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Inertial effects on the stress generation of active fluids
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Suspensions of self-propelled bodies generate a unique mechanical stress owing to their
motility that impacts their large-scale collective behavior. For microswimmers suspended
in a fluid with negligible particle inertia, we have shown that the virial swim stress is a
useful quantity to understand the rheology and nonequilibrium behaviors of active soft
matter systems. For larger self-propelled organisms such as fish, it is unclear how particle
inertia impacts their stress generation and collective movement. Here we analyze the effects
of finite particle inertia on the mechanical pressure (or stress) generated by a suspension of
self-propelled bodies. We find that swimmers of all scales generate a unique swim stress and
Reynolds stress that impact their collective motion. We discover that particle inertia plays
a similar role as confinement in overdamped active Brownian systems, where the reduced
run length of the swimmers decreases the swim stress and affects the phase behavior.
Although the swim and Reynolds stresses vary individually with the magnitude of particle
inertia, the sum of the two contributions is independent of particle inertia. This points to
an important concept when computing stresses in computer simulations of nonequilibrium
systems: The Reynolds and the virial stresses must both be calculated to obtain the overall
stress generated by a system.

DOI: 10.1103/PhysRevFluids.2.094305

I. INTRODUCTION

Active matter systems constitute an intriguing class of materials whose constituents have the
ability to self-propel, generate internal stress, and drive the system far from equilibrium. Because
classical concepts of thermodynamics do not apply to nonequilibrium active matter, recent work has
focused on invoking the mechanical pressure (or stress) as a framework to understand the complex
dynamic behaviors of active systems [1–6]. In particular, active swimmers exert a unique swim
pressure as a result of their self-propulsion [1,4]. A physical interpretation of the swim pressure is
the pressure (or stress) exerted by the swimmers as they interact with the surrounding boundaries
that confine them, similar to molecular or colloidal solutes that collide into the container walls to
exert an osmotic pressure. The swim pressure is a purely entropic destabilizing quantity [7] that can
explain the self-assembly and phase separation of a suspension of self-propelled colloids into dilute
and dense phases that resemble an equilibrium gas-liquid coexistence [8–13].

Existing studies of the pressure of active systems [1,3–7,14] have focused on overdamped systems
where swimmer inertia is neglected (i.e., the particle Reynolds number is small). However, the swim
pressure has no explicit dependence on the body size and may exist at all scales including larger
swimmers (e.g., fish and birds) where particle inertia is not negligible [1]. The importance of particle
inertia is characterized by the Stokes number StR ≡ (M/ζ )/τR , where M is the particle mass, ζ

is the hydrodynamic drag factor, and τR is the reorientation time of the active swimmer. Here we
analyze the role of nonzero StR on the mechanical stress exerted by a system of self-propelled bodies
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and provide a natural extension of existing pressure concepts to swimmers with finite inertia. We
maintain negligible fluid inertia so that the fluid motion satisfies the steady Stokes equation.

We consider a suspension of self-propelled spheres of radii a that translate with an intrinsic
swim velocity U0 and tumble with a time τR in a continuous Newtonian fluid. The random tumbling
results in a diffusive process for time t � τR with Dswim = U 2

0 τR/6 in three dimensions. An isolated
active particle generates a swim pressure �swim = nζDswim = nζU 2

0 τR/6, where n is the number
density of active particles. We do not include the effects of hydrodynamic interactions and there is no
macroscopic polar order of the swimmers or any large-scale collective motion (e.g., bioconvection).

From previous work [2,15–18] we know that geometric confinement of overdamped active
particles plays a significant role in their dynamics and behavior. Confinement from potential traps,
physical boundaries, and collective clustering can reduce the average run length and swim pressure of
the particles. We have shown experimentally [15] that active Brownian particles trapped inside a har-
monic well modify the swim pressure to �swim = (nζU 2

0 τR/2)(1 + α)−1 in two dimensions, where
α ≡ U0τR/Rc is a ratio of the run length U0τR to the size of the trap Rc. For weak confinement α � 1,
we obtain the ideal-gas swim pressure of an isolated swimmer. For strong confinement α � 1, the
swim pressure decreases as �swim/(nζU 2

0 τR/2) ∼ 1/α. Confinement reduces the average distance
the swimmers travel between reorientation events, which results in a decreased swim pressure.

In this work we find that particle inertia plays a similar role as confinement by reducing the
correlation between the position and self-propulsive swim force of the swimmers. In addition to the
swim pressure, active swimmers exert the usual kinetic or Reynolds pressure contribution associated
with their average translational kinetic energy. For swimmers with finite particle inertia we find
that the sum of the swim and Reynolds pressures is the relevant quantity measured by confinement
experiments and computer simulations. We also study systems at finite swimmer concentrations and
extend our existing mechanical pressure theory to active matter of any size or mass.

An important implication of this work pertains to the computation of mechanical stresses of
colloidal suspensions at the appropriate level of analysis. Consider the Brownian osmotic pressure
of molecular fluids and Brownian colloidal systems �B = nkBT , where n is the number density of
particles and kBT is the thermal energy. At the Langevin-level analysis where mass (or inertia) is
explicitly included, the Reynolds stress is the source of the Brownian osmotic pressure −〈ρU ′U ′〉,
where ρ is the density and U ′ is the velocity fluctuation. The virial stress or the moment of the Brow-
nian force −n〈x FB〉 is identically equal to zero; the position and Brownian force are uncorrelated
at the Langevin level. However, at the overdamped Fokker-Planck or Smoluchowski level where
inertia is not explicitly included, the position and Brownian force are correlated and the virial stress
−n〈x FB〉 is the source of the Brownian osmotic pressure [19], whereas the Reynolds stress is zero.
The important point is that the sum of the Reynolds and virial stresses gives the correct Brownian
osmotic pressure at both levels of analysis, as it must be since the osmotic pressure of colloidal
Brownian suspensions is �B = nkBT whether or not inertia is explicitly included in the analysis.

We report in this work that an identical concept applies for active swimmers. The virial stress
arising from the correlation between the particle position and its “internal” force −n〈x F〉 is a term
that is separate and in addition to the Reynolds stress associated with their average translational
kinetic energy. Interestingly, the mechanical stress generated by active swimmers has a nonzero
contribution from both the Reynolds and virial stresses because the internal force associated with
self-propulsion has an autocorrelation that is not instantaneous in time and instead decays over a
finite time scale modulated by the reorientation time of the active swimmer τR: 〈Fswim(t)Fswim(0)〉 ∼
e−2t/τR . A distinguishing feature of active swimmers compared with passive Brownian particles is
that their direction of self-propulsion can relax over large time scales and that the internal swim
force autocorrelation cannot in general be described by a δ function in time.

II. SWIM STRESS

All self-propelled bodies exert a swim pressure, a unique pressure associated with the confinement
of the active body inside a bounded domain. The swim pressure is the trace of the swim stress, which
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is defined as the symmetric first moment of the self-propulsive force σ swim = −n〈x Fswim〉sym, where
x is the particle position, Fswim is the swimmer’s self-propulsive swim force, and 〈·〉sym denotes
the symmetric part of the tensor. As we noted previously [20], the swim stress is properly defined
as the symmetric force moment since the force arises from the fluid, which can only generate
symmetric stresses. For the active Brownian particle model, the swim force can be written as
Fswim = ζU0q, where q is a unit vector specifying the swimmer’s direction of self-propulsion. For
a dilute suspension of active particles with negligible particle inertia the “ideal-gas” swim stress is
given by σ swim = −nζU 2

0 τR I/6 = −nksTs I , where we define ksTs ≡ ζU 2
0 τR/6 as the swimmer’s

“energy scale” [force (ζU0) × distance (U0τR)]. The swim pressure (or stress) is entropic in origin
and is the principle destabilizing term that facilitates a phase transition in active systems [7].

In the absence of any external forces, the motion of an active Brownian particle is governed by
the Langevin equations

M
∂U
∂t

= −ζ (U − U0) +
√

2ζ 2D0�T , (1)

I
∂�

∂t
= −ζR� +

√
2ζ 2

R

τR

�R, (2)

where M and I are the particle mass and moment of inertia, U and � are the translational
and angular velocities, ζR is the hydrodynamic drag factor coupling angular velocity to torque,√

2ζ 2D0�T and
√

2ζ 2
R/τR�R are the Brownian translational force and rotational torque, respectively,

�T and �R are unit random normal deviates, τR ∼ 1/DR is the reorientation time scale set by
rotational Brownian motion, and D0 is the Stokes-Einstein-Sutherland translational diffusivity. The
translational diffusivity and the reorientation dynamics are modeled with the usual white-noise
statistics 〈	i(t)〉 = 0 and 〈	i(t)	j (0)〉 = δ(t)δij . The swimmer orientation q(t) is related to the
angular velocity by the kinematic relation � × q = dq/dt . The translational and angular velocities
may be combined into a single vector U = (U,�)T , and similarly for the force and torque
F = (F,L)T , to obtain a general solution to the system of ordinary differential equations [21].
Although a general solution is available for any particle mass and moment of inertia, inclusion of
nonzero moment of inertia leads to calculations that are analytically involved. For convenience and
to make analytical progress, here we summarize the case of zero moment of inertia (I = 0) and
focus on finite mass [StR ≡ (M/ζ )/τR 
= 0] to elucidate the effects of inertia on the dynamics of
active matter.

We can solve Eqs. (1) and (2) for the swimmer configuration (x(t),q(t)) and calculate the swim
stress. As shown in the Appendix, the swim stress for arbitrary particle inertia is

σ swim = −nksTs

(
1

1 + 2StR

)
I, (3)

where we have taken times t > τM and t > τR , τM ≡ M/ζ is the swimmer momentum relation
time, the energy scale ksTs ≡ ζU 2

0 τR/6, and StR ≡ τM/τR = (M/ζ )/τR is the Stokes number. For
StR = 0 we recover the ideal-gas swim pressure for an overdamped system �swim = −trσ swim/3 =
nζU 2

0 τR/6 = nksTs [1]. This is precisely the mechanical force per unit area that a dilute system of
confined active microswimmers exerts on its surrounding container [1,4,5].

Notice, in the other limit, that as StR → ∞, σ swim vanishes. Physically, the magnitude of the
swim stress decreases because inertia may translate the swimmer in a trajectory that is different
from the direction of the swim force, reducing the correlation 〈x Fswim〉 between the moment arm x
and the orientation-dependent swim force Fswim = ζU0q. Our earlier work [15] showed that active
particles confined by an acoustic trap exert a swim pressure that is reduced by a factor of (1 + α)−1,
where α ≡ U0τR/Rc is the degree of confinement of the swimmer run length relative to the size
of the trap Rc. Equation (3) has a reduction in the swim pressure by a similar factor (1 + 2StR)−1,
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suggesting that particle inertia may play a similar role as confinement by reducing the correlation
between the position and self-propulsive direction of the swimmers.

Particle inertia may be interpreted as imposing a confinement effect on the swimmers because
their effective run length between reorientation events decreases. The average run length of the
swimmers with inertia reduces to ∼(U0τR − 
x ′), where 
x ′ = U0
t is the distance over which
inertia translates the swimmer along a trajectory that is independent of the direction of its swim force,
and the time over which this occurs scales with the inertial relaxation time 
t ∼ M/ζ . Substituting
these terms into the virial expression for the swim pressure, we obtain �swim ∼ n〈x · Fswim〉 ∼
nζU 2

0 τR[1 − (M/ζ )/τR]. Using the definition of the Stokes number StR ≡ (M/ζ )/τR and for small
StR , we can rewrite the swim pressure as �swim ∼ nζU 2

0 τR(1 + StR)−1. Aside from the factor of
2 in the denominator (which arises from spatial dimensionality), this scaling argument agrees with
Eq. (3) and shows that particle inertia plays a confining role in the swim pressure, analogous to the
physical confinement of swimmers in a potential well [15].

III. REYNOLDS STRESS

For systems with finite particle inertia, an additional stress contribution arises owing to particle
acceleration: the Reynolds stress. This term is seen in Bernoulli’s equation and is associated with
the average translational kinetic energy of a particle σ Rey = −nM〈U ′U ′〉. In atomic or molecular
systems this is often referred to as the kinetic stress. This contribution was not included in previous
studies since overdamped active systems have no particle mass M = 0 [i.e., StR ≡ (M/ζ )/τR = 0].
As shown in the Appendix, we can use the solution to Eqs. (1) and (2) to obtain the Reynolds stress
for arbitrary StR , given by

σ Rey = −nkBT I − nksTs

(
1

1 + 1/(2 StR)

)
I, (4)

which is a sum of the Brownian osmotic stress σB = −nkBT I and a self-propulsive contribution
that depends on StR . For an overdamped system where StR = 0, the self-propulsive contribution to
the Reynolds stress vanishes, justifying the neglect of this term in previous studies of overdamped
systems. Mallory et al. [5] analytically calculated the expression of the Reynolds stress (4), but
not the swim stress (3); the mechanical pressure that is measured from the walls of an enclosing
container is the sum of the Reynolds and swim pressures, however.

Notice that the Brownian osmotic stress σB = −nkBT I arises solely from the Reynolds stress
and not from taking the virial moment of the Brownian force 〈x FB〉. As stated earlier, this is
precisely because of the δ-function statistics imposed for the Brownian force in the Langevin-
level analysis where mass is explicitly included: 〈FB(t)FB(0)〉 = 2kBT ζδ(t)I . In contrast, the
active stress has a nonzero contribution from both the Reynolds and swim stresses because the
swim force autocorrelation is a decaying exponential modulated by the reorientation timescale
τR: 〈Fswim(t)Fswim(0)〉 ∼ e−2t/τR . If one were to model the Brownian force autocorrelation as one
that relaxes over a finite solvent relaxation time scale 〈FB(t)FB(0)〉 ∼ e−2t/τS , then we would
obtain nonzero contributions from both the Reynolds and virial stresses, with their sum equal to
σB = −nkBT I for all τS .

For a dilute suspension, the stress exerted by an active swimmer is the sum of the swim and
Reynolds stresses. Adding Eqs. (3) and (4), we find

σ swim + σ Rey = −n(kBT + ksTs)I . (5)

Remarkably, the Stokes number StR disappears. The magnitude of the swim pressure that decreases
with increasing StR cancels exactly the increase in the magnitude of the Reynolds stress. This
verifies that swimmers of all scales exert the pressure nksTs , regardless of their mass and inertia.
We conducted simulations where the dynamics of active Brownian particles were evolved following
Eqs. (1) and (2) using the velocity Verlet algorithm [22] and the results are shown in Fig. 1. Results
from the simulations agree with our theoretical predictions in Eqs. (3)–(5). In an experiment or
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FIG. 1. Swim and Reynolds pressures of a dilute system of swimmers with finite inertia, where � = −trσ/3.
The blue (�swim) and red (�Rey) curves and symbols are the analytical theory of Eqs. (3) and (4) and simulation
data, respectively. The solid black line is the sum of the swim and Reynolds stresses. The Brownian osmotic
pressure �B = nkBT has been subtracted from �Rey.

simulation, the average mechanical pressure exerted on a confining boundary gives the sum of the
swim and Reynolds pressures and not their separate values.

We have shown previously that random motion gives rise to a micromechanical stress via the
relationship σ = −nζ D, where D is the effective translational diffusivity [1]. For overdamped active
systems, the self-propulsive contribution to the diffusivity is described solely through the swim stress
σ swim = −nζ Dswim = −nζU 2

0 τR I/6. With finite particle inertia, the particle diffusivity is unaltered
and the stress-diffusivity relationship still applies, but the stress is now a sum of two independent
contributions, as shown in Eq. (5).

In the presence of a nonzero moment of inertia, there is another dimensionless Stokes number
StI ≡ (I/ζR)/τR , which is a ratio of the inertial reorientation time scale τI = I/ζR and the swimmers’
intrinsic reorientation time scale τR . Similar to the translational Stokes number StR that does not
appear in Eq. (5), the moment of inertia is not expected to appear explicitly in the total stress
generated by an active swimmer; at long times the random-walk diffusive motion is unaffected by
the particle inertia, whether that be translational or rotational.

IV. FINITE CONCENTRATIONS

The results thus far are for a dilute suspension of active swimmers. At finite concentrations,
experiments and computer simulations have observed unique phase behavior and self-assembly in
active matter [8–13]. Recently, a mechanical pressure theory was developed to provide a phase
diagram and a natural extension of the chemical potential and other thermodynamic quantities to
nonequilibrium active matter [7].

At finite concentrations of swimmers, dimensional analysis shows that the nondimensional swim
and Reynolds stresses depend in general on (StR,φ,PeR,ksTs/(kBT )), where φ = 4πa3n/3 is the
volume fraction of active swimmers and PeR ≡ a/U0τR is the reorientation Péclet number, the ratio
of the swimmer size a to its run length U0τR . The ratio ksTs/(kBT ) quantifies the magnitude of the
swimmers’ activity (ksTs ∼ ζU 2

0 τR) relative to the thermal energy kBT ; this ratio can be a large
quantity for typical microswimmers.

From previous work on overdamped active systems with negligible particle inertia [1], we know
that PeR is a key parameter controlling the phase behavior of active systems. For large PeR the
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FIG. 2. (a) Swim pressure �swim and (b) Reynolds pressure �Rey as a function of volume fraction of particles
φ for different values of StR ≡ (M/ζ )/τR and a fixed reorientation Péclet number PeR ≡ a/U0τR = 0.01. The
symbols and solid curves are the simulation data and analytical theory, respectively. The Brownian osmotic
pressure �B = nkBT has been subtracted from the Reynolds pressure.

swimmers reorient rapidly and take small swim steps, behaving as Brownian walkers; the swimmers
thus do not clump together to form clusters and the system remains homogeneous. For small PeR

the swimmers obstruct each others’ paths when they collide for a time τR until they reorient. This
decreases the run length of the swimmers between reorientation events and causes the system to
self-assemble into dense and dilute phases resembling an equilibrium liquid-gas coexistence.

As reported previously for StR = 0 [1,7], for small PeR the swim pressure decreases with
increasing swimmer concentration. To verify how finite particle inertia affects the swim pressure at
larger concentrations, we conducted simulations by evolving the motion of active particles following
Eqs. (1) and (2), with an additional hard-sphere interparticle force FP that prevents particle overlaps
using a potential-free algorithm [23]. Care was taken to ensure that the simulation time step was
small enough to preclude unwanted numerical errors associated with resolution of particle collisions.
We varied the simulation time step from dt/τR = 10−5 to 10−3 and found a negligible difference in
our results. As shown in Fig. 2(a), for finite StR the data from our simulations are well described
by the expression �swim = nksTs(1 − φ − φ2)/(1 + 2StR), which is simply a product of a volume
fraction dependence and a Stokes number dependence of Eq. (3). The volume fraction dependence
1 − φ − φ2 was used previously to model the phase behavior of active matter [7].

The clustering of swimmers reduces their translational velocity autocorrelation 〈U ′U ′〉 and hence
decreases the Reynolds pressure. As shown in Fig. 2(b), our simulations show that the Reynolds
pressure decreases with concentration, increases with StR , and is well described by the expression
�Rey = nksTs(1 − φ − φ2)/[1 + 1/(2 StR)] + nkBT .

The sum of the swim and Reynolds stresses is given by

�swim + �Rey = nkBT + nksTs(1 − φ − φ2), (6)

which again has no dependence on StR (nor PeR for PeR < 1 considered here), even at finite φ.
Equation (6) is corroborated by our simulations as shown in Fig. 3. This result implies that the
existing mechanical pressure theory [7] developed for overdamped systems can be used directly
for swimmers with finite Stokes numbers, as long as we include the Reynolds stress contribution
into the active pressure. Inclusion of the Reynolds stress is critical, as confinement experiments
and computer simulations measure the total active pressure, including both the swim and Reynolds
contributions.

In addition to the swim and Reynolds stresses, interparticle interactions between the swimmers
at finite concentrations give rise to an interparticle stress σP (StR,φ,PeR,ksTs/(kBT )). For repulsive
interactions, the interparticle (or collisional) pressure �P = −trσP /3 increases monotonically with

094305-6



INERTIAL EFFECTS ON THE STRESS GENERATION OF . . .

φ = 4πa3n/3
0 0.1 0.2 0.3 0.4 0.5 0.6

(Π
sw

im
+

Π
R

ey
)φ

/(
n
k

s
T

s
)

0

0.05

0.1

0.15

0.2

0.25 StR = (M/ζ)/τR

0.01
0.1
1
5

PeR = a/(U0τR) = 0.01

FIG. 3. Sum of swim and Reynolds pressures �swim + �Rey = −tr(σ swim + σ Rey)/3 as a function of volume
fraction of particles φ for different values of StR ≡ (M/ζ )/τR and a fixed reorientation Péclet number
PeR ≡ a/U0τR = 0.01. The symbols and solid curve are the simulation data and analytical theory of Eq. (6),
respectively. The Brownian osmotic pressure �B = nkBT has been subtracted from the total pressure.

concentration and helps to stabilize the system. As shown in Fig. 4, we find that the expression
�P /nksTs = 3 PeRφg(φ)/(1 + 0.5 StR) agrees with the simulation data for a fixed value of PeR =
0.01, where g(φ) = (1 − φ/φ0)−1 is the pair distribution function at particle contact and φ0 = 0.65
is a parameter obtained from the interparticle pressure of hard-sphere molecular fluids [7]. We
can add �P to Eq. (6) to construct phase diagrams of a system of inertial swimmers, which are
qualitatively similar to those presented in [7] for small values of StR . Adding particle inertia shifts
the stabilization to larger φ.
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FIG. 4. Interparticle collisional pressure �P as a function of volume fraction of particles φ for different
values of StR ≡ (M/ζ )/τR and a fixed reorientation Péclet number PeR ≡ a/U0τR = 0.01. The symbols and
solid curves are the simulation data and analytical expression, respectively.
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As shown by Batchelor [24], there may be an additional contribution to the particle stress arising
from local fluctuations in acceleration f ′ and is given by −(1/V )

∑∫
Vp

ρ f ′r dV , where V is the
volume of the suspension (fluid plus particles), Vp is the volume of an individual particle, ρ is
the uniform density of the particle, r is a position vector (or the moment arm) from the particle
center, and the summation is over the number of particles in the volume V . For a dilute system
of rigid particles, this term arises only from solid body rotation of the particle and takes the form∫
Vp

f ′r dV = (4πa5/15)(�P �P − �P · �P I), where �P is the average angular velocity of the
rigid particle of size a. Here the active swimmers have no average angular velocity, so there is no
stress arising from local fluctuations in acceleration for dilute active systems of rigid particles.

In addition to using a potential-free algorithm to model hard-sphere particles, we have also
tested a short-range repulsive Weeks-Chandler-Andersen potential with an upper cutoff at particle
separation distances of r = 21/6(2a). Using this softer potential, the swim pressure does not exhibit
a concentration dependence of 1 − φ − φ2 because the effective radius of the particles decreases
as the system becomes denser, meaning that colliding particles exhibit increasingly large overlaps.
Increasing particle inertia (i.e., larger StR) also changed the effective particle size. As previously
stated [25], one must use care when soft potentials are used to model hard-sphere particle collisions
because the effective particle size may depend on system parameters (such as PeR and StR).

V. CONCLUSION

Here we presented a mechanical pressure theory for active Brownian particles with finite inertia.
We neglected hydrodynamic interactions between the swimmers, which may contribute additional
terms (such as the hydrodynamic stresslet [26]) to the active pressure. The ratio of the magnitudes of
the hydrodynamic stress to the swim stress is σH/σ swim ∼ nζU0a/nζU 2

0 τR = a/U0τR ≡ PeR . The
hydrodynamic stress contribution becomes negligible when phase separation occurs at low PeR .

We assumed that the surrounding fluid obeys the steady Stokes equations, which may not be true
for larger swimmers that propel themselves using fluid inertia. However, the concepts of the swim and
Reynolds stress apply for swimmers with a nonlinear hydrodynamic drag factor ζinertia(|U |), where
|U | is the magnitude of the swimmer velocity. For example, a self-propelled body may experience
a fluid drag that is quadratic in the velocity Fdrag ∼ ζinertia(|U |)U ∼ (ρsa

2|U |)U , where ρs is the
fluid density and a is the characteristic size of the body. The nondimensional Langevin equations
would become dU/dt = −A|U |(U − q), where q is the orientation vector of the swimmer and
A = ρsa

2U0τR/M ∼ (1/StR)(ζinertia/(ηa)) is the relevant quantity that must be varied.
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APPENDIX

Integrating Eq. (1) twice in time, we obtain the position of the swimmer

x(t) = x(0) + U(0)τM (1 − e−t/τM )

+
∫ t

0
[U0q(t ′) +

√
2D0�T (t ′)](1 − e−(t−t ′)/τM )dt ′, (A1)

where x(0) and U(0) are the arbitrary initial position and velocity, respectively, τM ≡ M/ζ is the
momentum relaxation time, U0 is the intrinsic swimmer velocity, q is the unit orientation vector of
the swimmer, and �T is a unit random deviate. Integrating Eq. (2) and using the kinematic relation

094305-8



INERTIAL EFFECTS ON THE STRESS GENERATION OF . . .

� × q = dq/dt , we obtain

dq
dt

= �(0) × q(t)e−t/τI + 1

τI

√
2

τR

∫ t

0
�R(t ′) × q(t ′)e−(t−t ′)/τI dt ′, (A2)

where �(0) is the initial angular velocity, τI = I/ζR is the angular momentum relaxation time, and
�R is a unit random deviate. Equation (A2) is of the form dqi/dt = Aik(t)qk , where Aik(t) is a
coefficient matrix. The general solution of Eq. (A2) is qi(t) = qk(0) exp[

∫ t

0 Aik(t ′)dt ′], where qk(0)
is an arbitrary initial orientation of the swimmer.

We are interested in the orientation autocorrelation

〈qi(t)qn(t ′)〉 = 1

3
δnk

〈
exp

(∫ t

t ′
Aik(t ′′)dt ′′

)〉
, (A3)

where Aik(t) = εijk[�j (0)e−t/τI +
√

2/(τRτ 2
I )

∫ t

0 	j (t ′)e−(t−t ′)/τI dt ′] is the coefficient matrix and ε

is the unit alternating tensor. In the limit of small angular momentum relaxation time τI → 0, we
obtain Aik(t) = √

2/τRεijk	j (t) and

〈qi(t)qn(t ′)〉 = 1
3δine

−2(t−t ′)/τR . (A4)

Notice that as τR → 0 the autocorrelation becomes a δ function and the swimmer reorients rapidly
and behaves as a Brownian walker.

Using Eqs. (A1) and (A4) and the swim force Fswim ≡ ζU0q, the swim stress is given by

σ swim = −n〈x Fswim〉sym

= n

3
ζU 2

0 I
[
τR

2
(1 − e−2t/τR ) − 1

2/τR + 1/τM

(1 − e−(2/τR+1/τM )t )

]
, (A5)

where we have used that 〈x(0)Fswim(t)〉 = 〈U(0)Fswim(t)〉 = 〈Fswim(t ′)�T (t)〉 = 0. Taking times
t > τM and t > τR , we obtain Eq. (3) of the main text.

Following a similar procedure, the Reynolds stress is given by

σ Rey = −nM〈U ′U ′〉 = −nM〈U(0)U(0)〉e−2t/τM

− nM

3

(
U0

τM

)2

I
{

1

2/τR + 1/τM

[
τM

2
(1−e−2t/τM )− 1

−2/τR + 1/τM

(e−(2/τR+1/τM )t−e−2t/τM )

]

+ 1

−2/τR + 1/τM

[
− τM

2
(1 − e−2t/τM ) + 1

2/τR + 1/τM

(1 − e−(2/τR+1/τM )t )

]}

− nkBT (1 − e−2t/τM )I . (A6)

Taking times t > τM and t > τR , we obtain the Reynolds stress as given in Eq. (4) of the main text.
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