange (he uses
“conductive” instead of “diffusive”). He finds that this near subrange does not scale with the
Corrsin-Obukov parameters ε, χ , and kC−O for the mean-scalar-gradient case (as distinct from the
freely decaying case), and he states “the precise causes of these deviations will require careful future
analysis.” From the present perspective, the reason is that another dimensionless parameter exists,
namely, DT /D. Other than numerical error, all aspects of the spectra in that near inertial-diffusive
subrange must be quantitatively predicted by exact statistical equations.

XII. CONCLUSION

Exact statistical equations are derived for precise DNS quantification. The equations are applied
to the freely decaying [6] DNS and mean-scalar-gradient [7] DNS for which the terms in 
isoφ(k)
and 
axiφ(k), respectively, are found to be not negligible. In their Fig. 7, YS1 [6] show the ratio
of the two right-most terms in Eq. (56), namely, Eφ(k)/[E(k)χ/(3D3k4)]. The deviations from
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unity in that figure are caused by 
isoφ(k) in Eq. (57 ); that cannot be otherwise (unless there is a
computational error) because Eqs. (56) and (57) are obtained without approximation. In the inertial
range, at kη = 0.05, their Fig. 7(b) shows about 50% and 20% deviation from the BHT formula for
Sc = 1/512 and 1/2048, respectively. With reference to their Fig. 3(d), they state a roughly 20%
deviation relative to the BHT inertial-diffusive range formula (58) for Sc = 1/2048; that deviation is
caused by 
isoφ(k). Quantification of 
isoφ(k) and its constituent terms is needed to understand their
observed deviations from BHT theory [1]. As found by YS2 [7], Table II shows that the original
BHT formula, LHS = CK = 1.62, does not apply to this uniform-mean-gradient-source case. The
term (1 + DT

D
)CK accounts for most of the value of LHS. However, values of 
axiφ(k)/Eφ(k) in

row 5 in Table II show that the right-most term in Eq. (63) is not negligible such that the assumed
asymptotic state in which 
axiφ(k) becomes negligible is not attained in the data.

In Sec. VI, the assumption of isotropy by BHT is replaced by local isotropy of the scalar in the
dissipation range. Although that is not accurate for the mean-scalar-gradient DNS of YS2 [7], it is
obviated for a DNS with averaging over all directions of k. BHT neglected the time-derivative term
as their first assumption. The approximate validity of that assumption is supported by the DNS of
YS1 [6] and YS2 [7] and by the above discussion. The classical theory of BHT is obtained in the
appropriate limit. New formulas for the mean-scalar-gradient case, Eqs. (63) and (64), are quantified
in Table II and Fig. 1 for the data of YS2 for their smaller Sc cases. The theory for a uniform
mean scalar gradient with an isotropic velocity field is derived in Sec. IX, and for averaging over
all directions of k in Sec. XI, and is evaluated for the DNS of YS2 in Sec. XI A. The result is that
averaging over all directions of k retains only the zero order in the Legendre-polynomial expansion,
i.e., Eq. (49). The second-order Legendre term is shown to be significant by the values of a in Table I
for the DNS of YS2.

For the case of a mean-scalar-gradient source, the wave number that Chasnov [11] identifies as
beginning the asymptotic BHT inertial-diffusive range is within the dissipation-diffusive range of the
DNS of YS2 [7]. For their DNS, that wave number is also the transition to the asymptotic condition
that 
axiφ(k) becomes negligible.

There is more to be learned from DNS of small-Schmidt-number scalar advection by evaluating
all statistics in the above exact equations. The exact statistical equations retain dependence on
k such that they can be applied to study anisotropy. The mean-scalar-gradient DNS of YS2 [7] is
axisymmetric, and the scalar fluctuations are not nearly locally isotropic for their smaller Sc cases. To
study that axisymmetry, an average over directions of k must be restricted to the plane perpendicular
to the mean scalar gradient. The axisymmetry can be investigated using the expansion in Legendre
polynomials, as was done by Gotoh et al. [14] Application of that expansion gives Eqs. (46)–
(50). Terms in equations that contain the factor P2(μ) are the second-order Legendre-polynomial
contribution. A new inertial-diffusive-range formula for the second-order Legendre contribution is
given in Eq. (50). Higher-order, even-order Legendre polynomial terms can appear if

∑
(k) is not

neglected.
Whereas Eq. (37) contains a term containing F caused by local axisymmetry of scalar-gradient

variances, which we conjecture might vanish at infinite Peclet number, Eq. (44) contains the direct
effect of the mean scalar gradient, which we expect to not vanish at infinite Peclet number. The
limited Peclet numbers attainable for the small-Sc case using DNS with present computers causes
the second-order Legendre-polynomial coefficient to be significant relative to that of the zero order.
That is seen by comparing a in Table I with Fig. 6 (left side) of Gotoh et al. [14] wherein the second
order is about 10−2 of the zero order for their case Sc = 1.

Noise in DNS evaluations limits the number of Legendre-polynomial terms that can be accurately
quantified. Based on results in this paper, this author opines that only the zero- and second-order
coefficients of a Legendre polynomial expansion suffice if higher orders are affected by noise. Then,
any given statistic is that statistic minus the zero- and second-order terms plus a remainder function.
That remainder function is the sum of all higher-order Legendre terms, and is a function of angle.
The maximum of the absolute value of that remainder function is similar to the Legendre coefficients
in the sense that such maximum of Legendre polynomials is unity.
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APPENDIX A: ALTERNATIVE TO EQ. (2)

Expressions for
∑

(k) and its corresponding wave-number spectra are defined in Eqs. (27), (33),
(43), (55), and (61). By use of Eq. (2) we have attempted to cause the cospectra and error terms in
expressions for

∑
(k) to be small relative to Eφ(k) in the limit of very large Pe and very small Sc.

The terms in Eq. (2) can be subtracted from both sides of Eq. (2) to produce eight different versions
of Eq. (2); Eqs. (A1) and (2) are two of the eight. Those eight versions produce eight different
expressions for

∑
(k) in terms of different statistics. All of those eight expressions for

∑
(k) result

in the same numerical value of
∑

(k) because they all appear in the same exact equations. However,
even for very large Pe and very small Sc, some of those expressions for

∑
(k) contain terms that are

large in magnitude, but of opposite sign, such that they subtract to produce a value of
∑

(k) that is
smaller in absolute value than those large terms.

The advective and diffusive terms should not be on the same side of Eq. (2) because their
coherency is nearly −1 for the freely decaying case (Fig. 6 of YS1 [6]). In Eq. (2), ŝ(k) and Dk2φ̂(k)
are on opposite sides of that equation because, if they were on the same side of that equation, then
their cospectrum would be a large term in

∑
(k) for the DNS data of YS2 [7].

For example, consider if we had not subtracted the time-derivative term from both sides of Eq. (2)
and we began the derivation with

∂φ̂(k)

∂t
+ i

∫
k′
i ûi(k − k′)φ̂(k′)dk′ − ŝ(k) = −Dk2φ̂(k). (A1)

New cospectra would then appear, which are defined by

U(k) ≡
〈
∂φ̂(k)

∂t

(
−i

∫
k′′
j û

∗
j (k − k′′)φ̂∗(k′′)dk′′

)
+ ∂φ̂∗(k)

∂t

(
i

∫
k′
i ûi(k − k′)φ̂(k′)dk′

)〉
. (A2)

W(k) ≡
〈
∂φ̂(k)

∂t
[−̂s∗(k)] + ∂φ̂∗(k)

∂t
[−̂s(k)]

〉
. (A3)

Then, the term T(k) + Y(k) would be absent from the right side of Eq. (12) and T(k) + U(k) + W(k)
would appear on the left side of Eq. (12) such that instead of Eq. (12), we would have

T(k) + U(k) + W(k) + X(k) + V(k) + S(k) = D2k4Qφ(k). (A4)

We then obtain ∑
(k) ≡ T(k) + U(k) + W(k) + X(k) + e (k) + e2(k)

D2k4
. (A5)

The expressions for Eqs. (27) and (A5) are equal because they both appear in the same exact statistical
equation obtained without approximation. Comparing Eqs. (27) and (A5), we see that

U(k) + W(k) = −2T(k) − Y(k). (A6)

We have no evidence from YS1 [6] or YS2 [7] to expect that U(k) and W(k) are small relative to
D2k4Qφ(k) in Eq. (A4). However, strong evidence that the right side of Eq. (A6) is small relative
to D2k4Qφ(k) is given above. Hence, the left side of Eq. (A6) is small relative to D2k4Qφ(k); the
reason might be that U(k) and W(k) are of opposite sign and nearly equal but relatively large in
magnitude.

The above reasons are why the time-derivative term ∂φ/∂t and the source term s are subtracted
from both sides of Eq. (1) to produce Eq. (2).
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APPENDIX B: DERIVATION OF EQS. (37)–(39)

The notation gφ is defined in Sec. VIII. Define

C ≡
〈
∂φ

∂z

∂φ

∂z

〉
− 1

2

〈
∂φ

∂x

∂φ

∂x
+ ∂φ

∂y

∂φ

∂y

〉
(B1)

= F
χ

2D
. (B2)

Wherein F ≡ (gφ − 1)/(gφ + 2) as in Eq. (39). The axisymmetric formula is〈
∂φ

∂xi

∂φ

∂xj

〉
= zizjC + δij

3

( χ

2D
− C

)
. (B3)

Formula (B3) is easily verified by performing its trace and inner products with unit vector products
zizj and xixj .

Within Eq. (21) we have the contraction of the second-rank tensors in Eqs. (20) and (B3); that is
[recall that k2

z /k2 = cos2(θ ) = μ2 and P2(μ) = 3
2 (μ2 − 1

3 )],

〈̂ui(k)̂u∗
j (k)〉

〈
∂φ

∂xi

∂φ

∂xj

〉
=

[(
δij − kikj

k2

)
E(k)

4πk2

][
zizjC + δij

3

( χ

2D
− C

)]
(B4)

=
[
C + χ

2D
− C − kzkz

k2
C − 1

3

( χ

2D
− C

)]
E(k)

4πk2
(B5)

=
[

χ

3D
− 3

2

(
μ2 − 1

3

)
2

3
C

]
E(k)

4πk2
(B6)

= χ

3D

E(k)

4πk2
− P2(μ)F

χ

3D

E(k)

4πk2
. (B7)

Note that C = 0 substituted in Eq. (B3) gives the isotropic formula; from Eq. (B2), that corresponds
to gφ = 1 and F = 0. Now, Eq. (B7) is Eq. (37).
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