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Trapping and displacement of liquid collars and plugs in rough-walled tubes
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A liquid film wetting the interior of a long circular cylinder redistributes under the
action of surface tension to form annular collars or occlusive plugs. These equilibrium
structures are invariant under axial translation within a perfectly smooth uniform tube and
therefore can be displaced axially by very weak external forcing. We consider how this
degeneracy is disrupted when the tube wall is rough, and determine threshold conditions
under which collars or plugs resist displacement under forcing. Wall roughness is modeled
as a nonaxisymmetric Gaussian random field of prescribed correlation length and small
variance, mimicking some of the geometric irregularities inherent in applications such as
lung airways. The thin film coating this surface is modeled using lubrication theory. When
the roughness is weak, we show how the locations of equilibrium collars and plugs can be
identified in terms of the azimuthally averaged tube radius; we derive conditions specifying
equilibrium collar locations under an externally imposed shear flow, and plug locations
under an imposed pressure gradient. We use these results to determine the probability of
external forcing being sufficient to displace a collar or plug from a rough-walled tube, when
the tube roughness is defined only in statistical terms.

DOI: 10.1103/PhysRevFluids.2.094004

I. INTRODUCTION

Surface-tension driven flows in liquid-lined lung airways are of physiological importance in
driving airway closure (through the Rayleigh instability, causing redistribution of airway liquid
into occlusive liquid plugs, and through compressive loading of capillary forces on the flexible
airway wall) and subsequent airway opening (by displacement of liquid plugs and airway inflation).
Significant insight into the physical processes underlying mechanisms of airway closure and
reopening have come from studies of idealized model problems, many of which have wider relevance
to two-phase flow in porous media and microfluidics. In particular, models based on lubrication theory
of the initial Rayleigh instability in a uniform liquid-lined tube, describing the formation of annular
collars [1] and liquid bridges (or plugs) [2], have been extended to account for numerous features
of the complex in vivo airway environment in health and disease, including factors such as wall
elasticity and airway collapse, surfactants, imposed shear due to airflow, gravity, airway center-line
curvature, and non-Newtonian rheology (reviewed in Refs. [3–9]).

The present study addresses a curious aspect of the original problem studied by Hammond [1].
A thin, initially uniform liquid film coating the interior of a long circularly cylindrical tube, subject
to no-flux conditions applied at either end of the tube, redistributes under the action of surface
tension into a set of annular collars, connected to each other by a slowly draining film that remains
continuous in the absence of evaporation and destabilizing disjoining pressure. While the collar
shape is well approximated as a surface of uniform curvature (an unduloid that meets the tube wall
with zero contact angle [10]), the collar location is not so readily determined. In practice, either
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collars will stabilize at either end of the tube (with centers coincident with no-flux boundaries), or
they may migrate towards a boundary, even reversing direction over very long time scales under
the influence of very small differences in the draining flows near each edge of the collar [11]. This
sensitivity reflects a degeneracy in the underlying model, whereby an equilibrium wetting collar (or,
if sufficient fluid is available, an occlusive liquid plug) can in principle be located anywhere along a
sufficiently long uniform circular cylinder.

In reality, lung airways (and other tubes arising in natural environments) are not perfectly uniform
cylinders. Major geometrical imperfections (such as center-line curvature) have already been shown
to disrupt collars sufficiently to form axial rivulets [12,13]. Here we address a more subtle distortion,
imagining that the tube has small random perturbations to its shape (in the case of an airway,
arising, for example, from protruding epithelial cells, inhaled debris or mucosal buckling), which
are described by a Gaussian random field of prescribed variance and correlation length. We seek the
conditions under which such perturbations are sufficient to stabilize collars at discrete locations along
the tube. Small shape perturbations represent a singular limit of Hammond’s problem, regularizing
the degeneracy associated with axial collar translation.

We characterize the wall shape in statistical terms (representing the uncertainties and natural
variability that are inherent to physiological systems) and correspondingly express outcomes in
probabilistic terms. We build on prior deterministic studies of the influence of axially periodic
axisymmetric corrugations along the tube on collar formation, addressing linear [14] and weakly
nonlinear [15] stability as well as the fully nonlinear dynamics leading to tube occlusion
[16,17], which typically show alignment of near-equilibrium structures with tube constrictions.
Nonaxisymmetric perturbations to the exterior of a liquid-lined cylinder can also influence film
distributions [18]. Our study complements the extensive literature on liquid plugs in lung airways,
which focuses primarily on plug displacement under forcing, with studies focusing on the role of
inertia [19], wall flexibility [20,21], surfactant [22,23], dynamical effects including plug rupture
[24–27], gravity [28,29], interactions with bifurcations [30,31], and yielding behavior [32,33].

This study extends this prior work by addressing the role of random geometric imperfections
on collar and plug dynamics. For tubes having weak nonaxisymmetric roughness, we show how
equilibrium collar and plug locations are defined in terms of the azimuthally averaged wall shape,
motivating the study of axisymmetric tubes with axially nonuniform shapes. For such tubes, having
randomly distributed rather than periodic constrictions, we derive algebraic conditions for the
existence of stable capillary equilibria. We use two interpretations of stability: one involving
perturbations driven by surface tension effects alone, the other involving an imposed external
perturbation (here we consider shear from a core flow displacing collars, or an external pressure
gradient displacing occlusive liquid plugs). For applications in which the tube shape is defined
only at a statistical level, we then determine the probability that, over many realizations, a given
external forcing is sufficient to displace an isolated collar or plug. We first present results for
collars (Secs. II–V) and briefly discuss extensions to liquid plugs in Sec. VI, giving displacement
probabilities in an explicit analytic form.

II. MODEL FOR SLENDER LIQUID COLLARS

We consider a rigid hollow cylinder with a rough interior wall coated by a thin layer of fully
wetting Newtonian liquid of viscosity μ and surface tension σ (Fig. 1). We assume the wall roughness
amplitude and the liquid-layer thickness are of comparable magnitude and that both are much smaller
than the cylinder’s mean internal radius a0. We express the liquid-layer thickness as εa0h(θ,z,t)
and the internal radius of the cylinder as a0[1 − εηa(θ,z)], where a is a realization of a Gaussian
random field having zero mean and O(1) exponential covariance. Here ε � 1 is the ratio of the
spatially averaged liquid-layer thickness to a0, η is the ratio of the roughness amplitude relative to
the liquid-layer thickness, θ ∈ [0,2π ) measures the azimuthal angle around the tube, a0z measures
axial distance, and time t is scaled on a0μ/ε3σ . The tube has length a0L. The liquid layer is subject
to an imposed axial shear stress ε2στ/a0 (due to flow of gas in the core of the tube) and satisfies
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FIG. 1. A sketch of the problem domain showing axial a0z and radial coordinates a0r at fixed azimuthal
angle θ , showing wall location r = 1 − εηa(θ,z) (solid), film thickness εh(θ,z,t), and interface location
r = 1 − εg(θ,z) (dotted). The lower dashed line represents the tube center line. The wall shape is arbitrary in
this illustration.

no-slip and no-penetration conditions at the cylinder wall. We neglect gravity and inertia and assume
the cylinder’s length a0L significantly exceeds its radius.

In the leading-order lubrication approximation, the dimensionless liquid-layer thickness h(θ,z,t)
satisfies [11,12]

ht − (
1
3h3pθ

)
θ
+ (

1
2τh2 − 1

3h3pz

)
z
= 0, p = −(g + gθθ + gzz), g = h + ηa(θ,z), (1)

where subscripts denote derivatives. The film adjusts under the action of the imposed shear stress
τ and pressure gradients arising from the nonuniform curvature of the gas-liquid interface (Fig. 1).
The function g(θ,z,t) measures the distance of this interface from the mean wall location; in the
expression for the linearized mean curvature in (1), the term g represents the azimuthal curvature that
drives collar formation. We impose periodic boundary conditions for h(θ,z,t) around the boundary
of the domain [0,2π ] × [0,L], ensuring conservation of fluid volume

V0 =
∫ 2π

0

∫ L

0
h dz dθ. (2)

(Axial periodicity is imposed for computational convenience, but later we will relax this condition.)
We impose h = 1 at t = 0, so that V0 = 2πL. Since disjoining pressure effects are neglected, the
film remains continuous with h > 0 everywhere, although it can become very thin over much of the
domain at large times.

In order to be compatible with the periodic boundary conditions, we consider the wall roughness
field a(θ,z; ω) to be a doubly periodic stationary Gaussian random field with zero mean and
covariance function

k(θ,θ ′; z,z′) = exp

[
−1

2

({
sin[(θ − θ ′)/2]

r1/2

}2

+
{

sin[π (z − z′)/L]

πr2/L

}2
)]

, (3)

where r1 and r2 are O(1) dimensionless correlation lengths associated with the θ and z directions,
comparable in magnitude to the cylinder radius [min(r1,r2) � εη ensures that the assumptions of
lubrication theory are not violated]. The sin2 form in each direction arises from sampling a planar
2D field with exponential covariance around a circle [34]. Here we allow r1 and r2 to be varied
independently; our approach readily accommodates other choices of k, such as

kiso(θ,θ ′; z,z′) = exp

[
−1

2

({
sin[(θ − θ ′)/2]

r/2

}2

+
(

z − z′

r

)2
)]

, (4)

which represents the restriction of a three-dimensional isotropic Gaussian field with correlation
length r to a long cylinder of unit radius. ω identifies a(θ,z; ω) as a sample drawn from a probability
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FIG. 2. A simulation from initial condition h = 1 of the spatially two-dimensional evolution equation (1)
for τ = 0, η = 0.5, L = 10π, r1 = r2 = 2 showing the formation of equilibrium collars: (a) a realization of the
doubly periodic wall roughness a(θ,z); (b) its azimuthal average a(z); (c) the near-equilibrium film thickness
h(θ,z,1000); and (d) the pressure p(θ,z,1000).

distribution, and it implicitly labels realizations of the model, although we largely suppress it in what
follows. We use a Karhunen-Loéve decomposition to generate samples of a numerically [35]. The
associated film distribution is obtained by solving (1) using a finite-element method, implemented in
COMSOL Multiphysics, with care taken to resolve fine-scale structures that emerge at large times.
A realization of a(θ,z), and its azimuthal average a(z), is shown in Figs. 2(a) and 2(b), where the
azimuthal averaging operator is defined as

f = 1

2π

∫ 2π

0
f dθ. (5)

The interfacial area (equivalent to a capillary surface energy) associated with (1) can be expressed
(to the appropriate level of accuracy) as

A(t) =
∫ 2π

0

∫ L

0

[
1

2

(
h2

z + h2
θ − h2

) − η(ah − azhz − aθhθ )

]
dz dθ. (6)

Imposing periodic boundary conditions, integration by parts demonstrates that

At =
∫ 2π

0

∫ L

0
htp dz dθ =

∫ 2π

0

∫ L

0

[
1

2
τh2pz − 1

3
h3p2

θ − 1

3
h3p2

z

]
dz dθ. (7)

Imposed shear injects energy into the system, such that A can be expected to evolve to a statistically
steady state at large times. However, in the absence of shear, (7) shows that At � 0, so that A
continually diminishes as the film evolves, although typically the system approaches a metastable
state that does not represent the global energy minimum of the system. In a perfectly cylindrical
tube (η = 0), the global minimum has the entire fluid volume confined within a single equilibrium
collar of the form

h ≈ h0 ≡ (V0/4π2)[1 + cos(z − z	)] (|z − z	| < π ) (8)

where the collar may lie anywhere in the domain; elsewhere h is vanishingly small but nonzero. The
collar described by (8) has zero contact angle at each of its effective contact lines (h0 = h0z = 0 at
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z = z	 ± π ≡ z±). The corresponding energy A is independent of z	 to this level of approximation;
in practice the collar location becomes sensitive to fine details of the external film distribution [11].

The simulation in Fig. 2 illustrates the redistribution of a film within a rough-walled tube in the
absence of external shear. In this example the initially uniform film evolves into two collars separated
by regions in which the film becomes very thin. The wall roughness is isotropic [Fig. 2(a)], with
the azimuthally averaged roughness having two prominent maxima within the domain [Fig. 2(b)] on
which collars form [Fig. 2(c)]. The film remains continuous, with fluid continually draining from
the ultrathin film into the neighboring collars. The pressure is low and uniform within each collar
[Fig. 2(d)], rising abruptly across the effective contact lines, which are transverse to the tube axis
and spaced a distance 2π apart across each collar. Unlike the situation in a perfectly smooth tube,
for which collars can migrate axially over long time intervals [11], here collars are pinned by the
underlying topography. Despite significant azimuthal variation in wall roughness, surface tension
drives the liquid towards a more axisymmetric film distribution. The partitioning of the initial fluid
volume between the two collars depends on the initial conditions.

As we illustrate below, sufficiently large shear displaces the collars, ultimately leading to traveling-
wave solutions for which collars migrate repeatedly through the domain (because of the periodic
boundary conditions). We identify the loss of stability of all stationary collars to traveling-wave
states as the signature of the condition under which liquid can be permanently displaced from a tube,
under suitable outlet conditions.

Below we seek to identify the conditions defining the location of collars (such as those in Fig. 2)
and their stability to imposed shear. In particular, we wish to describe τc(ω), the largest shear for
which a particular tube realization a(θ,z; ω) can support at least one stationary stable collar. From
this we wish to deduce the collar displacement probability P(τ ). For a tube drawn randomly from
a sample with specified covariance (3), this is the probability that τc is below a given shear τ ,

Pr(τc(ω) < τ ) ≡ P(τ ; η,r1,r2,L,V0). (9)

This quantity indicates the likelihood that, over multiple realizations, τ is sufficiently large to displace
all stationary collars of volume V0 or less that may form in a tube with geometric features character-
ized by η, r1, r2, and L. A sufficiently large value of τ , ensuring a value of P approaching unity, can
be used as a criterion to ensure reliable removal of liquid from a rough tube under imposed shear.

We first address the simplified case when the roughness is axisymmetric (Sec. III), and then
return to the nonaxisymmetric case in Sec. IV. In Sec. V we determine τc(ω) by direct simulation
andP(τ ) by a Monte Carlo method, supplementing these predictions with asymptotic approximations
assuming weak roughness (η � 1). These yield explicit predictions showing how P(τ ) is related to
the governing parameters, which we extend to liquid plugs in Sec. VI.

III. AXISYMMETRIC ROUGHNESS

We first consider axisymmetric roughness, for which a(θ,z) = a(z). Equation (1) reduces to

ht + (
1
2τh2 − 1

3h3pz

)
z
= 0, p = −(g + gzz), g = h + ηa(z). (10)

In the absence of shear (τ = 0), numerical simulations on a particular wall realization show that
the film evolves to a quasisteady state [Fig. 3(a)], with collars sitting symmetrically on localized
constrictions of the tube. The collars are stationary, with fluid draining into them very slowly from
the neighboring ultrathin films. A small increase in shear displaces the collars slightly to the right
[Fig. 3(a)], i.e., the downstream direction relative to the imposed shear, with each collar remaining
pinned on a constriction. (In the present example the simulation was always run from the same initial
condition in the presence of shear, leading to different partitioning of fluid between the two collars.)
A further increase to τ = 0.3 destabilizes the collar on the gentler constriction, so that at large times
almost all the fluid accumulates in a single collar on the sharper constriction [Fig. 3(a)]. A further
increase in shear displaces the collar further to the right, preserving its length but moving the rear
(upstream) contact line closer to the tip of the constriction [Fig. 3(a), τ = 0.5]. For the particular
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FIG. 3. (a) Solutions of (10) with η = 1, L = 10π, r2 = 2π , using a single realization of wall shape, for
τ = 0, 0.1, 0.3, 0.5. The system evolves from an initially uniform film (dashed) to form one or more quasisteady
collars at t = 105. The gas-liquid interface r = 1 − εg and wall r = 1 − εηa are plotted using radial locations
from the tube center line, taking ε = 0.01. (b) The film thickness h (blue, on a logarithmic scale) and pressure
p (green, on a linear scale) at t = 105, for τ = 0.5.

wall shape used in these simulations, no steady collar solution was found for τ > 0.5045; instead
traveling-wave disturbances swept through the domain (not shown), reflecting the capacity of shear
to displace fluid obstructions from the tube. The structure of the stationary collar for τ = 0.5 is
illustrated in Fig. 3(b); the film exterior to the collar becomes uniform at sufficiently large times,
with a small capillary wave evident close to the rear (upstream) contact line of the collar. The
pressure field exterior to the collar reflects the curvature of the wall and falls abruptly across each
contact line. Stirring of the fluid within the collar by the imposed shear is accommodated by a weak
pressure gradient within the collar. We now analyze the stationary structures in more detail.

A. Collar locations under zero shear

For τ = 0, at large times there is a weak flux through the effective contact lines of the collar, driven
by slow draining from the adjacent film. We address here the equilibrium structure itself, enforcing
uniform pressure in the collar and imposing zero effective contact angle at each contact line. Thus
we solve p = −(1 + ∂2

z )(h + ηa) with h = hz = 0 at z = z±, where z± denotes the contact line
locations with z− < z+. The collar solution may be written as h = −ηa + A cos(z − z	) − P for
z− < {z,z	} < z+, where A, z	, z±, and P are to be determined. The four contact-line conditions plus
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the volume constraint
∫ z+

z− h dz = V for some V � V0 are sufficient to determine the five unknowns
and hence the set of possible collar locations on a rough wall.

It is helpful to simplify this problem by assuming 0 < η � 1. For η = 0, z	 is undetermined,
z± = z	 ± π , while A = −P = V/4π2, consistent with (8). A regular expansion of A,P , and z±
in powers of η, using

h = (V/4π2)[1 + cos(z − z	)] + η[−a + A1 cos(z − z	) − P1] + O(η2), (11)

gives from the contact-line conditions a± + A1 + P1 = 0 and (V/4π2)z±
1 = a±

z , where a± ≡ a(z	 ±
π ). The volume constraint implies P1 = −(1/2π )

∫ z	+π

z	−π
a dz. Thus z	 is determined by the condition

that the contact lines meet the wall at identical radial distances from the tube center line,

a(z	 − π ) = a(z	 + π ). (12)

For a rough wall of length L this condition identifies a finite number of possible collar locations, a
subset of which are realized in practice. The collar width becomes

z+ − z− = 2π + 4π2η

V0
(a+

z − a−
z ), (13)

implying, for example, that a collar that sits on a constriction, for which a−
z > 0, a+

z < 0, is shortened,
whereas a collar that sits in a dilation is elongated. An energetic argument involving the interfacial
energy (6) shows how stable collars cannot be greater than 2π in length (Appendix A). This is
supported by numerical evidence [such as Fig. 3(a)] that collars sitting on constrictions are stable
under zero shear; we found no evidence of stable collars sitting in dilations under zero shear.

The stability of a collar under zero shear relies on the interfacial (capillary) energy (6) being at
a local minimum. This is distinct from the stability of such collars to weak forcing by shear, which
we now consider.

B. Stationary collars under shear

To interpret numerical observations in Fig. 3 for τ > 0 we can again use a perturbation analysis
assuming both η and τ are small, using the single-collar solution (8) as a starting point. As suggested
by Fig. 3(b), we anticipate that the collar is connected to an external thin film through thin transition
regions at each contact line. Within each transition region, we expect the dominant balance of terms
in (10) to be

q = 1
2τh2 − 1

3h3hzzz, (14)

where q is the local volume flux. Solutions of this inner problem must match the collar [for which
hzz = O(1)] to the external film (of thickness hshear, say). Balancing terms suggests q ∼ τ 5, hshear ∼
τ 2 and the length scale of the transition region is z ∼ τ (where “∼” denotes “scales like”). Meanwhile
weak shear appears to act as a regular perturbation to the collar shape on a substrate of amplitude η

[Fig. 3(a)], suggesting that τ and η can be assumed of equivalent magnitude at the point at which
collars lose stability.

As is typical of problems with such transition regions, the fluid thickness swept out of the collar
at its downstream contact line (hshear, say) is determined in terms of τ and the collar volume (and
pressure), whereas the transition region at the rear contact line can accommodate fluid of variable
thickness as it is swept into the collar. External to the collar, the ultrathin film satisfies ht + τhhz = 0
to leading order, which can be solved directly using characteristics. Over long times, details of the
initial transients are swept downstream into the collar’s rear contact line (passing through the periodic
domain boundary), while the fluid emerging from the collar’s downstream contact line provides a
source of fixed thickness; thus, ultimately, h = hshear uniformly across the tube wall exterior to the
collar, as in Fig. 3(b). We can then seek a uniformly steady solution of (10).
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We therefore develop an expansion in τ � 1, formally assuming τ and η are of comparable
magnitude as τ → 0. Details of asymptotic matching are provided in Appendix B; here we summarize
the conditions determining the collar shape and location. Since the ODE in each transition region
(14) gives rise to logarithmic terms in the far field, we describe the collar in |z − z	| < π using the
expansion

h = h0 + (τ log τ )h1 + τh2 + o(τ ), z	 = z	
0 + (τ log τ )z	

1 + τz	
2 + o(τ ). (15)

Here h0 is given by (8) and z	 denotes the collar midpoint at which

hz(z
	) = 0. (16)

Within the collar, the dominant balance of terms in (10) becomes

1
2τ = 1

3hpz, p = −(
1 + ∂2

z

)
(h + ηa). (17)

The flux through the collar is neglected in this approximation, but shear induces a pressure gradient
associated with an internal recirculating flow, visible in Fig. 3(b), which has an impact on the collar
shape. Since the film thickness in the transition and external regions is O(τ 2), we impose the contact-
line conditions h = 0 up to O(τ ) and hz = 0 up to O(1) at z = z± (this can be justified a posteriori

via matching, as explained in Appendix B), together with the volume constraint V = 2π
∫ z+

z− h dz

for some V � V0. The pressure is expanded following (15).
The leading-order shape satisfies p0z

= 0, so that h0 is given by

h0 = A0[1 + cos(z − z	
0)], (18)

equivalent to (8) with A0 = V/4π2. Likewise, at the following order in the expansion (15), p1z = 0.
The requirement that this perturbation has zero net volume and vanishing thickness at each contact
line gives h1 = B1 sin(z − z	

0) for some constant B1. Taylor-expanding the maximum condition
(16) implies B1 = z	

1A0. This solution describes a lateral translation of (18); z	
1 is determined from

matching to the transition regions [for details see (B6)].
At the following order, p2z = 3/(2h0), describing the stirring flow in the collar generated by

external shear. Integrating,

p2 = P2 + 3

2A0
tan

[
1

2
(z − z∗

0)

]
, |z − z	

0| < π, (19)

for some constant P2. The pressure becomes singular near each contact line, but this singularity is
regularized in each transition region. Integrating (17) to find the collar shape gives

h2 = −(η/τ )a(z) + P2 + A2 cos(z − z	
0) + B2 sin(z − z	

0) + 3

2A0
F (z − z	

0), (20a)

where

F (u) ≡ u cos u − sin u
{
1 + 2 log

[
cos

(
1
2u

)]}
(|u| < π ), (20b)

where A2 and B2 are constants of integration and F is an odd function satisfying F + F ′′ =
− tan( 1

2u), F ′(0) = 0 and F → ∓π as u → ±π . Imposing h2 = 0 as z − z	
0 → ±π (a matching

condition justified in Appendix B) determines the leading-order collar position, namely,

η[a(z	
0 − π ) − a(z	

0 + π )] = 12π3τ/V . (21)

This condition reduces to (12) when τ = 0. It shows how, under weak shear, the quasisteady collar
position is determined by an interplay between wall shape ηa(z), shear τ , and the collar volume V .
Appendix B demonstrates how this outer approximation can be systematically matched to transition
regions near each contact line, giving the displacement z	

1, and determining the thickness of the
ultrathin film hshear external to the collar.
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We use (21) to consider the stability of collars in the presence of shear. For a given wall shape over
a domain of length L, we anticipate a set of discrete solutions, giving z	

0 in terms of the parameter
� ≡ τ/(V η). Displacement of the collar due to changes in this parameter are given to leading order by

(a−
z − a+

z )z	
0,� = 12π3. (22)

For a−
z − a+

z > 0 (< 0), as is the case for a collar sitting on a constriction (in a dilation), the collar
is displaced downstream (upstream) by increasing shear, which we conjecture implies stability
(instability) under shear. This conjecture is consistent with observations in Fig. 3. The threshold
condition at which a collar loses stability, which corresponds to a saddle-node bifurcation when
collar locations are mapped against � (as illustrated below), is therefore (21) subject to a−

z = a+
z .

In other words, the limiting collar locations are defined by points on the wall, an axial distance 2π

apart, for which the radial displacement between front and rear contact lines is locally maximal.
The capacity of a tube in realization ω to trap a collar of a given volume is given by the global
maximum a+

c (ω) among this set, where

a±
c (ω) = max

0�z	
0�L

[a(z	
0 ∓ π ; ω) − a(z	

0 ± π ; ω)] (23)

(treating a as an L-periodic function). Likewise if the direction of shear is reversed, the capacity of
the tube to trap a collar is determined by a−

c (ω).

C. Critical conditions

Equation (21) indicates how the shear necessary to support a collar scales with collar volume,
supporting the observation [e.g., Fig. 3(a)] that large collars are more resistant to displacement under
shear. We therefore assume that the collar contains almost all the fluid in the domain (i.e., V = V0), in
order to estimate the largest shear at which a stationary collar can exist in a given tube realization ω:

τc(ω) = V0ηa+
c (ω)

12π3
. (24)

This prediction can be tested against the simulation data in Fig. 3, for which η = 1: the largest shear
was found numerically to be τc ≈ 0.5045. The small-η asymptotic prediction (24) gives the critical
shear as τc ≈ 0.515.

We test these predictions further in Figure 4, using a long section of tube with an irregular shape.
For many different values of τ , we solved (10) numerically and identified locations at which isolated
collars of volume close to V0 could form stationary equilibria. Different locations were achieved
by choosing appropriate initial conditions. Results of simulations show good agreement with the
prediction (21) (with V = V0), despite the fact that η = 0.5 might be expected to sit outside the
range of validity of the small-roughness prediction. The continuous curve in Fig. 4(b) arises from
evaluating the difference in radial wall location at points an axial distance 2π apart. The segments
of this “finite-difference” curve having positive slope (for which a−

z > a+
z ) represent stable collar

locations both for τ > 0 and when the flow is reversed (τ < 0). The solutions of the algebraic system
(21) therefore have multiple branches in general; turning points can be identified as saddle-node
bifurcation points. In particular, the largest shear at which a collar is recorded coincides with the
predicted global maximum given by (23, 24). It is evident from the figure that under quasisteadily
reversing shear, a collar may move smoothly back and forth along a single solution branch if the
shear is of small amplitude, jump between branches at larger amplitudes or be swept completely out
of the tube at sufficiently large amplitude.

We address the distribution of τc(ω) over many realizations ω in Sec. V below, after consideration
of nonaxisymmetric wall roughness.
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FIG. 4. (a) Stable collars of volume V = V0 = 2πL on a realization of a rough wall a(z; ω) for shear values
τ = 0, 0.4, 0.5, 0.6, 0.7 and parameters L = 10π, η = 0.5, r2 = 1. (b) The solid line shows (V/12π 3)[a(z −
π ; ω) − a(z + π ; ω)] versus z/π . Open symbols identify maxima of stationary collars determined by solving
(10) for τ values shown, for forward and reverse shear. Closed symbols correspond to collars shown in (a). The
alignment of symbols with the line confirms the algebraic condition (21).

IV. WEAK NONAXISYMMETRIC ROUGHNESS

To investigate the effect of nonaxisymmetric roughness a(θ,z) on the spatial distribution of
annular collars, we have to solve (1) numerically, as in Fig. 2. However, for small roughness and
weak shear a perturbation analysis is revealing. We seek steady collar solutions by expanding (1)
following (15), using

h = h0(z) + τ log τh1(z) + τh2(z,θ ) + o(τ ), (25a)

p = p0(z) + τ log τp1(z) + τp2(z,θ ) + o(τ ). (25b)

We assume τ and η are of comparable magnitude as τ → 0, so that the O(η) effects of azimuthal
wall roughness appear at O(τ ) in the expansion. The leading-order collar solutions are identical to
the axisymmetric case [see (18)], with p0 and p1 uniform across the collar. At the following order,

− 1
3h3

0p2θθ + (
1
2h2

0 − 1
3h3

0p2z

)
z
= 0. (26)

Averaging azimuthally using (5), integrating with respect to z and imposing zero axial flux at this
order gives

h0p2z = 3
2 where p2 = −(

1 + ∂2
z

)
[h2 + (η/τ )a]. (27)
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Thus p2 is exactly (19), and h2 is given by (20) with a replaced by a. The contact-line condition
h2(θ,z±

0 ) = 0 implies h2(z±
0 ) = 0. Therefore, the collar location in a nonaxisymmetric rough-walled

tube must satisfy

η[a(z	
0 − π ) − a(z	

0 + π )] = 12π3τ/V, (28)

which generalizes (21) to provide a necessary but not sufficient condition for the existence of a
stable collar. Likewise we modify (23) and (24) to define the criticality condition in terms of the
azimuthally averaged tube radius

τ±
c (ω) = V0ηa±

c (ω)

12π3
, a±

c (ω) = max
0�z	

0�L
[a(z	

0 ∓ π ; ω) − a(z	
0 ± π ; ω)]. (29)

Thus, just as surface tension creates almost axisymmetric structures in a nonaxisymmetric tube
(Fig. 2), we are able to exploit results for an axisymmetric tube to predict outcomes for tubes with
two-dimensional roughness.

The present analysis addresses slender collars of length 2π , described by the linearized Young-
Laplace equation (1b). Larger collars, described by the nonlinear Young-Laplace equation, become
shorter as they grow fatter [10,36]; accordingly their stability will be determined by the spatial fields
a(z	

0 ∓ �; ω) − a(z	
0 ± �; ω) for some � � 2π .

Having generalized the stability criterion to nonaxisymmetric tubes, we now investigate the
properties of the maximum asperity a±

c in (29) and evaluate the collar displacement probability
(9).

V. CRITICAL SHEAR OVER MULTIPLE REALIZATIONS

To determine the mean and variance of the critical shear τc, when sampled over many tube
realizations, we can use Monte Carlo simulation, repeatedly solving (1). We can supplement this
time-consuming approach by exploiting the algebraic condition (29), valid for small wall roughness,
which provides an upper bound on the shear at which stationary collars can be supported within
a tube. In addition to applying Monte Carlo sampling directly and cheaply to (29), we can also
approximate the distribution of ac(ω) directly as follows.

The azimuthal averaged random field a(z,ω) is Gaussian with mean zero and covariance (also
azimuthally averaged)

k(z,z′) = K(r1)exp

[
−1

2

(
sin(π (z − z′)/L)

πr2/L

)2
]
, (30)

where

K(r1) ≡ 1

4π2

∫ 2π

0

∫ 2π

0
exp

(
−1

2

{
sin[(θ1 − θ2)/2]

r1/2

}2
)

dθ1 dθ2

= 1

2π2

∫ 2π

0
exp

{
−1

2

[
sin(θ/2)

r1/2

]2
}

(2π − θ ) dθ. (31)

K1 increases monotonically with respect to r1, from K(r1) ≈ r1/
√

2π as r1 → 0 (an approximation
obtained via steepest descents) towards unity for r1 � 1. The differenced random field a(z) −
a(z + �) (with � = 2π for a slender collar) is also Gaussian, with mean zero and covariance
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kd (z,z′) = K(r1)G(z − z′), where

G(z) = 2 exp

{
−1

2

[
sin(πz/L)

πr2/L

]2
}

− exp

(
−1

2

{
sin[π (z − �)/L]

πr2/L

}2
)

− exp

(
−1

2

{
sin[π (z + �)/L]

πr2/L

}2
)

. (32)

Thus the differenced field has variance σ 2
d ≡ K(r1)G(0). We normalize the field by defining b(z) =

[a(z) − a(z + �)]/σd , which has covariance G(z)/G(0) depending only on r2 and L. We then
define m = −Gzz(0)/G(0), so that 1/

√
m estimates the distance over which the differenced field is

correlated. For r2 � L, for example,

m = M(r2) where M(r) ≡ 1 − [1 − (�2/r2)]e−�2/2r2

r2(1 − e−�2/2r2 )
. (33)

In this case 1/
√

m ≈ r2 for r2 � � and r2/
√

3 for r � �. Since G is even in � in (32), it does
not distinguish between a+

c and a−
c , so we shall describe each as ac, which we call the maximum

trapping asperity.
We characterize the properties of ac(ω) = σd max0�z<L b(z) in terms of its mean and variance

over multiple realizations

E(ac) = σdE
(

max
0�z<L

b
)
, Var(ac) = σ 2

d Var
(

max
0�z<L

b
)
. (34)

These are functions of the correlation lengths r1 and r2 and the domain length L. It is convenient to
exploit the approximation due to Hill et al. [37] of the probability density function PR of max0�z<L b

as an exponentiated Rayleigh distribution [38], of the form

PR(x) = N (1 − e−x2/2)N−1xe−x2/2 ≡ [(1 − e−x2/2)N ]x, N =
√

mL

2π
, (x > 0). (35)

Here N can be interpreted as the effective number of independent local maxima of b in a domain of
length L, with each maximum having a Gaussian distribution and with one exceeding all the others
in magnitude. For N � 1 (i.e., r2 � L), for which terms raised to high powers typically approach
either zero or unity, the cumulative distribution function for PR can be approximated to leading
order by H [x − (2 log N )1/2], where H is the Heaviside function [the step sits where P ′

R(x) = 0],
implying

E(ac) = σd

∫ ∞

0
xPR(x) dx ≈ σd (2 log N )1/2, (36)

so that using (4)

E(ac) ≈ 2
√

K1(r1)
(
1 − e−�2/2r2

2
)

log[L
√

M(r2)/2π ] for L � r2. (37)

When r1 = r2 = r , (37) gives the corresponding prediction for the isotropic covariance function (4).
Figure 5 shows how the mean and variance of the maximum trapping asperity ac depend on

the azimuthal correlation length r1, the axial correlation length r2 and the domain length L. As
r1 increases, both the mean and variance increase to a plateau [Figs. 5(a) and 5(b)], showing how
a shorter length scale of disorder in the azimuthal direction reduces the capacity of the tube to
support stationary collars. The r1 dependence arises through the function K1, given in (31). As the
axial correlation length r2 increases, the mean critical shear decreases monotonically [Fig. 5(c)]
whereas its variance increases and then decreases [Fig. 5(d)]. Clearly an increase in r2 will reduce
axial gradients of the wall, moving the tube towards the smooth case in which ac tends to zero.
In contrast, very small r2 increases the number of potential pinning sites; here the mean depends
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FIG. 5. The mean (left) and variance (right) of the upper bound of the maximum trapping asperity ac

versus the azimuthal correlation length r1 with r2 = 1 (top) and the axial correlation length r2 with r1 = 1
(bottom). The solid lines and the dashed lines are calculated from the probability density function (35) and the
approximated mean (37) with domain length L = 5π, 10π, 15π (arrows showing the direction of increasing
L); the open circles are the Monte Carlo simulation results directly from (29) with L = 10π .

on
√

log(L/2π ) + log(1/r2), indicating a weak dependence on L as r2 falls. Figure 5 shows good
agreement between the mean estimated from the Monte Carlo simulations (using 10 000 samples
per data point) from (29) and the approximate probability density function (35), and a reasonable
prediction of the variance. The simplified estimate (37) [assuming N � 1 in (35)] captures the
qualitative form of the mean of ac.

Using (35), we can approximate the probability (9) that the critical shear is less than a given
value τ (corresponding to the probability, over multiple realizations, of the shear τ being sufficient
to displace all quasisteady collars) as

P(τ ) = Pr(τc < τ ) = Pr

(
0 < max

0�z<L
b <

12π3τ

ηV0σd

)
=

∫ 12π3τ
ηV0σd

0
PR(x) dx

=
[

1 − exp

(
− 72π6τ 2

η2V 2
0 σ 2

d

)]N

where N = L

√
M(r)

2π
, σd =

√
K1(r)2(1 − e−�2/2r2 ). (38)

Here we assume isotropic covariance (4) with correlation length r � L; � = 2π gives the collar
length. Figure 6 shows one example of dependence of the collar displacement probability on the given
shear τ . Because determining the critical shear for nonaxisymmetric wall perturbation is extremely
time consuming, we compare (38) with that from Monte Carlo simulations of the axisymmetric
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FIG. 6. The probability (frequency) of the critical shear being less than given shear τ , i.e., the collar
displacement probability (9). The solid line represents (38) and the symbols are Monte Carlo simulations
from the axisymmetric (10). Other parameters are η = 0.5, V0 = 20π 2, L = 10π , and r2 = 5. Circles show
means and error bars show standard deviations determined using bootstrapping, using 100 simulations at each
data point (we resampled with replacement 100 times from these simulations to generate another value of the
frequency, and repeating this procedure 104 times yielded estimates of the mean and the standard deviation).

evolution equation (10), finding respectable agreement between them. The smoothly increasing
probability demonstrates the increasing likelihood of eliminating all stationary collars from a tube
of a given length as the imposed shear increases; however, only in extreme instances can complete
removal be guaranteed.

In a very long tube, for example, for which N � 1, we expect threshold behavior with

Pr(τc < τ ) ≈ H

(
12π3τ

ηV0σd

−
√

2 log N

)
. (39)

Thus for an isotropic roughness with correlation length r , the threshold shear above which collar
removal is almost guaranteed takes the form

V0η

6π3(2π )1/4

√
r log

(
L

2πr

)
(r � 1 � L),

V0η

6π2r

√√√√2 log

(
L

√
3

2πr

)
(1 � r � L). (40)

The threshold shear diminishes as r becomes very small (because of the increased disorder in the
azimuthal direction) and as r becomes very large (because the tube becomes smoother in the axial
direction), with an intermediate maximum where the collar length is comparable in magnitude to
the correlation length.

VI. LIQUID PLUGS

Finally, and briefly, a similar argument can be developed for liquid plugs. An isolated plug of
radius a3

0V in a tube of radius a0[1 + ηa(θ,z)] has length a0� where � = V/π + 4
3 to leading order

in ε, where � > 2 (so that the plug has hemispherical ends). In the presence of a pressure difference
(p− − p+)σ/a0, a plug in an axially nonuniform axisymmetric tube can adopt an equilibrium
configuration if its hemispherical menisci meet the tube wall with zero contact angle, with the
upstream radius being slightly shorter than that downstream. When the wall is nonaxisymmetric but
weakly rough, we can derive an expression analogous to (29), namely (see Appendix C)

pc ≡ (p− − p+)c = 2η[a1(z−
0 ) − a1(z−

0 + �)] with � = 4
3 + (V0/π ). (41)
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We can then exploit directly the estimates of Sec. V, such as the plug displacement probability

Pr(pc < p) =
{

1 − exp

[
− (p)2

4η2σ 2
d

]}N

(42)

with N and σd as given in (38). Thus, once again, in a very long tube the displacement probability
approaches the steplike form

Pr(pc < p) ≈ H

⎡
⎣p − 2ησd

√√√√log

(√
ML

2π

)⎤
⎦. (43)

As before, factors inhibiting plug removal include an increase in roughness amplitude η, an increase
in tube length and a plug length � that is of comparable magnitude to the wall correlation length r .

VII. DISCUSSION

We have investigated the formation and stability of annular collars and plugs in nonaxisymmetric
rough-walled tubes, focusing our attention primarily on slender collars, for which a comprehensive
analysis is possible. Constrictions in the tube can trap quasisteady collars, which can then resist
displacement under weak shear; likewise, occlusive plugs resist displacement under an imposed
pressure gradient. Trapping of collars is reminiscent of nonwetting drops pinned by contact angle
hysteresis [39,40], driven drops pinned by surface heterogeneities [41] (and released via sniper
bifurcations [42]), wetting drops spreading on rough surfaces [43,44] and capture of fluid from
translating droplets by localized asperities [45]. In the present case, surface tension acting through
the film’s azimuthal curvature promotes localization of fluid as a collar which fully wets the wall at
its effective contact lines. A perturbation analysis for weak wall roughness reveals a simple algebraic
condition relating collar location to the imposed shear (28); this appears to be accurate for moderate
roughness and is valid for weakly rough nonaxisymmetric tubes. From this we deduced a threshold
condition for collar trapping in a particular tube realization (29).

Our primary result is an explicit approximation for the collar displacement probability (38)
over multiple realizations of a rough-walled tube of finite length, which captures predictions from
expensive Monte Carlo simulations (Fig. 6); it has a straightforward extension for liquid plugs
(42) and can be adapted for other scenarios. This approximation was derived in two steps: first,
using asymptotic methods to reduce a model framed as a nonlinear partial differential equation to
an algebraic system involving some simple geometric features of the irregular wall shape; second,
exploitation of a semiempirical approximation of the distribution of maxima of a Gaussian random
process [37]. This approach to uncertainty quantification effectively uses a surrogate model, derived
using physical principles, to capture the variability of outcomes (rather than rely on purely numerical
approaches), a strategy we have successfully adopted in a related problem [46]. Such low-order
descriptions of collar and plug properties are essential in building realistic models of transport in
lung airway networks [47–50], for which stochastic heterogeneity in airway properties is of intrinsic
importance.

We focused here primarily on liquid collars, as these are precursors of occlusive liquid plugs in
core-annular flows [36,51,52], although our approach is readily adapted to describe plugs directly
(Sec. VI). The roughness effects considered here may influence predictions of recent models of
liquid plug dynamics in lung airways (e.g., Refs. [24,25,27]) under conditions when plug motion
is sufficiently slow for the roughness amplitude to be comparable to the trailing film thickness,
although numerous additional factors (surfactant, gravity, etc.) will also need to be accounted for.
For example, our work does not address the case in which the roughness has asperities with axial
length scales shorter than the film thickness, for which lubrication theory may not be applicable.
However, our study emphasizes that plug or collar dynamics in a real airway (for which geometric
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properties are known only imperfectly) should sometimes be considered as a stochastic process and
clearance of a collar or plug from a real airway can then at best be predicted probabilistically.
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APPENDIX A: INTERFACIAL ENERGETICS IN THE ABSENCE OF SHEAR

We consider the interfacial energy (6) of an isolated collar in an axisymmetric but axially
nonuniform tube, in the absence of shear. Suppose h is positive in (z−,z+) and vanishingly small
elsewhere. The stable steady state h(z) minimizes

A[h,hz,z−,z+] =
∫ z+

z−

[
1

2

(
h2

z − h2) − η(ah − azhz)

]
dz (A1)

subject to the volume constraint
∫ z+
z−

h dz = V0 with h(z−) = h(z+) = 0. Introducing a La-

grange multiplier λ, we construct a new functional A∗[h,hz,z−,z+,λ] = A + λ(
∫ z+
z−

h dz − V0) ≡∫ z+
z−

G(z,h,hz,λ)dz − λV0 where G(z,h,hz,λ) = 1
2 (h2

z − h2) − η(ah − azhz) + λh ≡ G1(z,λ). The
variation of the functional A∗[h(z),z−,z+,λ] up to second order is

A∗ = A∗[h + δh,z− + δz−,z+ + δz+,λ + δλ] − A∗[h,z−,z+,λ]

=
∫ z++δz+

z−+δz−
G(z,h + δh,hz + δhz,λ + δλ) dz − (λ + δλ)V0 −

∫ z+

z−
G(z,h,hz,λ) dz + λV0

=
∫ z+

z−
[G(z,h + δh,hz + δhz,λ + δλ) − G(z,h,hz,λ)] dz

+
∫ z−

z−+δz−
G(z,h + δh,hz + δhz,λ + δλ) dz

+
∫ z++δz+

z+
G(z,h + δh,hz + δhz,λ + δλ) dz − V0δλ. (A2)

The above three integrals can be approximated as

∫ z+

z−
[G(z,h + δh,hz + δhz,λ + δλ) − G(z,h,hz,λ)] dz

=
∫ z+

z−

{
Ghδh + Ghz

δhz + Gλδλ + 1

2

[
Ghh(δh)2 + Ghzhz

(δhz)
2 + Gλλ(δλ)2

]

+Ghhz
δhδhz + Ghλδhδλ + Ghzλδhzδλ

}
dz

=
∫ z+

z−

(
Gh − dGhz

dz

)
δh dz + Ghz

δh

∣∣∣∣
z+

z−
+ δλ

∫ z+

z−
Gλ dz

+
∫ z+

z−

{
1

2

[
Ghh(δh)2+Ghzhz

(δhz)
2+Gλλ(δλ)2

]+Ghhz
δhδhz+Ghλδhδλ + Ghzλδhzδλ

}
dz,

(A3)
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∫ z−

z−+δz−
G(z,h + δh,hz + δhz,λ + δλ) dz

= −δz−G(z,h + δh,hz + δhz,λ + δλ)z=z−+θ1δz−

≈ −δz−
(
G + Ghδh + Ghz

δhz + Gλδλ
)
z=z−+θ1δz−

≈ −δz−
(
G + θ1δz−G1z

)
z=z−

− δz−
(
Ghδh + Ghz

δhz + Gλδλ
)
z=z−

= −δz−G|z=z− − δz−
(
θ1δz−G1z + Ghδh + Ghz

δhz + Gλδλ
)
z=z−

(A4)

and ∫ z++δz+

z+
G(z,h + δh,hz + δhz,λ + δλ)dz

≈ δz+G|z=z+ + δz+
(
θ2δz+G1z + Ghδh + Ghz

δhz + Gλδλ
)
z=z+

(A5)

where 0 < θ1,θ2 < 1. The boundary conditions require that hz=z± = 0, (h + δh)z=z±+δz± = 0, which
gives approximately

δh|z=z± ≈ −[
δz±hz + 1

2 (δz±)2hzz + δz±δhz

]
z=z±

. (A6)

Thus, the first variation of A∗ is∫ z+

z−

(
Gh − dGhz

dz

)
δh dz − (

G− hzGhz

)
z=z−

δz− + (
G− hzGhz

)
z=z+

δz+ +
(∫ z+

z−
Gλ dz − V0

)
δλ.

(A7)

For the first variation to vanish for arbitrary δh, δz± and δλ, we must have

Gh − dGhz

dz
= 0,

(
G − hzGhz

)
z=z±

= 0,

∫ z+

z−
Gλ dz − V0 = 0, (A8)

which recovers (as expected) λ = (1 + ∂2
z )(h + ηa), hz(z±) = 0, and

∫ z+
z−

h dz = V0 with the original
boundary conditions h(z±) = 0; we may therefore identify λ as −p. This problem yields the
stationary collar solutions discussed in Sec. III A.

We now address the stability of such solutions by considering the second variation of A∗, which is

−
[

1

2
(δz+)2hzzGhz

+ δz+δhzGhz

]
z=z+

+
[

1

2
(δz−)2hzzGhz

+ δz−δhzGhz

]
z=z−

+
∫ z+

z−

{
1

2

[
Ghh(δh)2 + Ghzhz

(δhz)
2 + Gλλ(δλ)2

] + Ghhz
δhδhz + Ghλδhδλ + Ghzλδhzδλ

}
dz

− δz−
(
θ1δz−G1z + Ghδh + Ghz

δhz + Gλδλ
)
z=z−

+ δz+
(
θ2δz+G1z + Ghδh + Ghz

δhz + Gλδλ
)
z=z+

= 1

2

∫ z+

z−
[−(δh)2 + (δhz)

2 + 2δhδλ] dz −
[

1

2
(δz+)2hzzGhz

]
z=z+

+
[

1

2
(δz−)2hzzGhz

]
z=z−

− δz−
(
θ1δz−G1z + Ghδh + Gλδλ

)
z=z−

+ δz+(θ2δz+G1z + Ghδh + Gλδλ)z=z+

= 1

2

∫ z+

z−
[−(δh)2 + (δhz)

2 + 2δhδλ] dz −
[

1

2
(δz+)2hzzηaz

]
z=z+

+
[

1

2
(δz−)2hzzηaz

]
z=z−

− δz−
[
θ1δz−hzzηaz + (−ηa + λ)δh

]
z=z−

+ δz+[θ2δz+hzzηaz + (−ηa + λ)δh]z=z+
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≈ 1

2

∫ z+

z−
[−(δh)2 + (δhz)

2 + 2δhδλ] dz −
[

1

2
(δz+)2hzzηaz

]
z=z+

+
[

1

2
(δz−)2hzzηaz

]
z=z−

− δz−

{
θ1δz−hzzηaz + (−ηa + λ)

[
1

2
(δz−)2hzz + δz−δhz

]}
z=z−

+ δz+

{
θ2δz+hzzηaz + (−ηa + λ)

[
1

2
(δz+)2hzz + δz+δhz

]}
z=z+

≈ 1

2

∫ z+

z−
[−(δh)2 + (δhz)

2 + 2δhδλ] dz + (δz−)2η

(
1

2
− θ1

)
(azhzz)z=z−

+ (δz+)2η

(
θ2 − 1

2

)
(azhzz)z=z+ , (A9)

where we have exploited (A6) and neglected higher order variation. A∗ achieves its local minimum
if and only if its second variation is positive for every set of δh, δz−, δz+, and δλ which satisfy
(h + δh)z=z±+δz± = 0. If we choose δh = sin 2π(z−z−)

z+−z−
, δz− = 0, δz+ = 0 and δλ = 0, and evaluate

the second variation of A∗ as [2π − (z+ − z−)][2π + (z+ − z−)]/[2(z+ − z−)], then the collar
length z+ − z− must be less than 2π if the collar has local minimum surface area. Equivalently
a collar longer than 2π can be subject to a perturbation for which the second variation of A∗ is
negative, and so such a collar cannot be stable.

APPENDIX B: ASYMPTOTIC STRUCTURE OF A SHEARED COLLAR

We develop an asymptotic approximation of a steady collar under shear by starting in the transition
regions, governed by (14). We set z = z± + τξ, h = τ 2H (ξ ), q = τ 5Q,p = P (ξ ), so that to leading
order Q = 1

2H 2 + 1
3H 3Hξξξ . We assume H → H± and Q = 1

2H 2
± for ξ → ±∞, to match with

the adjacent films outside the collar. It is convenient to rescale on these film thicknesses, using
H = H±H̃ (ξ̃ ), ξ = H

2/3
± ξ̃ , giving

1 = H̃ 2 + 2
3 H̃ 3H̃ξ̃ ξ̃ ξ̃ , H̃ → 1 for ξ̃ → ±∞. (B1)

As a variant of the well-known Landau–Levich problem, it is easily shown by linearization about
the uniform state that (B1) has a unique solution (up to translation) at the downstream (+) contact
line and a one-parameter family of solutions (up to translation) at the upstream (−) contact line.

We now consider the solutions of (B1) where they match the collar, with H̃ � 1, satisfying

H̃ ≈ 1

2
C±ξ̃ 2 + 3

C±
ξ̃ log |ξ̃ | + β±ξ̃ + 9

2C3±
(log |ξ̃ |)2 + O(log |ξ |), (ξ → ∓∞). (B2)

The constants β± are independent of C± and reflect translation invariance; C+ is determined as a
nonlinear eigenvalue (taking the value C+ ≈ 2.386), while C− parametrizes the solutions at the rear
contact line. We then express (B2) in terms of the original variables, writing ξ = ξ±

0 + Z/τ and
noting that

log |ξ̃ | = log

∣∣∣∣∣ξ
±
0 + Z/τ

H
2/3
±

∣∣∣∣∣ = log

∣∣∣∣∣Z + τξ±
0

τH
2/3
±

∣∣∣∣∣ = log |Z| + log

∣∣∣∣1 + τξ0

Z

∣∣∣∣ − log |τH
2/3
± |

= − log τ + log |Z| − log H
2/3
± + O(|τξ0/Z|), (B3)

094004-18



TRAPPING AND DISPLACEMENT OF LIQUID COLLARS . . .

so that (B2) becomes

h ≈ 1

2
C±Z2/H

1/3
± − τ log τ [3ZH

1/3
± /C±] + τ

[
3H

1/3
±

C±
Z log |Z| + Z

(
C±H

2/3
± ξ0 + β±H

1/3
±

− 3H±1/3

C±
log H

2/3
±

)
+ o(1)

]
+ · · · (B4)

after discarding all terms that are proportional to τ 2. This motivates the expansion (15) in the outer
region.

The first two terms in the outer problem [see (18)],

h ≈ h0 + (τ log τ )h1 = A0[1 + cos(z − z	
0)] + (τ log τ )z	

1A0 sin(z − z	
0) (B5)

can be expanded near each contact line, using Z = z − z	
0 ± π , and matched to (B4) to give

A0 = C±
H

1/3
±

, z	
1 = 3

A2
0

. (B6)

Thus the film thickness swept out of the downstream contact line is determined by the collar volume.
In the example of Fig. 3(b), this prediction gives hshear = τ 2H+ ≈ 0.0272, which is respectably
close to the numerically determined value 0.0226 (bearing in mind that the “small” parameters in
this example are τ = 0.5 and η = 1). Likewise, in a strictly steady state, for which H− = H+, we
may also set C− = C+ to select the structure of the rear contact line.

The τZ log |Z| and τZ terms in (B4) can be matched on to the inner expansion of F (u) in (20b)
as u → ±π . Crucially, as there is no O(1) contribution to the τ terms in (B4), the condition h2 = 0
can then be applied at each contact line to yield (21).

APPENDIX C: EQUILIBRIUM LIQUID PLUG IN A ROUGH TUBE

Consider a cylindrical tube with rough wall r = a(θ,z) ≡ 1 + ηa(θ,z) in terms of cylindrical
coordinates {r,θ,z}; scale lengths on the mean tube radius a0 and pressure on σ/a0. A liquid plug
with volume V0 occupies a domain V within the tube and is in equilibrium with gas occupying the
remainder of the tube. We impose gas pressures p± downstream (+) and upstream (−) of the plug;
the plug’s internal pressure p0 is to be determined. The liquid wets the wall with zero contact angle.
The plug’s free surfaces S± have the form r = u±(θ,z) and touch the wall at z = z±(θ ). Their shape
is determined by the Young-Laplace law, contact-line conditions, and a volume constraint through

∇ · n± = −δp±, ν · n± = 1 and u± = a on z = z±(θ ),
∫
V

dV = V0. (C1)

Here δp± = p± − p0 are pressure differences between the inside and the outside of the free surface,
n± and ν are the unit normals pointing into the gas phase from the free surfaces and the rigid wall
respectively, satisfying

n± = (−1,u±θ /u±,u±z)/±, ν = (−1,aθ/a,az)/A, (C2)

where ±(θ,z) =
√

1 + (u2
±θ /u

2±) + u2±z and A(θ,z) =
√

1 + (a2
θ /a

2) + a2
z . The mean curvature of

the free surfaces is given by

∇ · n± = − 1

u±±
+ 1

u±

(
u±θ

u±±

)
θ

+
(

u±z

±

)
z

. (C3)

When the wall is uniform, a = 1, the free surfaces u±(z) are hemispherical, satisfying

u± =
√

1 − (z − z±)2 (z− � z � z− + 1, z+ − 1 � z � z+), δp± = 2. (C4)
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Thus p− = p+ and the volume constraint gives the plug length as

z+ − z− = (V0/π ) + 4
3 , (C5)

Because z+ − z− � 2, we have V0 � 2π/3. However the plug location remains undetermined.
For axisymmetric roughness a = a(z), the free surfaces u±(z) satisfy

− 1

u±±
+

(
u±z

±

)
z

= −δp±, 1 + u±zaz = ±A and u± = a on z = z±. (C6)

The second boundary condition in (C6) simplifies to u±z(z±) = az(z±). The problem has the exact
solution

u± =
√

R2± − (z − z±
0 )2 (z− � z � z−

0 + R−, z+
0 − R+ � z � z+), δp± = 2/R±. (C7)

Applying the boundary conditions gives

δp± = 2

a(z±)
√

1 + az(z±)2
, (C8)

reflecting tangential contact of the hemispherical interfaces with the wall. The problem is closed by
imposing the volume constraint. When the wall roughness is small, η � 1, a regular expansion of
(C8) in η gives the condition determining the plug location under a given pressure drop directly as

p− − p+ = 2η[a1(z+) − a1(z−)], z+ = z− + (V0/π ) + 4
3 . (C9)

The largest pressure drop at which the tube can trap a stationary plug of volume V0 is then determined
by

max
0<z−<L

(
a1

[
z− + (V0/π ) + 4

3

] − a1(z−)
)
. (C10)

For nonaxisymmetric roughness a = a(θ,z), the free surfaces u±(θ,z) satisfy

− 1

u±±
+ 1

u±

(
u±θ

u±±

)
θ

+
(

u±z

±

)
z

= −δp±, (C11a)

1 + u±θaθ/u±a + u±zaz = ±A and u± = a [z = z±(θ )]. (C11b)

The boundary condition (C11b) requires u±z = az and u±θ = aθ at z = z±(θ ). In the limit
of small wall roughness (a = 1 + ηa1(θ,z), η � 1) we construct a regular expansion about the
base state (C4) of the form u± = u0±(z) + ηu1±(θ,z) + · · · , δp± = 2 + ηδp1± + · · · , = 0± +
η1± + · · · . Then u1 satisfies the linear ODE

−δp1± = 0±u1± − (z − z±)
u1±z

0±
+ 0±u1±θθ +

(
u1±z

3
0±

)
z

(C12)

subject to u1 = a1 on z = z±. Taking an azimuthal average,

−δp1± = 0±u1± − (z − z±)
u1±z

0±
+

(
u1±z

3
0±

)
z

(C13)

subject to u1 = a1 on z = z±. This is satisfied exactly by u1± = B±/u0±, δp1± = −2B± with
B± = a1(z±). Therefore, for weak nonaxisymmetric roughness, the leading order position of the
equilibrium liquid slug satisfies a stronger form of (C9), namely,

p− − p+ = 2η
[
a1

(
z−

0 + (V0/π ) + 4
3

) − a1(z−
0 )

]
. (C14)

094004-20



TRAPPING AND DISPLACEMENT OF LIQUID COLLARS . . .

[1] P. S. Hammond, Nonlinear adjustment of a thin annular film of viscous fluid surrounding a thread of
another within a circular cylindrical pipe, J. Fluid Mech. 137, 363 (1983).

[2] P. A. Gauglitz and C. J. Radke, An extended evolution equation for liquid film breakup in cylindrical
capillaries, Chem. Eng. Sci. 43, 1457 (1988).

[3] J. B. Grotberg, Respiratory fluid mechanics and transport processes, Ann. Rev. Biomed. Eng. 3, 421
(2001).

[4] J. B. Grotberg and O. E. Jensen, Biofluid mechanics in flexible tubes, Ann. Rev. Fluid Mech. 36, 121
(2004).

[5] C. D. Bertram and D. P. Gaver III, Biofluid mechanics of the pulmonary system, Ann. Biomed. Eng. 33,
1681 (2005).

[6] M. Heil, A. L. Hazel, and J. A. Smith, The mechanics of airway closure, Resp. Physiol. Neurobiol. 163,
214 (2008).

[7] M. Heil and A. L. Hazel, Fluid-structure interaction in internal physiological flows, Ann. Rev. Fluid Mech.
43, 141 (2011).

[8] J. B. Grotberg, Respiratory fluid mechanics, Phys. Fluids 23, 021301 (2011).
[9] R. Levy, D. B. Hill, M. G. Forest, and J. B. Grotberg, Pulmonary fluid flow challenges for experimental

and mathematical modeling, Integrative Comparative Biol. 54, 985 (2014).
[10] D. H. Everett and J. M. Haynes, Model studies of capillary condensation. I. Cylindrical pore model with

zero contact angle, J. Colloid Interface Sci. 38, 125 (1972).
[11] J. R. Lister, J. M. Rallison, A. A. King, L. J. Cummings, and O. E. Jensen, Capillary drainage of an annular

film: The dynamics of collars and lobes, J. Fluid Mech. 552, 311 (2006).
[12] O. E. Jensen, The thin liquid lining of a weakly curved cylindrical tube, J. Fluid Mech. 331, 373 (1997).
[13] A. L. Hazel, M. Heil, S. L. Waters, and J. M. Oliver, On the liquid lining in fluid-conveying curved tubes,

J. Fluid Mech. 705, 213 (2012).
[14] H.-H. Wei and D. S. Rumschitzki, The linear stability of a core–annular flow in an asymptotically

corrugated tube, J. Fluid Mech. 466, 113 (2002).
[15] H.-H. Wei and D. S. Rumschitzki, The weakly nonlinear interfacial stability of a core–annular flow in a

corrugated tube, J. Fluid Mech. 466, 149 (2002).
[16] I. A. Beresnev and W. Deng, Theory of breakup of core fluids surrounded by a wetting annulus in

sinusoidally constricted capillary channels, Phys. Fluids 22, 012105 (2010).
[17] Q. Wang, Stability and breakup of liquid threads and annular layers in a corrugated tube with zero base

flow, SIAM J. Appl. Math. 76, 500 (2016).
[18] W. Li, M. S. Carvalho, and S. Kumar, Liquid-film coating on topographically patterned rotating cylinders,

Phys. Rev. Fluids 2, 024001 (2017).
[19] H. Fujioka and J. B. Grotberg, Steady propagation of a liquid plug in a two-dimensional channel, Trans.

ASME J. Biomech. Eng. 126, 567 (2004).
[20] P. D. Howell, S. L. Waters, and J. B. Grotberg, The propagation of a liquid bolus along a liquid-lined

flexible tube, J. Fluid Mech. 406, 309 (2000).
[21] Y. Zheng, H. Fujioka, S. Bian, Y. Torisawa, D. Huh, S. Takayama, and J. B. Grotberg, Liquid plug

propagation in flexible microchannels: A small airway model, Phys. Fluids 21, 071903 (2009).
[22] S. L. Waters and J. B. Grotberg, The propagation of a surfactant laden liquid plug in a capillary tube, Phys.

Fluids 14, 471 (2002).
[23] H. Fujioka and J. B. Grotberg, The steady propagation of a surfactant-laden liquid plug in a two-dimensional

channel, Phys. Fluids 17, 082102 (2005).
[24] H. Fujioka, S. Takayama, and J. B. Grotberg, Unsteady propagation of a liquid plug in a liquid-lined

straight tube, Phys. Fluids 20, 062104 (2008).
[25] S. Ubal, D. M. Campana, M. Giavedoni, and F. A. Saita, Stability of the steady-state displacement of a

liquid plug driven by a constant pressure difference along a prewetted capillary tube, Ind. Eng. Chem.
Res. 47, 6307 (2008).

[26] Y. Hu, S. Bian, J. C. Grotberg, M. Filoche, J. White, S. Takayama, and J. B. Grotberg, A microfluidic
model to study fluid dynamics of mucus plug rupture in small lung airways, Biomicrofluidics 9, 044119
(2015).

094004-21

https://doi.org/10.1017/S0022112083002451
https://doi.org/10.1017/S0022112083002451
https://doi.org/10.1017/S0022112083002451
https://doi.org/10.1017/S0022112083002451
https://doi.org/10.1016/0009-2509(88)85137-6
https://doi.org/10.1016/0009-2509(88)85137-6
https://doi.org/10.1016/0009-2509(88)85137-6
https://doi.org/10.1016/0009-2509(88)85137-6
https://doi.org/10.1146/annurev.bioeng.3.1.421
https://doi.org/10.1146/annurev.bioeng.3.1.421
https://doi.org/10.1146/annurev.bioeng.3.1.421
https://doi.org/10.1146/annurev.bioeng.3.1.421
https://doi.org/10.1146/annurev.fluid.36.050802.121918
https://doi.org/10.1146/annurev.fluid.36.050802.121918
https://doi.org/10.1146/annurev.fluid.36.050802.121918
https://doi.org/10.1146/annurev.fluid.36.050802.121918
https://doi.org/10.1007/s10439-005-8758-0
https://doi.org/10.1007/s10439-005-8758-0
https://doi.org/10.1007/s10439-005-8758-0
https://doi.org/10.1007/s10439-005-8758-0
https://doi.org/10.1016/j.resp.2008.05.013
https://doi.org/10.1016/j.resp.2008.05.013
https://doi.org/10.1016/j.resp.2008.05.013
https://doi.org/10.1016/j.resp.2008.05.013
https://doi.org/10.1146/annurev-fluid-122109-160703
https://doi.org/10.1146/annurev-fluid-122109-160703
https://doi.org/10.1146/annurev-fluid-122109-160703
https://doi.org/10.1146/annurev-fluid-122109-160703
https://doi.org/10.1063/1.3517737
https://doi.org/10.1063/1.3517737
https://doi.org/10.1063/1.3517737
https://doi.org/10.1063/1.3517737
https://doi.org/10.1093/icb/icu107
https://doi.org/10.1093/icb/icu107
https://doi.org/10.1093/icb/icu107
https://doi.org/10.1093/icb/icu107
https://doi.org/10.1016/0021-9797(72)90228-7
https://doi.org/10.1016/0021-9797(72)90228-7
https://doi.org/10.1016/0021-9797(72)90228-7
https://doi.org/10.1016/0021-9797(72)90228-7
https://doi.org/10.1017/S0022112006008822
https://doi.org/10.1017/S0022112006008822
https://doi.org/10.1017/S0022112006008822
https://doi.org/10.1017/S0022112006008822
https://doi.org/10.1017/S0022112096004120
https://doi.org/10.1017/S0022112096004120
https://doi.org/10.1017/S0022112096004120
https://doi.org/10.1017/S0022112096004120
https://doi.org/10.1017/jfm.2011.346
https://doi.org/10.1017/jfm.2011.346
https://doi.org/10.1017/jfm.2011.346
https://doi.org/10.1017/jfm.2011.346
https://doi.org/10.1017/S0022112002001210
https://doi.org/10.1017/S0022112002001210
https://doi.org/10.1017/S0022112002001210
https://doi.org/10.1017/S0022112002001210
https://doi.org/10.1017/S0022112002001222
https://doi.org/10.1017/S0022112002001222
https://doi.org/10.1017/S0022112002001222
https://doi.org/10.1017/S0022112002001222
https://doi.org/10.1063/1.3294887
https://doi.org/10.1063/1.3294887
https://doi.org/10.1063/1.3294887
https://doi.org/10.1063/1.3294887
https://doi.org/10.1137/15M1026584
https://doi.org/10.1137/15M1026584
https://doi.org/10.1137/15M1026584
https://doi.org/10.1137/15M1026584
https://doi.org/10.1103/PhysRevFluids.2.024001
https://doi.org/10.1103/PhysRevFluids.2.024001
https://doi.org/10.1103/PhysRevFluids.2.024001
https://doi.org/10.1103/PhysRevFluids.2.024001
https://doi.org/10.1115/1.1798051
https://doi.org/10.1115/1.1798051
https://doi.org/10.1115/1.1798051
https://doi.org/10.1115/1.1798051
https://doi.org/10.1017/S0022112099007417
https://doi.org/10.1017/S0022112099007417
https://doi.org/10.1017/S0022112099007417
https://doi.org/10.1017/S0022112099007417
https://doi.org/10.1063/1.3183777
https://doi.org/10.1063/1.3183777
https://doi.org/10.1063/1.3183777
https://doi.org/10.1063/1.3183777
https://doi.org/10.1063/1.1416496
https://doi.org/10.1063/1.1416496
https://doi.org/10.1063/1.1416496
https://doi.org/10.1063/1.1416496
https://doi.org/10.1063/1.1948907
https://doi.org/10.1063/1.1948907
https://doi.org/10.1063/1.1948907
https://doi.org/10.1063/1.1948907
https://doi.org/10.1063/1.2938381
https://doi.org/10.1063/1.2938381
https://doi.org/10.1063/1.2938381
https://doi.org/10.1063/1.2938381
https://doi.org/10.1021/ie8000309
https://doi.org/10.1021/ie8000309
https://doi.org/10.1021/ie8000309
https://doi.org/10.1021/ie8000309
https://doi.org/10.1063/1.4928766
https://doi.org/10.1063/1.4928766
https://doi.org/10.1063/1.4928766
https://doi.org/10.1063/1.4928766


FENG XU AND OLIVER E. JENSEN

[27] J. C. Magniez, M. Baudoin, C. Liu, and F. Zoueshtiagh, Dynamics of liquid plugs in prewetted capillary
tubes: From acceleration and rupture to deceleration and airway obstruction, Soft Matter 12, 8710 (2016).

[28] V. Suresh and J. B. Grotberg, The effect of gravity on liquid plug propagation in a two-dimensional
channel, Phys. Fluids 17, 031507 (2005).

[29] Y. Zheng, H. Fujioka, and J. Grotberg, Effects of gravity, inertia, and surfactant on steady plug propagation
in a two-dimensional channel, Phys. Fluids 19, 082107 (2007).

[30] Y. Zheng, H. Fujioka, J. C. Grotberg, and J. B. Grotberg, Effects of inertia and gravity on liquid plug
splitting at a bifurcation, J. Biomech. Eng. 128, 707 (2006).

[31] B. L. Vaughan and J. B. Grotberg, Splitting of a two-dimensional liquid plug at an airway bifurcation,
J. Fluid Mech. 793, 1 (2016).

[32] P. Zamankhan, B. T. Helenbrook, S. Takayama, and J. B. Grotberg, Steady motion of Bingham liquid
plugs in two-dimensional channels, J. Fluid Mech. 705, 258 (2012).

[33] M. Jalaal and N. Balmforth, Long bubbles in tubes filled with viscoplastic fluid, J. Non-Newtonian Fluid
Mech. 238, 100 (2016).

[34] C. E. Rasmussen and C. K. Williams, Gaussian Processes for Machine Learning (MIT Press, Cambridge,
MA, 2006).

[35] G. J. Lord, C. E. Powell, and T. Shardlow, An Introduction to Computational Stochastic PDEs (Cambridge
University Press, Cambridge, 2014).

[36] O. E. Jensen, Draining collars and lenses in liquid-lined vertical tubes, J. Colloid Interface Sci. 221, 38
(2000).

[37] R. D. Hill, R. J. A. Tough, and K. D. Ward, Distribution of the global maximum of a Gaussian random
field and performance of matched filter detectors, IEE Proc. Vision, Image, Sig. Proc. 147, 297 (2000).

[38] M. Z. Madi and M. T. Raqab, Bayesian analysis for the exponentiated Rayleigh distribution, Metron Int.
J. Statistics 67, 269 (2009).

[39] V. E. B. Dussan, On the ability of drops to stick to surfaces of solids. Part 3. The influences of the motion
of the surrounding fluid on dislodging drops, J. Fluid Mech. 174, 381 (1987).

[40] D. Quéré, Wetting and roughness, Annu. Rev. Mater. Res. 38, 71 (2008).
[41] N. Savva and S. Kalliadasis, Droplet motion on inclined heterogeneous substrates, J. Fluid Mech. 725,

462 (2013).
[42] U. Thiele and E. Knobloch, Driven Drops On Heterogeneous Substrates: Onset of Sliding Motion, Phys.

Rev. Lett. 97, 204501 (2006).
[43] N. Savva, S. Kalliadasis, and G. A. Pavliotis, Two-Dimensional Droplet Spreading Over Random

Topographical Substrates, Phys. Rev. Lett. 104, 084501 (2010).
[44] L. Espín and S. Kumar, Droplet spreading and absorption on rough, permeable substrates, J. Fluid Mech.

784, 465 (2015).
[45] J. Park and S. Kumar, Droplet sliding on an inclined substrate with a topographical defect, Langmuir 33,

7352 (2017).
[46] F. Xu and O. E. Jensen, Drop spreading with random viscosity, Proc. R. Soc. London A 472, 20160270

(2016).
[47] M. Filoche, C.-F. Tai, and J. B. Grotberg, Three-dimensional model of surfactant replacement therapy,

Proc. Natl. Acad. Sci. USA 112, 9287 (2015).
[48] P. S. Stewart and O. E. Jensen, Patterns of recruitment and injury in a heterogeneous airway network

model, J. Roy. Soc. Interface 12, 20150523 (2015).
[49] J. Ryans, H. Fujioka, D. Halpern, and D. P. Gaver, Reduced-dimension modeling approach for simulating

recruitment/de-recruitment dynamics in the lung, Ann. Biomed. Eng. 44, 3619 (2016).
[50] H. Fujioka, D. Halpern, J. Ryans, and D. P. Gaver III, Reduced-dimension model of liquid plug propagation

in tubes, Phys. Rev. Fluids 1, 053201 (2016).
[51] R. Camassa, H. R. Ogrosky, and J. Olander, Viscous film flow coating the interior of a vertical tube.

Part 1. Gravity-driven flow, J. Fluid Mech. 745, 682 (2014).
[52] G. F. Dietze and C. Ruyer-Quil, Films in narrow tubes, J. Fluid Mech. 762, 68 (2015).

094004-22

https://doi.org/10.1039/C6SM01463A
https://doi.org/10.1039/C6SM01463A
https://doi.org/10.1039/C6SM01463A
https://doi.org/10.1039/C6SM01463A
https://doi.org/10.1063/1.1863853
https://doi.org/10.1063/1.1863853
https://doi.org/10.1063/1.1863853
https://doi.org/10.1063/1.1863853
https://doi.org/10.1063/1.2762256
https://doi.org/10.1063/1.2762256
https://doi.org/10.1063/1.2762256
https://doi.org/10.1063/1.2762256
https://doi.org/10.1115/1.2246235
https://doi.org/10.1115/1.2246235
https://doi.org/10.1115/1.2246235
https://doi.org/10.1115/1.2246235
https://doi.org/10.1017/jfm.2016.106
https://doi.org/10.1017/jfm.2016.106
https://doi.org/10.1017/jfm.2016.106
https://doi.org/10.1017/jfm.2016.106
https://doi.org/10.1017/jfm.2011.438
https://doi.org/10.1017/jfm.2011.438
https://doi.org/10.1017/jfm.2011.438
https://doi.org/10.1017/jfm.2011.438
https://doi.org/10.1016/j.jnnfm.2016.06.006
https://doi.org/10.1016/j.jnnfm.2016.06.006
https://doi.org/10.1016/j.jnnfm.2016.06.006
https://doi.org/10.1016/j.jnnfm.2016.06.006
https://doi.org/10.1006/jcis.1999.6551
https://doi.org/10.1006/jcis.1999.6551
https://doi.org/10.1006/jcis.1999.6551
https://doi.org/10.1006/jcis.1999.6551
https://doi.org/10.1049/ip-vis:20000397
https://doi.org/10.1049/ip-vis:20000397
https://doi.org/10.1049/ip-vis:20000397
https://doi.org/10.1049/ip-vis:20000397
https://doi.org/10.1017/S002211208700017X
https://doi.org/10.1017/S002211208700017X
https://doi.org/10.1017/S002211208700017X
https://doi.org/10.1017/S002211208700017X
https://doi.org/10.1146/annurev.matsci.38.060407.132434
https://doi.org/10.1146/annurev.matsci.38.060407.132434
https://doi.org/10.1146/annurev.matsci.38.060407.132434
https://doi.org/10.1146/annurev.matsci.38.060407.132434
https://doi.org/10.1017/jfm.2013.201
https://doi.org/10.1017/jfm.2013.201
https://doi.org/10.1017/jfm.2013.201
https://doi.org/10.1017/jfm.2013.201
https://doi.org/10.1103/PhysRevLett.97.204501
https://doi.org/10.1103/PhysRevLett.97.204501
https://doi.org/10.1103/PhysRevLett.97.204501
https://doi.org/10.1103/PhysRevLett.97.204501
https://doi.org/10.1103/PhysRevLett.104.084501
https://doi.org/10.1103/PhysRevLett.104.084501
https://doi.org/10.1103/PhysRevLett.104.084501
https://doi.org/10.1103/PhysRevLett.104.084501
https://doi.org/10.1017/jfm.2015.603
https://doi.org/10.1017/jfm.2015.603
https://doi.org/10.1017/jfm.2015.603
https://doi.org/10.1017/jfm.2015.603
https://doi.org/10.1021/acs.langmuir.7b01716
https://doi.org/10.1021/acs.langmuir.7b01716
https://doi.org/10.1021/acs.langmuir.7b01716
https://doi.org/10.1021/acs.langmuir.7b01716
https://doi.org/10.1098/rspa.2016.0270
https://doi.org/10.1098/rspa.2016.0270
https://doi.org/10.1098/rspa.2016.0270
https://doi.org/10.1098/rspa.2016.0270
https://doi.org/10.1073/pnas.1504025112
https://doi.org/10.1073/pnas.1504025112
https://doi.org/10.1073/pnas.1504025112
https://doi.org/10.1073/pnas.1504025112
https://doi.org/10.1098/rsif.2015.0523
https://doi.org/10.1098/rsif.2015.0523
https://doi.org/10.1098/rsif.2015.0523
https://doi.org/10.1098/rsif.2015.0523
https://doi.org/10.1007/s10439-016-1672-9
https://doi.org/10.1007/s10439-016-1672-9
https://doi.org/10.1007/s10439-016-1672-9
https://doi.org/10.1007/s10439-016-1672-9
https://doi.org/10.1103/PhysRevFluids.1.053201
https://doi.org/10.1103/PhysRevFluids.1.053201
https://doi.org/10.1103/PhysRevFluids.1.053201
https://doi.org/10.1103/PhysRevFluids.1.053201
https://doi.org/10.1017/jfm.2014.90
https://doi.org/10.1017/jfm.2014.90
https://doi.org/10.1017/jfm.2014.90
https://doi.org/10.1017/jfm.2014.90
https://doi.org/10.1017/jfm.2014.648
https://doi.org/10.1017/jfm.2014.648
https://doi.org/10.1017/jfm.2014.648
https://doi.org/10.1017/jfm.2014.648



