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In this work, we present observable consequences of a parity-violating odd-viscosity
term in incompressible 2+1D hydrodynamics. For boundary conditions depending on the
velocity field (flow) alone we show that (i) the fluid flow quantified by the velocity field is
independent of odd viscosity, (ii) the force acting on a closed contour is independent of odd
viscosity, and (iii) the odd-viscosity part of torque on a closed contour is proportional to
the rate of change of area enclosed by the contour with the proportionality constant being
twice the odd viscosity. The last statement allows us to define a measurement protocol of
odd viscostance in analogy to Hall resistance measurements. We also consider no-stress
boundary conditions that explicitly depend on odd viscosity. A classic hydrodynamics
problem with no-stress boundary conditions is that of a bubble in a planar Stokes flow. We
solve this problem exactly for shear and hyperbolic flows and show that the steady-state
shape of the bubble in the shear flow depends explicitly on the value of odd viscosity.
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I. INTRODUCTION

Hydrodynamics is generally concerned with the classical fluid motion arising due to application
of external forces [1,2]. In spite of this simplistic premise, hydrodynamic framework is ubiquitously
applicable to a vast range of physical phenomena ranging from subatomic to astronomical scales.
Thus discovery of a new phenomenon in hydrodynamics often leads to far-reaching implications
to a wide class of systems. One such phenomenon was uncovered in the seminal work of Avron
et al. [3], where they showed that the viscosity of quantum Hall (QH) fluids at zero temperature
is nondissipative and is closely related to the adiabatic curvature on the space of flat background
metrics. This nondissipative viscosity, which is the antisymmetric component of the total viscosity
tensor (dubbed odd viscosity [4]), is nonzero in the presence of broken time reversal or broken parity
symmetry. The 2+1D case is special since the odd-viscosity term is compatible with isotropy. The
general odd-parity terms of the viscosity tensor in 3+1D was previously considered in the context
of plasma in magnetic field [5] and in hydrodynamic theories of superfluid He-3A [6].

The concept of odd viscosity in QH fluids was subsequently generalized to 2+1D hydrodynamics
with a dominant odd-viscosity term in the stress. The generalized Navier-Stokes equations with odd
viscosity may lead to counterintuitive effects. Avron [4] showed examples of such effects e.g.,
the radial pressure on a rotating cylinder and chiral viscosity waves with quadratic dispersion in
compressible fluids. The odd-viscosity effects have been studied extensively in the context of QH
fluids (where they were dubbed Hall viscosity) [7–28]. However, realistic odd viscosity effects
measurable in the laboratory for general classical fluids with broken time-reversal symmetries
[29–31] have received less attention. The closest attempt to this end was made recently in Ref. [30],
where the authors considered the geometric theory of swimming [32–34] in Stokes flow with odd
viscosity. The torque acting on the surface of the swimmer depends explicitly on the odd viscosity
and influences the swimming strokes. Most recently, the effects of odd viscosity have also been
studied in connection with the dynamics of systems of active rotors [35]. For an elegant pedagogical
introduction to odd viscosity in fluid dynamics, we refer readers to Refs. [4,30].

While the effects of odd viscosity are very prominent in compressible fluids [4], they are more
subtle in the incompressible case. Our goal is to identify general observable effects of odd viscosity
in incompressible 2+1D fluids and capture these effects in terms of a possible measurement protocol.
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Such a measurement protocol can potentially be adapted to the case of QH fluids. In this work we
prove several exact statements on the observable consequences of odd viscosity in incompressible
2+1D fluids. We show that the observable effects sensitively depend on the type of boundary
conditions imposed. The applicability of a particular set of boundary conditions to a particular fluid
should be either analyzed starting from microscopic (kinetic) theory or determined experimentally.
Here we consider two classes of boundary conditions: (a) flow-dependent boundary conditions or,
more precisely, no-slip boundary conditions, where the layer of fluid in contact with a solid body has
the same velocity as the body, and (b) no-stress or force matching conditions, where the velocities of
the surfaces bounding a fluid are not all specified, but the surface traction acting on these boundaries is
known. For the flow-dependent boundary conditions, we prove the following three exact statements:
(i) The fluid flow quantified by the velocity field is independent of odd viscosity, (ii) the force acting
on a closed contour is independent of odd viscosity, and (iii) the odd-viscosity part of torque on
a closed contour is proportional to the rate of change of area enclosed by the contour with odd
viscosity being the proportionality constant. We emphasize that the above statements are not limited
to the case of Stokes flow (cf. Refs. [4,30]) and are valid for the most general constant density
incompressible fluid in 2+1D. We further exploit statement (iii) to define a physical observable,
which we refer to as odd viscostance, and define a measurement protocol to observe it.

The above statements do not hold generically for no-stress or free-surface boundary conditions. A
classic example of a free-surface boundary in hydrodynamics is the problem of finding a steady state
or a dynamical shape of two-dimensional bubbles in slow viscous flows (Stokes flow) [36–40]. We
generalize the problem of bubble dynamics to include odd viscosity and show that the steady-state
shape of the bubble explicitly depends on odd viscosity.

II. INCOMPRESSIBLE FLUIDS WITH ODD VISCOSITY

Hydrodynamic equations for a 2+1D incompressible fluid with constant density (ρ = 1) are the
incompressibility condition and Navier-Stokes (NS) equation given by [2]

∂ivi = 0, Dtvi = −∂ip + ∂jσij , (1)

where vi (i = 1,2) are components of the fluid velocity field and Dt = ∂t + vi∂i defines the material
derivative. For an isotropic fluid but with broken parity, the viscous stress tensor can take the general
form1 [4]

σij = νe(∂ivj + ∂jvi) + νo(∂iv
∗
j + ∂∗

i vj ). (2)

Here νe and νo are the shear viscosity and the odd viscosity, respectively. We use the notation
a∗

i = εij aj . Using the incompressibility condition and (2), the NS equation can be rewritten as

Dtvi = −∂ip̃ + νe�vi. (3)

The odd-viscosity term has been absorbed by redefining pressure p̃ = p − νoω, where ω = εij ∂ivj

is the vorticity of the fluid. Taking the curl of Eq. (3) removes modified pressure from the equation
and we obtain an exclusively flow-dependent equation of motion written in terms of the vorticity ω,

Dtω = νe�ω. (4)

Equation (4) and the incompressibility condition ∂ivi = 0 constitute two equations for two
components of velocity. Pressure is not a state variable in incompressible hydrodynamics. It can
be found from the NS equation (3) after finding the flow v(x,t) from (4) and the incompressibility
condition. At first it may seem that fluid flow and the corresponding equation of state are completely

1Strictly speaking one might also add the antisymmetric part of the stress ∼εijω [35], but we do not consider
this possibility in this work.
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independent of odd viscosity. However, we must recall that the fluid flow is specified by equations
of motion in conjunction with boundary conditions. Thus, to locate the observable effects of odd
viscosity we must analyze various boundary conditions and see how they dictate odd-viscosity
effects in the resulting dynamics. To this end we consider no-slip and no-stress (free-surface)
boundary conditions. We first consider the odd-viscosity effects for no-slip boundary conditions.

III. EXACT RESULTS FOR NO-SLIP BOUNDARY CONDITIONS

The no-slip boundary conditions enforce that the layer of fluid in contact with a solid body has
the same velocity as the body

vi |surface = Ui. (5)

Assuming this condition to be true, we can make the following three statements.
Statement I (flow). If boundary conditions of an incompressible flow depend only on the flow

v(x,t) itself, the flow does not depend on the value of odd viscosity νo.
This statement simply follows from Eqs. (4) and (5), which are completely independent of νo.

It has appeared already in Ref. [4] and here we just make it more precise by explicitly specifying
boundary conditions. As a corollary to Statement I, we note that changing νo → −νo would leave
the flow unchanged (in QH fluids this reversal can be achieved by changing the direction of the
external magnetic field).

Statement II (force). If boundary conditions of an incompressible flow depend only on the flow
v(x,t) itself, the net force acting on a closed contour 	 does not depend on the value of odd
viscosity νo.

The force applied by a fluid to a unit length of a contour is given by fj = niTij , where n
is a unit vector orthogonal to the contour outward to 	 and Tij is the stress tensor defined as
Tij = −pδij + σij . Using the incompressibility condition, we rewrite

Tij = −p̃δij + νe(∂ivj + ∂jvi) + 2νo∂
∗
i vj . (6)

Then the force f acting on a contour 	 is given by

fj |	 = −p̃nj + νeni(∂ivj + ∂jvi) − 2νon
∗
i ∂ivj

or, introducing the tangent direction s = −n∗ to the contour 	,

fj |	 = −p̃nj + νeni(∂ivj + ∂jvi) + 2νo∂svj . (7)

In expression (7) only the last term depends on νo. Indeed, by Statement I, the flow itself does not
depend on odd viscosity and so is modified pressure p̃ that can be found from flow according to (3).
We can then calculate the contribution from the odd-viscosity term to the total force Fo

j acting on
the closed contour 	,

Fo
j = 2νo

∮
	

ds ∂svj = 0. (8)

This completes the proof of Statement II. A corollary of this statement is the absence of any total
lift force or Magnus force coming from the odd viscosity when no-slip boundary conditions are
imposed. We emphasize that this statement holds in general moving and shape-changing contours
and for the incompressible fluid of constant density. It is not limited to Stokes flow (cf. Refs. [4,30]).
In particular, nonlinear corrections (also known as Oseen’s correction) to Stokes flow do not result
in a νo-dependent lift force on a cylinder, in contrast to recent claims [41]. We have shown that that
there is no lift force due to odd viscosity. The correct definition of a lift force involves integration of
the full momentum flux density tensor projected along the normal direction to the closed contour,
not just an integration of the change of the pressure due to odd viscosity p − p̃ = νoω. The final
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form of the net force acting on a closed contour 	 is given by

Fj = −
∮

	

(p̃nj + νeωsj − 2νeni∂ivj )ds. (9)

It can be determined once the flow vj is obtained. Notice that Statement II is valid for flow-dependent
boundary conditions and only for the net force acting on a closed contour. The effects of νo are still
observable if one measures local forces given by Eq. (7).

Statement III (torque). If boundary conditions of an incompressible flow depend only on the flow
v(x,t) itself, the part of the net torque acting on a closed contour that depends on the value of odd
viscosity νo is given by

T o = 2νo

∮
	

ds vn = 2νo dA
dt

, (10)

where A is the area enclosed by the contour.
The net torque on a closed contour is given by T = ∮

	
τ ds, where the local torque τ on a unit

contour element can be written as

τ = εkj xkfj |	 = −p̃(xkn
∗
k) + νenixk(∂iv

∗
k + ∂∗

k vi) + 2νoxk∂sv
∗
k .

The last term is the only νo-dependent term and the total torque corresponding to this term on a
closed contour is given by

T o = 2νo

∮
	

ds xk∂sv
∗
k = 2νo

∮
	

ds vn = 2νo

dA
dt

.

The integral in this equation is the rate of the change of the area A enclosed by the contour. The
expression T o = 2νo

dA
dt

has an obvious physical interpretation as the rate of the expulsion of intrinsic
angular momentum from the area enclosed by the contour 	. The odd viscosity is given by half of
the value of intrinsic angular momentum per particle νo = l

2 [13,29,35]. Pushing away this angular
momentum results in the torque T o = d(Al)

dt
. Equation (10) has appeared first in Ref. [30], where it

was derived for the swimming in the Stokes regime. The derivation presented in this section extends
the validity of formula (10) beyond the Stokes limit.

Odd viscostance. Following Statement III, we can construct an experimental protocol that can
lead to the measurement of odd viscosity. We define odd viscostance as

N o ≡ 1

2

T
dA/dt

, (11)

where T is a net torque acting on an expanding circle with no-slip boundary conditions on the
circle. In the case of incompressible, uniform, isotropic, infinite two-dimensional (2D) fluid with
constant odd viscosity νo, one finds N o = νo. However, the quantity N o characterizes the fluid
system globally and might change if defects and inhomogeneities are present in the fluid. Indeed,
specializing to the case of the radially expanding circle (vs = 0 at 	), we obtain for the torque
τ = 2νovn + νer∂rvs. The latter term drops out in the limit νe → 0, but is generally nonvanishing
for finite νo and in the presence of inhomogeneities. The relation between N o and νo is similar to
the relation between Hall resistance and Hall resistivity.

If one has an experimental ability to change the sign of νo, the easiest way to extract the
odd-viscosity-dependent part of the torque (10) is to repeat the torque measurement for both νo and
−νo. Then T o is given by T o = (Tνo

− T−νo
)/2 and the value of odd viscosity νo can be found from

(10). We emphasize that this protocol is robust against the presence of impurities (the presence of
other rigid obstacles) as long as they interact with the fluid via no-slip boundary conditions.
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IV. NO-STRESS BOUNDARY CONDITIONS

The above exact statements are limited to the case of no-slip boundary conditions. For the no-stress
or free-surface boundary conditions Statement I (and therefore Statements II and III as well) would
break down and may lead to odd-viscosity-dependent flow. In the following we investigate few
examples of incompressible fluids with odd viscosity and no-stress boundary conditions.

A. Expanding bubble

Let us consider the simplest example of an expanding bubble in an incompressible fluid with odd
viscosity. The key equation in the no-stress condition for the case of inviscid bubble is given by

niTij = 0. (12)

Here we took the pressure inside the bubble as zero. A particular stationary solution in polar
coordinates (r,θ ) satisfying Eq. (4) along with the incompressibility condition is given by

vr = γ

2πr
, vθ = αγ

2πr
, (13)

where γ = dA/dt = 2πRṘ is the rate of the area change and α is some constant. For this particular
solution ω = 0 everywhere outside the bubble. At the surface of the bubble we have for normal and
tangent forces fn = njfj and fs = fj sj , with fj given by Eq. (7). For the solution at hand the local
forces along the normal and tangential directions are given by

fn = −p + 2νe∂rvr + 2νo

vθ

r

∣∣∣∣
r=R

, (14)

fs = νe

(
∂rvθ − vθ

r

)
+ 2νo

vr

r

∣∣∣∣
r=R

. (15)

Equation (14) defines the necessary air pressure inside the bubble. The no-stress condition for the
tangent component of the force

fs|r=R = 0 (16)

gives α = νo

νe
, where the flow is then given by

vr = γ

2πr
, vθ = νo

νe

γ

2πr
. (17)

The tangent component of the flow vθ explicitly depends on and is entirely due to the odd
viscosity νo.

B. Bubble dynamics

As a second example of a no-stress boundary condition, we consider the case of an inviscid
bubble in Stokes flow [37,38] with odd viscosity. We define the problem by specifying the flow
at infinity and monitor the equilibrium shape of the bubble under the specified fluid flow. We will
consider a shear flow and hyperbolic flow (also known as straining flow) as representative cases (see
Figs. 1 and 2). The motivation to consider this problem is to capture some observable effects of odd
viscosity in the final equilibrium shape of the bubble. The fluid inside the bubble has a negligible
viscosity (both dissipative and odd) and is at a constant pressure, which is chosen to be zero without
loss of generality. The fluid outside the bubble has a dissipative viscosity νe and odd viscosity νo

and is incompressible. Neglecting inertial effects and gravitational or other body forces, the fluid
motion is governed by the incompressibility condition and the Stokes equation

∂ivi = 0, �vi = 1

νe

∂ip̃. (18)

094101-5



SRIRAM GANESHAN AND ALEXANDER G. ABANOV

y

x

y

x

FIG. 1. Bubble dynamics in an incompressible fluid with odd viscosity placed in a shear flow. Any smooth
initial shape leads to an odd-viscosity-dependent elliptical shape in equilibrium. In the presence of surface
tension the ellipse parameters depend on both odd-viscosity and surface tension terms.

We consider the regime with low Reynolds number and drop all nonlinear terms in Eq. (3). On the
surface of the bubble, we must satisfy two dynamic boundary conditions that balance the forces

njTij = −σκni, (19)

where we have defined σ as the surface tension, κ as the curvature of the surface, and nx,y as two
components of the outward normal unit vector. We also need to match the normal velocity Vn of a
point on the bubble surface to the normal component of fluid velocity at that point,

vini = Vn. (20)

To completely specify the problem, we must specialize the appropriate boundary conditions at large
distances, which can be done by choosing the type of flow.

Bubble in a shear flow. Now we consider a bubble placed within a shear flow such that (vx,vy) →
(ky,0) at infinity. Here k is the shearing parameter or the vorticity at large distances. For this flow, we
follow Ref. [37]. Solving the biharmonic equation for the stream function and imposing boundary
conditions yields the exact bubble shape in the form of an ellipse. The major axis of the ellipse is
inclined to the flow direction at an angle α and the deformation parameter of the ellipse ρ (the ratio
of the half difference to the half sum of major and minor axes) is given by

ρe2iα = 1

1 − ic
. (21)

Here the real function c ≡ c(σ,νe,νo) can be found by matching boundary conditions that fix the
pressure at large distances. Details of the calculations are given in the Appendix. The expression for
c is especially simple in the limit of zero surface tension σ = 0 where c = −νo/νe. In the absence
of odd viscosity νo, the ellipse collapses to a slit. In the limit νe → 0 the bubble shape is nearly

y x y x

FIG. 2. Bubble dynamics in an incompressible fluid with odd viscosity placed in a hyperbolic (straining)
flow. Any smooth initial shape leads to a slit shape in equilibrium independent of odd viscosity (with no surface
tension). Adding surface tension restores the elliptical shape.
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circular, similar to the infinite surface tension limit [37]. Thus the finite odd viscosity stabilizes the
ellipse shape by playing a role akin to surface tension.

C. Bubble in hyperbolic flow and resurrection of flow-dependent boundary conditions

We now focus on the scenario when the bubble is placed in a hyperbolic (purely straining) flow
(vx,vy) → C(x, − y). For this case, we again obtain the elliptical shape defined by Eq. (21). However,
for this case c ≡ c(σ,νe) is independent of the value of odd viscosity. For the σ = 0 limit the basic
straining motion transmits only a constant normal force across the real axis, so the bubble is again a
slit along this axis with no perturbation on the flow. Details demonstrating odd-viscosity-independent
flow and boundary conditions for no-stress boundary conditions for purely straining flow are given
in the Appendix. It appears that the nonvanishing vorticity in the case of shear flow is crucial for
the shape of the bubble to depend on odd viscosity. In contrast to the shearing flow, the no-stress
conditions for the hyperbolic case on the bubble surface can be effectively reduced to flow-dependent
boundary conditions, thereby resurrecting Statements I–III.

V. OUTLOOK

The presence of the parity-breaking odd-viscosity term in 2D hydrodynamics leads to many
interesting phenomena. Those phenomena have received limited attention barring few exceptions
[29–31,35]. Here we focused on the case of an incompressible fluid. We showed that for no-slip
boundary conditions the flow itself does not depend on the value of odd viscosity. We gave three
exact statements concerning the flow, forces, and torques in this case. Using the nonvanishing torque,
we formulated a possible protocol for measuring odd viscosity and introduced the concept of odd
viscostance. The no-stress boundary conditions generically produce the flow dependent on the value
of odd viscosity. To this end, we considered the classical problem of the shape of the bubble in
shear and hyperbolic flows and showed under what conditions flow is modified by the odd viscosity.
A future direction would be to specialize our framework to experimental platforms such as active
rotors (see [35] and references therein).
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APPENDIX: TWO-DIMENSIONAL BUBBLE IN STOKES FLOW WITH ODD VISCOSITY

Here we consider the problem of a stationary shape of the bubble placed in a two-dimensional
slow viscous flow with nonzero odd viscosity. We closely follow the paper by Richardson [37]. It
turns out that the only technical modification required due to the presence of the odd viscosity is the
replacement of the shear viscosity νe by the complex viscosity

ν = νe + iνo. (A1)

We refer the reader to [37] for all details and present here only results and major steps of the
derivation.

Stokes flow. The fluid inside the bubble has a negligible viscosity (both dissipative and odd)
and is at a constant pressure, which is chosen to be zero without loss of generality. The fluid
outside the bubble has a dissipative viscosity νe and odd viscosity νo and is incompressible.
Neglecting inertial effects and gravitational or other body forces, the fluid motion is governed
by the incompressibility condition and the Stokes equation (18). We follow [37] and introduce
complex notation for coordinates z = x + iy and partial derivatives ∂ = 2(∂x − i∂y). Then the
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general solution of (18) is given in terms of complex velocity v = vx − ivy as

v = 2i∂ψ = i[φ(z) + z̄φ′(z) + χ ′(z)], (A2)

with the stream function ψ and modified pressure p̃ given by

ψ(x,y) = Re[z̄φ(z) + χ (z)], p̃/νe + iω = −4φ′(z). (A3)

Here φ(z) and χ (z) are arbitrary functions analytic in z outside the bubble.
No-stress boundary conditions on the surface of the bubble. On the surface of the bubble, we must

satisfy two stress conditions (dynamic boundary conditions) given by Eq. (19) and one kinematic
condition (20). The stress tensor can be expressed as Tij = −(p̃ + νoω)δij + σij with the viscous
stress from (2). In complex notation

T ≡ Txx − Tyy − 2iTxy = 4ν∂v, (A4)

� ≡ Txx + Tyy = −2(p̃ + νoω). (A5)

The stress tensor is conserved ∂̄T + ∂� = 0 and we write its components in terms of the complex
function H (z,z̄) as

T = 4i∂H, � = −4i∂̄H. (A6)

The dynamic no-stress boundary conditions (19) on the surface of the bubble 	 can be written in
complex notation

NT + N̄� = 2σκN̄, (A7)

where we have defined the complexified normal vector to 	 as N = nx + iny . If the surface 	 is
given in parametric form as z(s), with s the arc length traversed in the clockwise direction,

N = i(xs + iys) = izs = ieiθ . (A8)

Here θ is the angle between the tangent and the real positive x axis. The curvature is then defined as
κ = −θs = −z̄ss/N̄ (we use the notation as = da

ds
). We rewrite (A7) as

izsT − iz̄s� = −2σ z̄ss,

and using (A6),

z̄s ∂̄H (z,z̄) + zs∂H (z,z̄) = −σ

2
z̄ss . (A9)

Integrating over s, we obtain the dynamic boundary condition in terms of H (z,z̄) valid on 	:

H (z,z̄) = −σ

2
z̄s . (A10)

Next we consider the kinematic boundary condition (20) setting the bubble surface velocity to
Vn = 0 (for stationary problem) and in complex notation on 	 we have

Re[vN ] = 0, (A11)

or using (A2) and (A8) in terms of the stream function we obtain −∂sψ = 0, i.e., taking the constant
to be zero,

ψ |	 = 0. (A12)
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Boundary conditions on the bubble for Stokes flow. Let us now rewrite the boundary conditions
(A10) and (A12) for the Stokes flow given by (A2) and (A3). We obtain

ν[z̄φ′(z) + χ ′(z)] − νφ(z) = −σ

2
z̄s , (A13)

Re[z̄φ(z) + χ (z)] = 0. (A14)

Here we used (A2) and (A3) to find

H (z,z̄) = ν[z̄φ′(z) + χ ′(z)] − νφ(z). (A15)

Multiplying (A13) by zs , we obtain

ν∂s[z̄φ(z) + χ (z)] = −σ

2
+ 2 Re[zsνφ(z)]. (A16)

Taking the imaginary part of (A16) and combining with (A14), we obtain

z̄φ(z) + χ (z)|	 = 0, (A17)

and taking the real part of (A16) and using (A17), we obtain

Re[z̄sνφ(z)]|	 = σ

4
. (A18)

Thus the three real boundary conditions (A10) and (A12) can be written in a compact form (A17)
and (A18) differing from the one written in Ref. [37] only by changing the dissipative viscosity νe

to complex viscosity ν = νe + iνo.

1. Two-dimensional bubble in a shear flow

To completely specify the problem, we must specialize the appropriate boundary conditions at
large distances. We consider the bubble that is placed in a linear flow. We consider two examples of
linear flow: shear flow and hyperbolic flow (or purely straining flow). In this section we consider a
two-dimensional bubble placed within a shear flow that is specified by the asymptotics at infinity as
v = (ky,0). This requires that, in the limit |z| → ∞,

φ(z) ∼ 1

4

(
k − ip̃∞

νe

)
z, χ (z) ∼ −1

4
kz2, (A19)

where p̃∞ is the yet to be determined pressure at infinity resulting from zero pressure within the
bubble. The goal here is to determine the equilibrium shape of the bubble. To achieve this, we use
conformal mapping that maps the fluid region to the exterior of the unit circle 	 in the ζ plane,
given by z = w(ζ ). Here w(ζ ) is analytic in the flow domain |ζ | � 1 for a smooth bubble outline.
We choose a unique mapping requiring w(ζ ) ∼ aζ as |ζ | → ∞, where a is a real constant related to
the bubble size. Now we define �(ζ ) = φ(w(ζ )) and X(ζ ) = χ (w(ζ )). Both are analytic functions
for |ζ | � 1, and in the limit |ζ | → ∞,

�(ζ ) ∼ 1

4

(
k − ip̃∞

νe

)
aζ, X(ζ ) ∼ −1

4
ka2ζ 2. (A20)

The two boundary conditions in Eqs. (A17) and (A18) can then be written as

w(ζ )�(ζ ) + X(ζ ) = 0, Re[iζw′(ζ )ν�(ζ )] = σ

4
|w′(ζ )|. (A21)

Here ζ resides in the exterior of a unit circle and 1/ζ̄ resides in the interior at the inverse point. If
f (ζ ) is an analytic function outside of 	 then f (1/ζ̄ ) is an analytic function of ζ in the interior.
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Using the first condition of (A21), we analytically continue w(ζ ) to the domain |ζ | � 1 as

w(ζ ) = −X(1/ζ̄ )

�(1/ζ̄ )
for |ζ | � 1, (A22)

w(ζ ) ∼ a

1 − ic

1

ζ
for |ζ | → 0, (A23)

where we have defined c = − p̃∞
kνe

. Replacing ζ by 1/ζ̄ and taking the conjugate in Eq. (A22), we get

w(1/ζ̄ ) = −X(ζ )

�(ζ )
, |ζ | � 1. (A24)

The second condition of (A21) to be satisfied on |ζ | = 1 can be written as

1

ζ
w′(1/ζ̄ )ν�(ζ ) − ζw′(ζ )ν�(ζ ) = iσ

2
[w′(ζ )w′(1/ζ̄ )]1/2.

We analytically continue this condition to the whole plane,

ν
�(ζ )

ζw′(ζ )
− ν̄ζ

�(1/ζ̄ )

w′(1/ζ̄ )
= iσ

2

1

[w′(ζ )w′(1/ζ̄ )]1/2
. (A25)

The first term on the left-hand side is analytic and single valued in |ζ | � 1 and the second term in
|ζ | � 1. The condition (A25) is identical to the one obtained in Ref. [37] with the only change that
ν is complex. For real ν as in [37], the limit σ → 0 is somewhat peculiar. For complex ν we can
just set σ = 0 in (A25) in the absence of the surface tension. We consider two cases.

Case I: σ = 0. In this case the functional relationship (A25) becomes

ν
�(ζ )

ζw′(ζ )
= ν̄ζ

�(1/ζ̄ )

w′(1/ζ̄ )
. (A26)

The left-hand side is analytic and single valued in |ζ | � 1 and the right-hand side |ζ | � 1. Therefore,
both sides should be equal to the same constant. We know the limiting cases in each limit:

ν
�(ζ )

ζw′(ζ )
∼ ν

k

4
(1 + ic), |ζ | → ∞ (A27)

ν̄ζ
�(1/ζ̄ )

w′(1/ζ̄ )
∼ ν̄

k

4
(1 − ic), |ζ | → 0. (A28)

Thus we have for c,

ν
k

4
(1 + ic) = ν̄

k

4
(1 − ic) ⇒ c = −νo

νe

. (A29)

The general form for w(ζ ) can be written as [37]

w(ζ ) = a(ζ + γ 2/ζ ), (A30)

where γ 2 = 1
1−ic

. This mapping with γ 2 = ρe2iα gives an ellipse with its major axis inclined at an
angle α to the flow direction and the deformation parameter of the ellipse ρ (the ratio of the half
difference to the half sum of major and minor axes). The ellipse parameters are given by

tan 2α = −νo

νe

, ρ = 1

1 + ν2
o/ν

2
e

. (A31)
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Case II: σ 	= 0. In the presence of surface tension σ , the ellipse parameters depend on σ via a
transcendental equation for c [37],

c = −νo

νe

+ 2σ

πaνek
K[(1 + c2)−1/2]. (A32)

Here K(m) = ∫ 1
0

ds√
(1−s2)(1−m2s2)

is the complete elliptic integral of the first kind.

2. Two-dimensional bubble in a hyperbolic flow

We now consider the bubble placed in a hyperbolic flow (a pure straining flow) v = (Cx, − Cy),
where C > 0. Such a flow is similar to a rigid rotation superposed on top of a simple shear of strength
k = 2C. For this flow we note that

φ(z) ∼ ip̃∞
4νe

z, χ (z) ∼ − iC

2
z2, |z| → ∞, (A33)

where p̃∞ is yet to be determined pressure at ∞. Proceeding as in the preceding section, we map to
the ζ plane where

�(ζ ) ∼ ip̃∞
4νe

aζ, X(ζ ) = − iC

2
a2ζ 2, |ζ | → ∞. (A34)

The analytic continuation of w(ζ ) into the interior of |ζ | = 1 now yields

w(ζ ) = −2aCνe

p̃∞ζ
, |ζ | → 0. (A35)

The key equation that determines the steady-state shape of the bubble in the limit of σ = 0 is
again given by (A26). The left-hand side of (A26) is analytic and single valued in |ζ | � 1 and the
right-hand side in |ζ | � 1. In the limits

ν
�(ζ )

ζw′(ζ )
= −iν

p̃∞
4νe

, |ζ | → ∞, (A36)

ν̄ζ
�(1/ζ̄ )

w′(1/ζ̄ )
= iν̄

p̃∞
4νe

, |ζ | → 0. (A37)

The only way to satisfy (A26) is to have p̃∞ = 0. Notice that the odd viscosity does not enter
this solution and the bubble is simply a slit along the real axis. In the presence of surface tension
σ 	= 0 the boundary condition yields the equation of the ellipse given again by Eq. (A30) with
γ 2 = −2Cνe/p̃∞. Here γ 2 can be found by solving the transcendental equation [37]

1

γ 2
= σ

πaνeC
K(γ 2). (A38)

This equation is identical to the results of Ref. [37] with odd viscosity not entering (A38). This is to be
expected after the observation that putting p̃∞ = 0 into (A36) and (A37) removes the dependence on
odd viscosity from boundary conditions. Therefore, this case is similar to flow-dependent boundary
conditions independent of odd viscosity and our exact statements apply to this case.
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