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Molecular mechanics and structure of the fluid-solid interface in simple fluids

Gerald J. Wang and Nicolas G. Hadjiconstantinou*

Department of Mechanical Engineering, Massachusetts Institute of Technology,
Cambridge, Massachusetts 02139, USA

(Received 7 May 2017; published 5 September 2017)

Near a fluid-solid interface, the fluid spatial density profile is highly nonuniform at the
molecular scale. This nonuniformity can have profound effects on the dynamical behavior
of the fluid and has been shown to play an especially important role when modeling a wide
variety of nanoscale heat and momentum transfer phenomena. We use molecular-mechanics
arguments and molecular-dynamics (MD) simulations to develop a better understanding of
the structure of the first fluid layer directly adjacent to the solid in the layering regime, as
delineated by a nondimensional number that compares the effects of wall-fluid interaction
to thermal energy. Using asymptotic analysis of the Nernst-Planck equation, we show that
features of the fluid density profile close to the wall, such as the areal density of the first layer
�FL (defined as the number of atoms in this layer per unit of fluid-solid interfacial area),
can be expressed as polynomial functions of the fluid average density ρave. This is found to
be in agreement with MD simulations, which also show that the width of the first layer hFL

is a linear function of the average density and only a weak function of the temperature T .
These results can be combined to show that, for system average densities corresponding to
a dense fluid (ρave � 0.7), the ratio C ≡ �FL

ρavehFL
, representing a density enhancement with

respect to the bulk fluid, depends only weakly on temperature and is essentially independent
of density. Further MD simulations suggest that the above results, nominally valid for large
systems (solid in contact with semi-infinite fluid), also describe fluid-solid interfaces under
considerable nanoconfinement, provided ρave is appropriately defined.
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I. INTRODUCTION

Nanoconfined fluids exhibit many remarkable properties [1–3], with considerable potential
engineering applications in fields as far ranging as nanoscale filtration and desalination [4–6],
carbon sequestration in nanoporous media [7], nanoscale energy harvesting [8], enhanced chemical
sensing [9], and nanoscale drug delivery [10]. As rapid advances continue to be made in the field of
nanofluidic devices, developing physical models of nanoscale effects near the liquid-solid interface
becomes increasingly important, since these effects can significantly affect the liquid’s structure as
well as hydrodynamic behavior.

In particular, it is well known that a fluid in the vicinity of a solid boundary will adopt a layered
structure in response to interactions with solid atoms [11–13]. These layers have a profound effect
on key fluid properties. Early work focused on the phenomenology of layer formation, including
the structural features of adsorbed layers [14] and their implications for tribological applications
[15]. More recently, several groups have reported that when a nanoconfining structure (e.g., a carbon
nanotube or a graphene nanoslit) is held in equilibrium with a large reservoir of fluid, the density of
the fluid confined within the nanostructure is measured to be substantially less than the density of the
fluid reservoir [16–18]. This density anomaly has been shown to be the direct result of fluid layering
[19]. Layering has also been shown to be closely related to the solvation pressure in nanoconfined
fluids [20,21].

Beyond its relation to static properties, fluid layering also has significant effects on several
nanoscale transport phenomena of practical interest. Notably, it has been proposed that fluid

*Corresponding author: ngh@mit.edu

2469-990X/2017/2(9)/094201(18) 094201-1 ©2017 American Physical Society

https://doi.org/10.1103/PhysRevFluids.2.094201


GERALD J. WANG AND NICOLAS G. HADJICONSTANTINOU

structuring in the vicinity of the fluid-solid interface plays an important role in determining the
slip length in the fluid; in particular, it has been shown that, under some conditions, the slip length
is inversely proportional to the density of the first fluid layer at the interface [22]; the relationship
between the interfacial contact density and slip length has also been investigated experimentally [23].
Similarly, molecular-dynamics (MD) simulations [24], as well as experiments [25], have shown that
the thermal resistance at the liquid-solid interface depends strongly on the magnitude of fluid layering
at the interface (in fact, this connection between interfacial fluid structure and thermal resistance
was recently extended to liquid-vapor systems [26]). Since the first fluid layer can be of considerably
higher density than the bulk, it is possible that this layer may be able to support phononlike modes,
which has profound implications for solid-to-liquid heat transfer in nanoscale devices [27]. As a con-
sequence, it may be possible to indirectly control the slip length and thermal resistance in a nanofluidic
device by directly controlling the magnitude of structuring at the interface. This could be accom-
plished, for example, by tuning the fluid-solid interaction strength [27–29] or strain engineering [30].

From the perspective of efficient and accurate multiscale simulation, it is highly desirable to incor-
porate molecular-scale features into macroscopic (continuum) solvers [31]. If information about the
spatially varying density profile near the solid-liquid interface is known, then this information could
be used to improve the modeling capabilities of efficient continuum solvers for nanofluidic systems.

The critical role of the interfacial fluid structure, in nanoscale science, engineering, and simulation
methods development, strongly motivates the need for models that can describe and predict its
characteristic length scales and density variations. Although the interfacial fluid structure typically
exhibits several pronounced fluid layers (depending on factors such as the fluid-solid interaction
strength or the temperature), this layering effect decays as one moves away from the interface. As
a result, in this study we will focus on the layer closest to the interface, which is the most distinctly
defined and most influential for anomalous interfacial phenomena; we will refer to this layer as
the first layer. We also note that the interfacial fluid structure can be accurately described using
liquid-state density-functional theory [32]; in contrast, our focus here is on developing a less complex
model that highlights the basic molecular-mechanical factors governing the structure of the first fluid
layer. Finally, we note that our work exploits the observation that, for typical problems of interest,
transport (nonequilibrium) introduces negligible change [33] to the equilibrium fluid structure at the
fluid-wall interface; in other words, although in this paper we study equilibrium systems, we expect
our results to be directly applicable to the nonequilibrium situations of interest discussed above.

The paper is organized as follows. In Sec. II we study the structure of the first fluid layer in
semi-infinite systems using MD simulations and molecular mechanics arguments. We introduce a
nondimensional number that identifies the conditions under which significant layering is observed
and develop molecular models for the width and number density associated with the first fluid layer.
In Sec. III we show that our results for infinite systems also hold for finite systems as well as systems
under nanoconfinement, provided the average fluid density is appropriately defined. We finish with
a summary and discussion of our results in Sec. IV.

II. MODELING AND SIMULATION IN SEMI-INFINITE SYSTEMS

We consider a fluid whose atoms interact via the Lennard-Jones (LJ) [34] potential

u∗
ff (r) = 4ε∗

f

[(
σ ∗

f

r∗

)12

−
(

σ ∗
f

r∗

)6]
. (1)

The fluid rests in a slitlike geometry, bounded in the z direction by two solid boundaries (walls). The
distance between the two boundaries is denoted by L∗. The interaction between the fluid and the
boundaries is also of the LJ type with parameters ε∗ and σ ∗ and is denoted by u∗

wf . Throughout this
work, asterisks denote dimensional quantities; unless otherwise stated, nondimensional quantities
are scaled by the LJ length scale σ ∗, energy scale ε∗, and temperature scale ε∗/kB , where kB is
Boltzmann’s constant.
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For the majority of the MD results presented in this work, the solid boundaries are composed
of one graphene sheet held rigid with periodic boundary conditions in all directions; the effect of
multiple rigid graphene layers as well as nonrigid walls is discussed in the Appendix. More details
on the MD simulations can also be found in the Appendix.

We begin the investigation by considering the semi-infinite fluid case, where L is sufficiently large
that a well-defined bulk-fluid region separates the fluid-solid interfaces such that they have negligible
effect on each other (in practice, L � 30 suffices; in our simulations, L = 32). Finite systems are
discussed in Sec. III. Our simulations are performed within the temperature range 0.6 � T � 20
and within the average density range 0.4 � ρave � 1.2. Here ρave ≡ Ntotσ

∗3

V ∗
acc

, where V ∗
acc is the volume

accessible to the fluid; this quantity is more precisely defined in the next section. The models that we
present are valid within the layering regime, i.e., conditions under which distinct fluid layers form,
which we will now discuss.

A. Wall number and layering regime

The concepts of layering that we develop in the following sections presume the presence of at
least one distinct layer (i.e., a pronounced first peak in the fluid spatial density profile). Generally
speaking, layering occurs when the wall-fluid interaction is relatively strong; in particular, layering
occurs when the energy scale of fluid-wall interaction in the interfacial region is large compared
the energy scale of thermal motion (which generally tends to discourage the formation of ordered
structures). Given the above, and approximating the wall as an infinite plane with a density of n∗

atoms per unit area, we define the Wall number Wa ≡ n∗σ ∗2ε∗
kBT ∗ as a measure of the relative importance

of wall-fluid interaction energy (proportional to n∗σ ∗2ε∗) to thermal energy (proportional to kBT ∗).
From its definition we expect that Wa � 1 will indicate relatively small inhomogeneity in the
spatial density profile near the wall, whereas Wa /� 1 will correspond to the presence of well-defined
layering. As stated above, this work focuses on the strongly layering regime denoted by Wa /� 1.
Given the nondimensional set of units used throughout this paper, we note that, in these units,
Wa = n

T
, where n = n∗σ ∗2.

To quantify the notion of a well-defined first layer, we also define the degree of layering as
L = maxz ρ(z)

minσ�z�2σ ρ(z) , where ρ(z) is the fluid spatial density profile in the direction orthogonal to the
fluid-solid interface. From MD simulations, we find that L � 5 is sufficient for the purposes of our
modeling below. In Fig. 1 we can clearly see that the degree of layering increases with increasing
Wall number; in particular, the layering regime L � 5 corresponds to Wa /� 1.

B. Anatomy of the first layer: Length scales of layering and density enhancement

Figure 2 shows the distinct layering of fluid near the liquid-solid interface at Wa /� 1.
Characteristic liquid density profiles in the wall vicinity are shown in Fig. 3. From this figure
we can see that, in the strongly layering regime, density variations extend up to �c ∼ 5 from the
solid and more than five distinct layers are discernible before the density relaxes to the bulk value
ρbulk. Of particular interest here are the standoff distance between the wall and the fluid, denoted by
zmin, and the thickness (width) of the first layer, denoted hFL; both are shown in Fig. 3. An additional
quantity of interest is the overall particle content of the first layer. These quantities are defined more
precisely and discussed in more detail in the sections that follow.

1. Standoff distance of the first layer

The standoff between the fluid and the wall is primarily a result of the repulsive interaction
between the two substances. As explained in detail in Sec. II C 1, closed-form descriptions of zmin

can be obtained by considering the competition between the wall-fluid interaction and thermal
energy, using a mean-field theory approach [19]. For the system studied here, this theory predicts
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FIG. 1. Relation between degree of layering and Wall number, obtained from 33 MD simulations of a LJ
fluid confined within a graphene nanoslit with 0.4 � ρave � 1.2 and 0.6 � T � 20.

zmin = 0.86 (Fig. 4), independent of density or temperature. Our MD results, shown in Fig. 4, verify
that the mean-field theory prediction is valid for a wide range of temperatures and fluid densities.

As will be seen below, this result has a number of implications. Here we discuss its application
to the accessible volume defined above; in a graphene nanoslit geometry, this quantity is given
by Vacc = (L − 2zmin)A, where A is the interfacial contact area between the fluid and the solid.
Accounting for the excluded volume due to zmin becomes particularly important in finite systems,
where this volume is appreciable compared to the total system volume, as further discussed in
Sec. III.

FIG. 2. Fluid layering near the graphene surface, obtained from MD simulation at T = 6.4 and ρave = 1.2
(Wa = 0.6). The minimum separation zmin is schematically illustrated in orange. Visualization performed
using [35].
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FIG. 3. Four smoothed fluid spatial density profiles, corresponding to a lower density (ρave = 0.5) and a
higher density (ρave = 1.0) as well as a lower temperature (T = 3.2) and a higher temperature (T = 6.4). In
all cases, density variations are low in amplitude at a distance of 5σ from the wall. The first-layer width hFL is
schematically illustrated in green. Note that hFL is a function of density and also a weak function of temperature
in the low-density case. The minimum separation zmin given in Eq. (3) is schematically illustrated in orange.
Note that this quantity does not discernibly depend on density or temperature.

2. First-layer width

We define the first-layer width, denoted by hFL, as the distance between zmin and the first
nonzero minimum of the density profile. This distance is shown schematically in Fig. 3. To prevent
small density fluctuations over space from materially affecting the calculation of the first nonzero

FIG. 4. Molecular-dynamics results (0.6 � T � 20) for the standoff distance zmin are shown as a function
of density, along with the value predicted by mean-field theory in Eq. (3).
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FIG. 5. Density enhancement as a function of temperature for 0.7 � ρave � 1.2 (the inset shows the density
enhancement for three additional low densities 0.4 � ρave � 0.6). Note that the density enhancement decreases
with increasing temperature for all densities. Moreover, for ρave � 0.7, the enhancement can be accurately
modeled using �FL from Eq. (18) (represented by the dashed curve) as well as using s−2 from Eq. (25)
(represented by diamonds).

minimum, we perform moving-average smoothing on the density profile with a window size of 0.5;
we have verified that the location of the first nonzero minimum is not affected by the choice of the
window size ranging from 0.3 to 1.1. We note that unlike zmin, hFL may depend on the temperature
and density.

3. Density enhancement

Having established the length scales relevant to the first layer, we now define the first-layer
density enhancement, a measure of the particle content of the first layer, as C ≡ ρFL

ρave
. Here ρFL is

the (volumetric) density of fluid molecules contained within zmin � z � zmin + hFL. Although it is
reasonable to expect that, in general, C = C(ρ,T ) – for example, the magnitude of the density peaks
appear to be quite sensitive to the system density and temperature (see, e.g., Fig. 3) – we also expect
that limT →∞ C(ρ,T ) = 1, since, in the limit of high temperatures, the fluid spatial density profile
should approach a flat distribution across the channel, corresponding to free-energy minimization
via entropy maximization.

Surprisingly, Fig. 5 shows that for ρave � 0.7, C is essentially independent of density not only for
T → ∞, but for all T � 6. Moreover, its temperature dependence is very weak. This remarkable
relationship implies that the fluid density in the first layer, based on the width hFL, is related to the
average fluid density via a density-independent enhancement factor that is only weakly dependent
on temperature.

C. Molecular mechanics of the first layer

In this section we use MD simulations and molecular mechanics modeling to explain the behaviors
observed in Sec. II B. In addition to the standoff distance zmin and enhancement factor C, we also
define and investigate the behavior of the fluid areal density in the first layer �FL.
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1. Standoff distance between the wall and the first layer

The first fluid layer forms at a characteristic distance from the wall that can be calculated using
the mean-field approach proposed in Ref. [19]. Assuming that the solid surfaces are sufficiently
large such that edge effects are negligible, the mean-field interaction potential between the solid and
a fluid atom at distance z∗ from the solid layer is given by

U ∗
plane(z∗) = 2nε∗π

5

[
2

(
σ ∗

z∗

)10

− 5

(
σ ∗

z∗

)4]
. (2)

As before, n denotes the (nondimensional) areal density of solid atoms in the graphene sheet. This
mean-field potential rises sharply as z∗ → 0, making regions close to the solid described by z∗ < z∗

min
inaccessible to the fluid. The value of z∗

min can be accurately estimated by setting U ∗
plane(z∗) = 0.

The rationale for this choice is that the rise of U ∗
w(z∗) is so sharp that solving for U ∗

plane(z∗) = A∗,
where A∗ is some constant (A∗ ∼ kBT ∗), leads to a more cumbersome but for all practical purposes
equivalent result. Proceeding, we find

zmin = ( 2
5 )1/6. (3)

This result is within 8% of the standoff distance observed in Sec. II B 1 for 0.4 � ρave � 1.2 and
0.6 � T � 20. We also note that (3) is identical to the result obtained in Ref. [19] for the standoff
distance in a cylindrical geometry (e.g., carbon nanotubes). This is because the effects of curvature
do not appear to leading order considered in Ref. [19].

2. Areal density of the first layer

It is worth noting that although the first layer is strictly not a two-dimensional structure (since
it has a characteristic width of hFL), this layer tends to be narrow. This observation motivates us to
characterize its packing using an areal density defined using the relation

�FL ≡ ρFLhFL = CρavehFL. (4)

In principle, �FL = ∫ zmin+hFL

zmin
ρ dz can be calculated from the solution of the Nernst-Planck

equation [36]

d2ρ∗

dz∗2
= − d

dz∗

(
ρ∗

kBT ∗
dU ∗

dz∗

)
(5)

describing the particle number density as a function of the distance from the wall. Here U ∗(z∗) =
U ∗

w(z∗) + U ∗
f (z∗,ρ∗(z∗)) is the potential energy per particle, which decomposes into the potential

energy due to the solid-fluid interaction U ∗
w(z∗) and the potential energy due to the fluid-fluid

interaction U ∗
f (z∗,ρ∗(z∗)). These two quantities can be calculated from

U ∗
w(z∗) = n∗

∫
�∗

w

u∗
wf [r∗(z∗,x∗′

,y∗′
,z∗′)]d�∗

w(x∗′
,y∗′

,z∗′) (6)

and

U ∗
f (z∗) =

∫
�∗

f

u∗
ff [r∗(z∗,x∗′

,y∗′
,z∗′)]ρ∗(z∗′)d�∗

f (x∗′
,y∗′

,z∗′)

= ρaveε
∗
f

∫
�f

uff [r(z,x ′,y ′,z′)]ρ̃(z′)d�f (x ′,y ′,z′), (7)

where �w and �f denote the wall and fluid domains, respectively, and ρ̃ = ρ/ρave. We note that
Eq. (6) simply evaluates to the result of Eq. (2) for the case of the graphene walls studied in this
work. From the above two expressions we see that U ∗

w ∼ nε∗, while U ∗
f ∼ ρaveε

∗
f .
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Equation (5) can be integrated once to yield

dρ∗

dz∗ = − ρ∗

kBT ∗
dU ∗

dz∗ . (8)

This equation needs to be solved subject to the constraint
∫ L∗

0
ρ∗(z∗)dz∗ = ρ∗

aveL
∗. (9)

Taking into consideration the dominant role of the solid boundary in the vicinity of the solid-fluid
interface, we write

U ∗
w(z∗)

kBT ∗ = n

T
Uw(z∗), (10)

U ∗
f (z∗,ρ∗(z∗))

kBT ∗ = ρaveε
∗
f

ε∗T
Uf (z∗,ρ̃(z∗)) = ε

n

T
Uf (z∗,ρ̃(z∗)), (11)

where ε = ρaveε
∗
f /nε∗. Equation (8) can thus be written as

dρ̃

dz
= −Waρ̃

(
dUw

dz
+ ε

dUf (ρ̃)

dz

)
. (12)

Based on the structure of this equation and the observation that typically ε � 1 (in our simulations
ε ≈ 0.2), we propose a solution of the form

ρ̃ =
∞∑

j=0

εj ρ̃j , (13)

recalling that ε ∝ ρave. Using Eq. (13), we find to zeroth order

dρ̃0

dz
= −Waρ̃0

dUw

dz
, (14)

while at the next order we find

dρ̃1

dz
= −Waρ̃1

dUw

dz
− Waρ̃0

dUf (ρ̃0)

dz
. (15)

Equation (14) can be solved directly using the constraint
∫ L

0 ρ̃0dz = L. Subsequently, given ρ̃0,

Eq. (15) can be solved subject to the constraint
∫ L

0 ρ̃1dz = 0.
Ultimately, a numerical treatment is required due to the complexity associated with evaluating

Uf (ρ̃j ). Given that “exact” solutions (to all orders of ε) of the above problem are available via
MD simulation, we leave numerical implementation to future work. Here we use the above solution
framework to make some general deductions in support of our MD simulation results. In particular,
from the above discussion we can see that

ρ(z) = ρave[ρ0(z) + ερ1(z) + O(ε2)]. (16)

This confirms that in the regime {Wa /� 1,ε � 1} features of the fluid local density can be described
in polynomial expansions of the average fluid density. In other words, we expect that

�FL(ρave,T ) =
∞∑

j=1

aj (T )ρj
ave. (17)

To validate the above result, we conducted MD simulations over a range of densities and
temperatures such that Wa /� 1. As shown in Figs. 5 and 6, we find that our MD results can be

094201-8



MOLECULAR MECHANICS AND STRUCTURE OF THE . . .

FIG. 6. Molecular-dynamics results for the first-layer areal densities �FL as a function of temperature T .
Equation (18), represented by dashed curves, is able to capture these values of �FL accurately (especially for
ρave � 0.6).

described quite accurately in the range 0.4 � ρave � 1.2 and 2 � T � 15 using the form

�FL(ρave,T ) = a1(T )ρave + a2(T )ρ2
ave + a3(T )ρ3

ave, (18)

where

a1(T ) = 0.994 + 4.797T −1 = 0.994 + 1.267 Wa = a1(Wa),

a2(T ) = 0.071 − 8.738T −1 = 0.071 − 2.307 Wa = a2(Wa),

a3(T ) = −0.258 + 4.431T −1 = −0.258 + 1.170 Wa = a3(Wa).

Here we note that the functional form of coefficients a1, a2, a3 [and consequently �FL(ρave,T ) =
�FL(ρave,Wa)] can be motivated by the expected form of the solutions to Eqs. (14) and (15).

3. Variation of first-layer width with average density

In view of the definition (4) and Eq. (17) from the preceding section, in this section we examine the
dependence of the first-layer width hFL on the fluid density. In Fig. 7 we show MD simulation results
for the first-layer width plotted as a function of temperature for a variety of system average densities.
We note a clear dependence of hFL on ρave, but a weak dependence on temperature. Motivated by
this observation, we average the first-layer widths across the full range of temperatures; the results
are shown in Fig. 8 along with the least-squares linear fit hFL(ρave) = h0 − kρave, where h0 = 0.80
and k = 0.30. These results strongly suggest that the first-layer width can be accurately represented
as a first-degree polynomial in ρave.

In the remainder of this section we use the results of the Nernst-Planck analysis of the preceding
section to provide some motivation for this result. We start by noting that hFL can be defined as the
distance between the first density minimum and the standoff location identified by zmin. We also note
that to an excellent approximation zmin is independent of the fluid density. These two observations
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FIG. 7. The first-layer width hFL is shown for three different densities and 3.2 � T � 6.4. Note that hFL is
clearly a function of ρave but only a weak function of temperature.

mean that the dependence of hFL on the density is the same as the dependence of the first minimum
of Eq. (16) on the density. To leading order in ε, any extremum of Eq. (16) located at z = Z obeys

dρ0

dz
(z = Z) + ε

dρ1

dz
(z = Z) = 0. (19)

To study the (leading-order) dependence of Z on the density, we differentiate with respect to Z to
find

d2ρ0

dZ2
+ ε

d2ρ1

dZ2
+ dε

dZ

dρ1

dZ
= 0. (20)

Solving for dZ/dε, we obtain

dZ

dε
= − dρ1/dZ

d2ρ0/dZ2 + εd2ρ1/dZ2
, (21)

which, in the limit of small ε, can be written (to leading order) as

Z − ZA = −
[

dρ1/dZ

d2ρ0/dZ2

]
A

(ε − εA), (22)

where [ ]A denotes evaluation at the reference condition A. The linearization about point A is justified
by the observation that hFL changes very slowly with ρave. In summary, we find that, to leading order
and under some additional assumptions, our finding that the width of the first layer is to a good
approximation linear in the system average density is supported by the Nernst-Planck theory.

4. Another look at dense fluids (ρave � 0.7)

When combined with the definition (4), the dependence of hFL and �FL on ρave provides the
necessary ingredients for explaining the observations of Sec. II B 3, namely, that C is a weak
function of density and in particular C = C(T ) when ρave � 0.7. In this section we focus on the
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FIG. 8. Molecular-dynamics results for the first-layer width hFL are shown as a function of density, along
with a linear fit. The bars indicate the variation of first-layer widths due to temperature in the range 2 � T � 20.

regime ρave � 0.7 where the result C = C(T ) requires cancellation between the density dependences
of hFL and �FL. We also note that, in this regime, it is known that two-dimensional Lennard-Jones
materials arrange into hexagonal packing [37]. It is natural to inquire whether the two effects are
related.

Assuming a hexagonal structure, the areal density of the first layer can be written in terms of the
hexagon side length s(ρave,T ) as

�FL(ρave,T ) = 2√
3
s(ρave,T )−2, (23)

where, in accordance with the discussion of Eq. (17), we write

s(ρave,T )−2 =
∑

j

bj (T )ρj
ave. (24)

To O(ρ3
ave) the areal density takes the form

�FL(ρave,T ) = 2√
3

[
b1(T )ρave + b2(T )ρ2

ave + b3(T )ρ3
ave

]
. (25)

We determine b1(T ), b2(T ), and b3(T ) from MD simulations of the in-plane structure of the first
layer. In particular, we first obtain the radial distribution function in the plane of the layer (the xy

plane in Fig. 2) for all fluid atoms within the first layer; this quantity is shown for several densities
in Fig. 9. We define s(ρave,T ) as the distance at which this radial distribution function falls to half of
its maximum value. This distance typifies the standoff distance between each atom and its nearest
neighbors within the hexagonally packed first layer. We extract values of s(ρave,T )−2 from MD
simulations at a series of temperatures and fit these results to Eq. (25) (Fig. 10).
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FIG. 9. Radial distribution functions for fluid atoms within the first layer, for systems with six different
densities, obtained from MD simulations at T = 3.8.

From the empirical fits for hFL(ρave) and s(ρave,T ), we find that the density enhancement

C = 2s(ρave,T )−2

√
3ρavehFL(ρave)

(26)

FIG. 10. Molecular-dynamics results and corresponding fits to Eq. (25) for s−2, as a function of ρave, at
three values of T .
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is very slowly varying over the range 0.7 � ρave � 1.2. Thus we can average over ρave to obtain a
density-independent C at each temperature. These density-independent values of C differ, on average,
by less than 4% from Eq. (26) for 0.7 � ρave � 1.2 and 2 � T � 20, which is negligible compared
to the variation in C with T over this same range. Values of the density enhancement obtained
through this route are shown in Fig. 5 for five temperatures, all of which are within 5% of the values
of C obtained via direct measurement of the first-layer density.

In this section we have seen that the result C = C(T ) coincides with the arrangement of the
first-layer atoms in a two-dimensional structure of hexagonal symmetry. The resulting structure is
sufficiently ordered that the areal density of the layer as a function of T and ρave can be accurately re-
covered from measurement of the characteristic spacing between atoms. It is still unclear whether the
relation ρFL = �FL/hFL = C(T )ρave can be derived from thermodynamic considerations associated
with the coexistence between the bulk and the two-dimensional LJ phase comprising the first layer.

III. EXTENSION TO FINITE SYSTEMS

In this section we extend our investigation to finite systems. We are interested to see if the
remarkable result of the previous section, namely, C = C(T ) independent of density, is also valid
for these systems. Clearly, confinement effects will only begin to be important as the system scale
becomes comparable to the characteristic scale of the layering phenomenon. Given the size of �c

(∼5), we would expect confinement to become important for L � 20 (for a slit geometry with two
opposed boundaries).

Molecular-dynamics simulations in small nanoslits (L = 15.9) yield values of hFL and �FL that
are up to 2% and 3% smaller than the infinite system values, respectively. For fluids under more
considerable nanoconfinement (L = 6.3), MD simulations yield values of hFL and �FL up to 8%
and 11% smaller than the infinite system values, respectively. In other words, although confinement
has an effect on both hFL and �FL, the ratio of these two quantities remains relatively insensitive to
ρave. This trend is illustrated in Fig. 11. These results suggest that the relation C = C(T ), obtained

FIG. 11. Predicted value of C, based on the value of �FL from Eq. (18), shown against results from MD
simulations of fluid confined within small systems (L = 15.9 and L = 6.3), with agreement within 12%.
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for semi-infinite systems, remains approximately valid even under considerable confinement (at
L = 6.3 the solid boundaries are so close that there is no region that clearly resembles bulk fluid, for
any of the densities studied). Ultimately, we do expect a number of assumptions used in the present
work to fail as L decreases further (most notably mean-field interaction); fortunately, however, it
appears that this will lead to significant loss of accuracy only for very small systems (L � 6).

The key to the broad success of this scaling relation even at considerable nanoconfinement is
the use of ρave for characterizing the fluid density. As discussed in Ref. [19], although zmin is of
atomistic size, its effect can be appreciable when the characteristic system length scale is also of
the same order. By considering the actual volume available to the fluid (by excluding the standoff
distance zmin), ρave is a more appropriate measure of the fluid density than the density based on the
distance between the solid boundaries (L) or the bulk density.

IV. SUMMARY AND DISCUSSION

Through a combination of molecular-mechanics arguments and MD simulations, we have
elucidated several key relationships that characterize the appearance and structure of the fluid-solid
interface for simple liquids. We have shown that layering is controlled by the balance between the
wall-fluid interaction and the thermal energy, as quantified by the Wall number Wa. When Wa � 1,
the fluid density profile near the solid exhibits little spatial inhomogeneity. It is worth noting that this
conclusion is supported both by the MD simulations presented in Sec. II B and the Nernst-Planck
theory presented in Sec. II C. In particular, for the former, we can see that in the limit of large T

(i.e., Wa � 1, since n is fixed), C tends to unity, indicating the absence of layering. For the latter,
we can see that Eq. (14) leads to ρ0 = ρave in the limit Wa → 0, also indicating a spatially uniform
density profile.

Within the layering regime (Wa /� 1), the density of the first layer can be represented as a
multiplicative enhancement over the average fluid density. For dense fluids (ρ � 0.7), this density
enhancement is nearly independent of the average fluid density and only weakly dependent on
temperature. We have also demonstrated that the areal densities of the first layer can be modeled
to a good approximation level using a polynomial function of density and temperature. Moreover,
we have shown that the width of the first layer is nearly linear in the system average density and
exhibits little dependence on temperature. We have verified that our results generalize to fluids under
considerable nanoconfinement as well as systems with a variety of wall boundary conditions and
fluid-solid interaction strengths that permit the formation of layers.

Our results suggest that (over the broad range of densities and temperatures simulated) the primary
lever for tuning �FL, essentially the particle content of the first layer, is modification of ρave. It is
important to note that, as can be seen from the MD results in Fig. 5, the (nondimensional) temperature
can also be used as a much weaker lever for tuning �FL (and thus the fluid-solid interaction strength
ε∗ can also be used for the same purpose).

Additional MD simulations have shown our results to be insensitive to solid structure as well as
solid-fluid interaction parameters, as long as Wa /� 1 and the fluid is unable to infiltrate the solid.
It is worth noting that a fluid bounded by graphene, owing to the high in-plane density of carbon
atoms in graphene, will generally have a higher Wall number than that same fluid bounded by many
other choices of solid. We also note that the results presented above are for simulations with rigid
boundaries. Simulations with thermalized walls exhibit a small but measurable [O(10%)] reduction
in the value of C, attributed to boundary flexure into the fluid region.

In closing, we note that despite the focus on fluid-solid interfacial layers at equilibrium, we expect
our results to be useful for nonequilibrium settings involving fluid flow and heat transport. We note
that nonequilibrium MD simulations have shown that fluid flow in confined geometries does not
appreciably affect fluid structure. Thus information about the equilibrium structure of the first layer
should prove useful in the development of models that predict interfacial resistance to heat and
momentum transport.
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APPENDIX: MOLECULAR-DYNAMICS SIMULATIONS

In our simulations, graphene was modeled as a sheet of carbon atoms packed in a hexagonal
lattice. To minimize edge effects, each graphene sheet measured at least 30 × 30 in the in-plane
directions. For the semi-infinite systems described in Sec. II, the channel width was L = 32.

Interactions between carbon and fluid molecules were modeled using σ ∗ = 3.15 Å and ε∗ =
0.15 kcal mol−1, while interactions between fluid molecules were modeled using σ ∗

f = 3.15 Å and

ε∗
f = 0.15 kcal mol−1. A cutoff distance of 4σ ∗ was used throughout.

Simulations were conducted in LAMMPS (large scale atomistic/molecular massively parallel
simulator) [38] in the NV T ensemble using a Nosé-Hoover thermostat [39,40] within the range of
densities 0.4 � ρave � 1.2. The majority of simulations were conducted within 2 � T � 20. The

simulation time step was 1.25 × 10−3τ , where we define the LJ time unit as τ ≡
√

mσ 2

ε
and m is

the mass of a fluid molecule. Each system was allowed to equilibrate for a time of 1875τ , after
which samples were recorded every 1.25 × 10−3τ for a total of 625τ . To facilitate convergence to
the equilibrium density profile, each system was initialized with the equilibrium density profile at
T = 3.8.

Below we discuss the robustness of our results by reporting their sensitivity to differing simulation
parameters and conditions. In each case, the phrase “a subset of densities and temperatures” refers
to ρave ∈ {0.4,0.8,1.2} and T ∈ {3.2,6.4}.

1. Effect of boundary structure

All graphene sheets were of armchair chirality; for a subset of densities and temperatures we
verified that chirality had no observable impact on any of the results reported here.

In order to quantify the effect of using a single-layer wall to model the solid boundaries, we
performed simulations of semi-infinite systems with boundaries consisting of five layers of graphene
for a subset of densities and temperatures. We found that none of the results reported above were
observably affected by the presence of thicker bounding solids.

In particular, we note that we would not expect additional layers of graphene to have a significant
effect on the standoff distance zmin. A simple calculation shows that in the limiting case of a
semi-infinite solid wall (infinite layers of solid), zmin = ( 2

15 )1/6, which differs from zmin for a single
sheet by approximately 0.1. In practice, due to the cutoff, fluid near the wall could not respond to
the presence of more than three layers of solid and so we expect the effect of multilayer boundaries
on zmin to be even less than 0.1.

In order to quantify the effect of the graphene structure on our results, we also performed
simulations of semi-infinite systems with solid boundaries resembling (100) silicon as well as silicon
dioxide. In all cases, the range of temperatures simulated were such that Wa /� 1. We measured values
for C that were negligibly different from those found for graphene.

2. Effect of boundary rigidity

For the results described above, all graphene sheets were kept rigid throughout each simulation.
We investigated the effect of this assumption by simulating semi-infinite systems with boundaries
consisting on multiple graphene sheets thermalized to the system temperature. Thermalization was
performed via a Langevin thermostat [41]; the graphene layer furthest from the fluid was held rigid.
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Interactions between atoms within the graphene were simulated using the optimized Tersoff potential
[42]; interactions between atoms in different graphene sheets were simulated using the Girifalco
potential for carbon structures [43]. Thermalized walls tend to intrude slightly into the fluid region,
which in turn decreases the accessible channel width for fluid molecules.

For a subset of densities and temperatures, we observed within our MD simulations that flexure
of the graphene boundary into the fluid region was bounded from above by a displacement of 2.6σ

from the initial position z∗ = 0 of the graphene sheet nearest the fluid; variations of the in-plane
lattice structure were found to be negligible. The results exhibited very small differences in hFL (less
than 5%, as compared to the values reported in Sec. II, with no obvious trends) and small differences
in �FL and C (bounded from above by 8%, as compared to the values reported in Secs. II and
II C 4). In particular, values of �FL and C were found to be systematically lower, which suggests that
boundary rigidity and in particular boundary flexure into the fluid region tend to have a measurable
(but generally small) effect on the results presented in this paper. These results are similar to the
findings in Sec. III; namely, the values of �FL and C show weak but systematic deviations below the
values corresponding to Eq. (18) in the limit of finite channel widths.

3. Effect of LJ parameters

To check robustness against changes in the LJ parameters, we performed semi-infinite simulations
in which ε∗ and ε∗

f were varied in the range 0.1 kcal mol −1 � ε∗ = ε∗
f � 0.5 kcal mol −1 (while

the two remained equal), as well as simulations in which the ratio of these two parameters varied in
the range 0.5 � ε∗/ε∗

f � 1.2. For a subset of densities and temperatures, these results differed by
no more than ±7% (with no obvious trends) from the results reported in Secs. II and II C 4 for hFL,
�FL, and C.
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