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This paper deals with buoyant convection generated by a horizontal gradient of
temperature in an infinite fluid layer, which is known as Hadley circulation, and studies the
effects induced by applying a rotation around the vertical axis. First, the basic flow profile
with rotation is derived and the influence of the rotation is depicted: The original longitudinal
velocity profile is decreased in intensity when rotation is applied and its structure is
progressively changed, whereas a transverse velocity component is created, which increases
with the rotation intensity, overcomes the longitudinal velocity, and eventually decreases.
Different asymptotic behaviors for these profiles have also been highlighted. The stability
of these flows is then studied. The effects of the Prandtl number, the Taylor number, and the
thermal boundary conditions are highlighted for the three types of instability occurring in
such a situation (shear, oscillatory, and Rayleigh instabilities). It is observed that they are
all stabilized by the rotation and that the increase of the critical thresholds is accompanied
by a spinning of the wave vector corresponding to a progressive change of the orientation
of the marginal perturbation rolls. Energy budgets are finally used to analyze the instability
mechanisms.
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I. INTRODUCTION

Convection due to horizontal temperature differences has been the subject of intensive studies
because of its implication in various natural, industrial and engineering problems such as planetary
flows [1–4], and crystal growth processes [5]. These flows are known to be well described in the case
of extended geometries by a simple model called Hadley circulation and corresponding to a cubic
profile for the horizontal velocity along the confined vertical direction. This model was initially
proposed by Hadley [1] to describe a single-cell flow generated by buoyancy, which could explain
the atmospheric large-scale circulation between the equatorial hot regions and the cold poles.

In engineering and industrial processes, Hadley circulation is considered as a simplified model to
describe the core of convective flows in extended side-heated cavities (known as shallow cavities)
that are present in many industrial processes such as cooling of electronic components, nuclear
reactors, habitations, and crystal growth technologies (particularly the horizontal Bridgman method)
[5–7]. In the latter case, the appearance of hydrodynamic instabilities in the melt region dramatically
affects the quality of the resulting crystals and it is thus important to study them to finally find a way
to control these flows.

One of the first stability analyses of the Hadley circulation was conducted by Hart [8] and showed
the coexistence of two types of instabilities that depend on the Prandtl number: a two-dimensional
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stationary shear instability corresponding to transverse rolls and due to the inflectional basic flow
for weak Pr and an oscillatory instability corresponding to longitudinal rolls and resulting from the
equilibrium between the stable temperature (density) stratification and the inertia of the flow for
larger Pr.

Further stability studies were performed after this work. For example, Gill [7] explained the
longitudinal oscillations by the mean of an asymptotic theoretical analysis based on small Prandtl
numbers. Laure and Roux [9], Laure [10], and Gershuni et al. [11] deepened the analysis by
considering the effects of the Prandtl number, the capillary forces, and the boundary conditions.
In addition to the above-described instabilities, Gershuni et al. [11] pointed out the existence of
longitudinal stationary thermal instabilities in the case of thermally conducting boundaries due to
the unstable stratification of the temperature (density) profile along the horizontal walls. Pimputkar
and Ostrach [12] and more recently Lappa [13] proposed extensive reviews of these situations.

The control of this type of flows was also the subject of extensive research activity. The
magnetohydrodynamic flow has been investigated by Kaddeche et al. [14] and Henry et al. [15]
for different magnetic-field orientations with respect to the mean flow direction. In the case of a
vertical magnetic field, the work was recently further extended by Hudoba et al. [16] to take into
account high-field intensities. Dridi et al. [17,18], in a linear stability analysis, showed the effects of
an acoustic streaming flow (generated by ultrasonic waves) on the different instabilities of Hadley
circulation.

In addition to engineering and industrial processes, Hadley circulation was proposed to describe
some geophysical and astrophysical flows. This was done, for example, by Stone [19,20] in
studies related to different geophysical situations such as atmospheric Venusian circulation, tropical
circulation, or even oceanic currents. It is known that these objects are in a perpetual rotation
that strongly affects the flows dynamics by means of the noninertial Coriolis forces and thus
the understanding of the dynamics and the stability of these rotating flows is important from a
geophysicist’s point of view.

Historically, the effect of the rotation about the vertical axis aligned with the gravity vector was
examined in fluids heated from below in so-called Rayleigh-Bénard convection. One of the earlier
studies of rotating convection was conducted by Jeffreys (see [21]) and it was reported that “the effect
of rotation is to maintain stability.” A considerable number of works have been published since then,
such as the experimental and numerical study of Nakagawa and Frenzen [21], the famous stability
study of Chandrasekhar [22] in which the rotation was included and emerged as a stabilizing factor,
and the work on rapidly rotating convection of Zhang and Robert [23] where convection seems
to be described at leading order by a thermal inviscid inertial wave when the Prandtl number
is small.

Other works were also carried out in rotating differentially heated fluids as, for example, the
experiments of Fultz [2] and Hide [3,4] in which the Hadley flow was observed before its bifurcation
to other flow regimes such as Rossby waves and chaotic flows. Aristov and Frik [24] considered the
effect of rotation on large-scale turbulence in a thin rotating fluid layer with a horizontal temperature
gradient. Shvarts and Boudlal [25–27] carried out several stability studies in which the effect of
rotation was examined. These studies investigated the effect of rotation on the stability of the
advective flow and the behavior of finite-amplitude perturbations beyond the instability threshold
for layers with solid boundaries [25] and with a free upper boundary [26] and finally in the case
of thermocapillary convection for layers with two free boundaries in zero gravity. Furthermore,
Chikulaev and Shvarts [28] studied the effect of rotation on the stability of the horizontally heated
fluid layer with solid boundaries at small Prandtl numbers (typical values for liquid metals) and
Knutova and Shvarts [29] examined the effect of rotation on the thermocapillary flow under
microgravity conditions. In all these previous studies, however, the instability modes are either
transverse (with kx �= 0 and ky = 0) or longitudinal (with kx = 0 and ky �= 0) rolls, which are, as
will be shown in this paper, not the most unstable modes.

In the light of what has been done previously, we seek to examine the modification of the
Hadley circulation when it is subjected to a rotation around the vertical axis and the change of its
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|∇T̃ |0

FIG. 1. Studied configuration and coordinates.

stability properties. The effects of the Prandtl number, the Taylor number, and the thermal boundary
conditions are highlighted for the three types of instability occurring in such a situation.

II. GOVERNING EQUATIONS AND BASIC FLOW

A. Governing equations

We consider an incompressible fluid layer confined between two infinite rigid walls separated by
a distance h in the vertical z direction. This layer is subjected to a constant horizontal temperature
gradient | �∇T̃ |0 in the x direction and is submitted to a rotation around the vertical z axis (see
Fig. 1). The equations governing the flow in such a situation have been derived, for example, by
Chandrasekhar [22]. The fluid is assumed to be Newtonian with constant kinematic viscosity ν and
thermal diffusivity κ . The Boussinesq approximation is generally applied, which means that the
density is constant, except in the driving buoyancy term, where it is taken as a linear variation of
the temperature ρ = ρ0[1 − γ (T̃ − T̃0)], where γ is the thermal expansion coefficient and T̃0 is a
reference temperature. The rotation is taken into account through the Coriolis force. As it is well
known [22], the centrifugal force does not appear in the equations, as it can be expressed as a gradient
and introduced in a modified pressure term.

Using h, h2/ν, ν/h, ρν2/h2, and h| �∇T̃ |0 as reference quantities for length, time, velocity,
pressure, and temperature, respectively, the dimensionless governing equations are

∂ �V
∂t

+ �V · �∇ �V +
√

Ta(�ez × �V ) = −�∇P + ∇2 �V + Gr��ez, (1)

∂�

∂t
+ �V · �∇� = 1

Pr
∇2�, (2)

�∇ · �V = 0, (3)

where Ta = 4�2h4

ν2 is the Taylor number, Gr = gγ | �∇T̃ |0h4

ν2 is the Grashof number, and Pr = ν
κ

is
the Prandtl number. The boundary conditions at the two horizontal rigid plates (z = ±0.5) are
no-slip conditions ( �V = 0) and either perfectly conducting (� = x) or perfectly insulating ( d�

dz
= 0)

conditions.

B. Basic flow profiles

The layer is considered as infinitely long in both horizontal directions x and y, but we also assume
that there exist vertical boundaries located far from the center in both these directions (x = ±∞
and y = ±∞), which allow the flow to return and induce a zero flow rate in all the sections at fixed
x or at fixed y. In such a situation, a steady parallel flow solution depending only on the vertical z
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coordinate can be obtained. This steady-state flow is characterized by velocity profiles of the type
[Ub(z),Vb(z),0], where Ub(z) is the longitudinal component of the velocity originally created by the
buoyancy force, and Vb(z) is the transverse component created by the Coriolis effect. This transverse
component must be equal to zero in the case without rotation where the usual Hadley circulation is
retrieved. The temperature profile is given by �b(x,z) = x + Tb(z), where the x variation is related
to the imposed temperature gradient and Tb(z) represents the vertical profile of temperature to be
determined.

By introducing the basic flow quantities Ub(z), Vb(z), and �b(x,z) and taking the curl of the
momentum conservation equation in order to eliminate the pressure term, Eqs. (1)–(3) lead to the
ordinary differential equations

d3Ub

dz3
+

√
Ta

dVb

dz
= Gr, (4a)

d3Vb

dz3
−

√
Ta

dUb

dz
= 0 (4b)

for the velocity profile and

d2Tb

dz2
− PrUb = 0 (5)

for the temperature profile. The boundary conditions associated with these equations are Ub(z =
±0.5) = Vb(z = ±0.5) = 0 ensuring the no-slip boundary condition, Ub(z = 0) = Vb(z = 0) = 0
ensuring the zero flow rate for profiles that are symmetric with respect to the center z = 0, and either
Tb(z = ±0.5) = 0 for perfectly conducting walls or ( dTb

dz
)(z = ±0.5) = 0 for perfectly insulating

walls.
Equations (4a) and (4b) are solved by introducing a complex velocity profile defined as 	(z) =

Ub(z) + iVb(z), which leads to a unique and simple third-order differential equation

d3	

dz3
− i

√
Ta

d	

dz
= Gr, (6)

associated with the boundary conditions 	(z = ±0.5) = 0 and 	(z = 0) = 0. By solving Eq. (6),
we obtain the complex velocity profile

	(z) = i Gr

2
√

Ta

⎛
⎝2z −

exp
( (i+1)Ta1/4√

2
z
) − exp

(− (i+1)Ta1/4√
2

z
)

exp
( (i+1)Ta1/4

2
√

2

) − exp
(− (i+1)Ta1/4

2
√

2

)
⎞
⎠ (7a)

= i Gr

2
√

Ta

⎛
⎝2z −

sinh
( (i+1)Ta1/4√

2
z
)

sinh
( (i+1)Ta1/4

2
√

2

)
⎞
⎠. (7b)

Note that this profile is similar to that given by Chikulaev and Shvarts [28]. Finally, the velocity
components Ub(z) and Vb(z) can be deduced by separating the real and imaginary parts of the
complex function 	(z), which gives

Ub(z) = Gr

2
√

Ta

⎛
⎝α cosh

(
Ta1/4√

2
z
)

sin
(

Ta1/4√
2

z
) − β sinh

(
Ta1/4√

2
z
)

cos
(

Ta1/4√
2

z
)

α2 + β2

⎞
⎠, (8a)

Vb(z) = Gr

2
√

Ta

⎛
⎝2z −

α sinh
(

Ta1/4√
2

z
)

cos
(

Ta1/4√
2

z
) + β cosh

(
Ta1/4√

2
z
)

sin
(

Ta1/4√
2

z
)

α2 + β2

⎞
⎠, (8b)
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FIG. 2. Effect of the Taylor number Ta on (a) the longitudinal ub(z) = Ub(z)/Gr and (b) the transverse
vb(z) = Vb(z)/Gr velocity profiles.

with

α(Ta) = sinh

(
Ta1/4

2
√

2

)
cos

(
Ta1/4

2
√

2

)
,

β(Ta) = cosh

(
Ta1/4

2
√

2

)
sin

(
Ta1/4

2
√

2

)
.

It is interesting to evaluate the asymptotic expressions of the velocities for Ta → 0. The series
expansion of the complex expression (7b) as a function of Ta leads to

	(z) = Gr

[(
z3

6
− z

24

)
− TaQ(z) + i

√
TaH (z)

]
+ O(Ta3/2), (9)

with

Q(z) = 1

5040
z7 − 1

2880
z5 + 7

34 560
z3 − 31

967 680
z, (10a)

H (z) = 1

120
z5 − 1

144
z3 + 7

5760
z. (10b)

From Eq. (9), we can first check that the limit of 	(z) when Ta → 0 (i.e., without rotation) is the
well-known Hadley profile obtained, for example, by Hart [8]:

UH = Gr

(
z3

6
− z

24

)
. (11)

Equation (9) also indicates that, when rotation is applied, the departure of the longitudinal velocity
from the Hadley profile occurs as a seventh-order polynomial given by Q(z) and is proportional to
Ta, whereas the initiation of the transverse velocity occurs as a fifth-order polynomial given by H (z)
and is proportional to

√
Ta.

Figures 2(a) and 2(b) show the effect of the Taylor number on the velocity profiles ub(z) =
Ub(z)/Gr and vb(z) = Vb(z)/Gr obtained from Eqs. (8a) and (8b), respectively. In the case without
rotation (Ta = 0), as expected, the profile is purely longitudinal with Ub(z) corresponding to the
Hadley cubical profile given by Eq. (11). When the Taylor number is increased, the dynamics of
the flow is modified by the Coriolis term, which induces a deviation of the flow to the right, thus
creating transverse velocities (Vb < 0 when Ub > 0 and Vb > 0 when Ub < 0, in our coordinates).
The transverse velocities will increase for increasing Taylor numbers up to Ta � 1500, while the
longitudinal velocities decrease due to the action of the Coriolis force on these transverse velocities.
Note that at Ta = 1500, the velocity components have similar intensities. As the Taylor number
is further increased, both velocity components will finally decrease. Such a behavior was already
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FIG. 3. Maximum velocity components ub,max = Ub,max/Gr (squares), vb,max = Vb,max/Gr (circles), and
uH,max − ub,max (triangles) as a function of the Taylor number Ta.

observed in rotating flows by Shvarts and Boudlal [26] and Mehdizadeh and Oberlack [30], for
example.

More precision on the variations of the velocities intensities when rotation is applied can be
obtained from Fig. 3 where the maximums of the velocity components ub(z) and vb(z) are given
as a function of the Taylor number. The initial increase of vb,max occurs as Ta1/2, while that of
uH,max − ub,max occurs as Ta, as given by (9). The maximum of vb,max is really close to Ta = 1500
and very close to the intersection of the curves of ub,max and vb,max. The decrease of the two
maximums ub,max and vb,max when the Taylor number is further increased seems to follow a Ta−1/2

law, more clearly for the longitudinal component than for the transverse component.
The limit of the velocity profiles for strong rotation (Ta → ∞) can be studied analytically. First,

for Ta → ∞, by neglecting an exponential term in the denominator, the expression (7a) can be
simplified and written as

	∞(z) ≈ i Gr

2
√

Ta

[
2z − exp

(
− (i + 1)Ta1/4

√
2

(0.5 − z)

)
+ exp

(
− (i + 1)Ta1/4

√
2

(0.5 + z)

)]
. (12)

For large Ta, the first exponential in (12) is nonzero close to z = 0.5, whereas the second exponential
is nonzero close to z = −0.5, so we can split the problem and define

	∞(−0.5 → 0) ≈ i Gr

2
√

Ta

[
2z + exp

(
− (i + 1)Ta1/4

√
2

(0.5 + z)

)]
, (13a)

	∞(0 → 0.5) ≈ i Gr

2
√

Ta

[
2z − exp

(
− (i + 1)Ta1/4

√
2

(0.5 − z)

)]
. (13b)

As we know that the profiles are symmetric with respect to z = 0, the study can focus on one of
these expressions. We can show that, in these expressions, the exponentials are zero everywhere for
large Ta, except close to the boundaries. Moreover, they have finite maximum values

± exp(−3π/4) cos(3π/4) at z = ∓
(

0.5 − 3
√

2π

4 T a1/4

)
(14)

for their real part, i.e., for Vb, and

± exp(−π/4) sin(−π/4) at z = ∓
(

0.5 −
√

2π

4 T a1/4

)
(15)
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FIG. 4. Longitudinal Ub(z) and transverse Vb(z) velocity profiles in the bottom half of the cavity (−0.5 �
z � 0). The velocities are divided by the prefactor Gr/2

√
Ta. They are given for (a) Ta = 104 and (b) Ta = 108

(positive profiles for Ub in blue dashed lines and negative profiles for Vb in red dashed lines). The asymptotic
values for the maximums are given as horizontal lines for Vb from Eq. (17a) (black dashed lines), Vb from
Eq. (17b) (black solid lines), and Ub from Eq. (16) (red solid lines). The positions of these maximums [given
in Eqs. (14) and (15) for Vb and Ub, respectively] are plotted as black squares along these lines.

for their imaginary part, i.e., for Ub. In the expressions (13a) and (13b), only the prefactor will then
depend on Ta. This indicates that both Ub and Vb will eventually decrease at large Ta as Ta−1/2, as
was observed in Fig. 3. More precisely, the maximums of Ub (only given by the imaginary part of
the exponentials) occur close to the boundaries, at the positions given in (15), and will correspond to

Ub,∞,max = ± Gr

2
√

Ta
exp(−π/4) sin(π/4), (16)

whereas Ub,∞ is close to zero in most of the cavity. In contrast, the maximums of Vb are those of the
linear function 2z plus the real part of the exponential. Only at very large Ta can they approximately
occur at the position given in (14) and be given by

Vb,∞,max ≈ ± Gr

2
√

Ta

[
−1 + 3

√
2π

2 Ta1/4 − exp(−3π/4) sin(π/4)

]
(17a)

≈ ± Gr

2
√

Ta
[−1 − exp(−3π/4) sin(π/4)]. (17b)

The asymptotic expression (17b) is valid at very large Ta when the term 3
√

2π/2 Ta1/4 in (17a)
becomes negligible with respect to 1.

Note that Vb,∞ is close to the linear function z Gr√
Ta

in most of the cavity. These asymptotic
behaviors are confirmed by the results shown in Fig. 4, where the velocity profiles in the bottom
half of the cavity, normalized by Gr/(2

√
Ta), are given for Ta = 104 and 108. The maximum of the

normalized longitudinal velocity is in very good agreement with both the asymptotic value given
by (16) and the position given in (15) for the two values of Ta. This indicates that the asymptotic
behavior for Ub is already reached for Ta = 104. In contrast, the normalized transverse velocity is
far from the asymptotic behavior at Ta = 104. For Ta = 108, the agreement with the asymptotic
behavior is far better: a linear profile valid in most of the cavity, the position of the maximum given
by the expression in (14), and the value of this maximum given by (17a). However, higher values of
Ta, as Ta = 1012, are necessary to reach the true asymptotic maximum given by (17b).
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FIG. 5. Effect of the Taylor number Ta on the vertical temperature profiles Tb(z)/Gr Pr for (a) thermally
insulating walls and (b) thermally conducting walls.

The vertical temperature profiles Tb(z) are obtained by integration of Eq. (2), with the use of the
expression (8a) for Ub. We get

Tb(z) = −Gr Pr

2 Ta

⎛
⎝α sinh

(
Ta1/4√

2
z
)

cos
(

Ta1/4√
2

z
) + β cosh

(
Ta1/4√

2
z
)

sin
(

Ta1/4√
2

z
)

α2 + β2

⎞
⎠ + C1z + C2. (18)

The integration constant C1 is obtained by applying the thermal boundary conditions. For insulating
and conducting walls, we get

Cad
1 = Pr Gr

2
√

2Ta3/4

1

α2 + β2

[
(α + β) cosh

(
Ta1/4

2
√

2

)
cos

(
Ta1/4

2
√

2

)

− (α − β) sinh

(
Ta1/4

2
√

2

)
sin

(
Ta1/4

2
√

2

)]
and

Ccd
1 = Gr Pr

Ta
,

respectively. Note that the constant C2 vanishes in both cases because of the symmetry of the
problem. The series expansion of Eq. (18) for Ta close to zero gives

T ad
b (z) = Gr Pr

(
z5

120
− z3

144
+ z

384

)
+ O(Ta)

and

T cd
b (z) = Gr Pr

(
z5

120
− z3

144
+ 7z

5760

)
+ O(Ta)

for insulating and conducting walls, respectively. For Ta → 0, we then obtain the profiles given by
Hart [8] in the case without rotation.

The effect of the rotation on the temperature profiles is reported in Fig. 5 for both thermal
boundary conditions (insulating walls [Fig. 5(a)] and conducting walls [Fig. 5(b)]). We observe a
progressive suppression of the vertical temperature gradients when the rotation is increased: This
is connected to the decrease of the longitudinal velocity component Ub(z) responsible for these
vertical temperature gradients. One should notice the existence of unstable thermal stratification
regions near the walls in the case of conducting boundary conditions, which will be at the origin of
thermal instabilities (Rayleigh modes). Note finally that for all these basic vertical stationary profiles
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[Eqs. (8a) and (8b) for the velocities and (18) for the temperature], the Grashof and the Prandtl
numbers only appear as multiplicative factors, which makes the quantities (ub,vb) = (Ub,Vb)/Gr
and Tb/Gr Pr only dependent on the Taylor number.

III. LINEAR STABILITY ANALYSIS

The stability analysis of the basic flow has been performed by means of a spectral collocation
method. The general solution of the problem is expressed as �V = �Vb + �v, � = �b + θ , and P =
Pb + p, where (�v,θ,p) are infinitesimal perturbations. This solution is introduced in the system
(1)–(3) and after linearization with respect to the perturbations (second-order terms neglected), we
obtain the governing system for these perturbations:

∂ �v
∂t

+ �v · �∇ �Vb + �Vb · �∇�v +
√

Ta(�ez × �v) = −�∇p + ∇2�v + Grθ �ez, (19)

∂θ

∂t
+ �Vb · �∇θ + �v · �∇�b = 1

Pr
∇2θ, (20)

�∇ · �v = 0. (21)

In an extended layer, the perturbations can be expressed as normal modes in both the x and y

directions,

(�v,θ,p) = (�v,θ,p)(z)est+i(kxx+kyy), (22)

where kx and ky are real wave numbers in the longitudinal, x, and transverse, y, directions,
respectively, defining a wave vector �k, and s = σ + iω is a complex eigenvalue. The real part
σ represents an amplification rate and the imaginary part ω an oscillation frequency. Only boundary
conditions at z = ±0.5 are needed to solve this system and they are given by u = v = w = 0 and
θ = 0 for perfectly conducting walls or dθ/dz = 0 for perfectly insulating walls. A generalized
eigenvalue problem is obtained: LX = (σ + iω)MX, where X = [u(z),v(z),w(z),p(z),θ (z)], L

is a linear operator depending on kx , ky , Pr, Gr, and Ta, and M is a constant linear operator.
This eigenvalue problem is solved numerically using a Chebychev collocation method. From the
thresholds Gr0(Pr,Ta,kx,ky) (values of Gr for which an eigenvalue has a real part equal to zero,
whereas all the other eigenvalues have negative real parts), the critical Grashof number Grc can be
obtained after minimization along the wave numbers kx and ky . These critical Grashof numbers were
calculated by a discretization of the physical domain using 31 collocation points, which is sufficient
for an accurate determination of the thresholds and their characteristics.

The minimization procedure is performed by using the Nelder-Mead simplex method described
by Lagarias et al. [31]. This technique finds the local minimum of a several-variable scalar function
starting from an initial estimate of these variables (here the wave numbers). The simplex of the
Nelder-Mead method, for a two-variable function (kx and ky), is a triangle for which the values of
the function at its three vertices are compared. The worst vertex (for which the value of the function
is the largest one) is then rejected and replaced with a new vertex. The objective is then to reduce
the size of the triangle until the convergence criterion is reached. For more details on the method
and its practical use, the reader can consult Ref. [32]. Minimization is carried out along (kx,0) for
the transverse modes, along (0,ky) for the longitudinal modes, and along the couple (kx,ky) for
the oblique modes. Finally, these modes are either steady or oscillatory, depending on whether the
imaginary part of the eigenvalue is zero or nonzero, respectively. Our results are presented in the
following section.

IV. STABILITY RESULTS

The stability of the flow was first studied in the case without rotation (Ta = 0) in order to compare
with the results of Laure [10]. The critical Grashof numbers Grc corresponding to the appearance of
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TABLE I. Critical thresholds Grc corresponding to the case without rotation (Ta = 0) and with thermally
insulating walls.

Pr Grc ωc Ref. [10]

0.001 7944.26 0 7942
0.01 8165.19 0 8168
0.05 8446.33 36.56 8445
0.1 7342.14 38.96 7342

the first unstable mode for some Pr numbers and for Ta = 0 are given in Table I. Good agreement
with the results of Laure [10] is found. Note that, in the case without rotation, it was shown that the
critical modes are either transverse modes (ky = 0) or longitudinal modes (kx = 0), so the oblique
modes are never the most unstable (see [9,10], for example). This was also verified during this study.

At this stage, it is convenient to present the main instabilities existing for Ta = 0 and to locate
them in the space of the parameters (Grc and Pr). The critical thresholds for these instabilities are
given as a function of Pr in Figs. 6(a) and 6(b) for thermally insulating and thermally conducting
walls, respectively. A stationary transverse shear mode is found for the lowest values of Pr: The
corresponding thresholds initially remain practically constant while the Prandtl number is increased
up to values between 0.01 and 0.1 (low-Pr asymptotic domain), before a quite rapid growth phase. An
oscillatory longitudinal mode is then found for larger values of Pr: The critical curve decreases as Pr
is increased, intersects the shear mode critical curve, and then reaches a minimum before undergoing
a rapid growth phase. These two modes are obtained for both thermal boundary conditions, with only
changes in the exact variation of the critical curves with Pr. In contrast, the stationary longitudinal
Rayleigh modes are only obtained for thermally conducting walls due to the presence of unstable
stratification along these walls [see Fig. 5(b)]: In the range of Pr studied (Pr � 10), the critical curve
decreases when the Prandtl number is increased, so this instability becomes dominant for Pr > 0.45.

When rotation is applied, it is expected to have an influence on the critical modes and on their
thresholds, but also on the spatial orientation of these modes. The thresholds for oblique orientations
of the modes then have to be calculated and compared with those obtained for the usual transverse
and longitudinal orientations, in order to determine the true critical thresholds. These comparisons
are presented in Figs. 7(a) and 7(b), where the variations of the critical stability curves with the
Taylor number Ta are given for different types of instabilities and different orientations (wave vector
�k along an axis or oblique). Some numerical values for the thresholds are also given in Table II. We
can clearly observe that, when the Taylor number is increased, the thresholds of these instabilities
are shifted to higher values for all cases, which indicates a stabilization effect. This stabilization
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FIG. 6. Instability thresholds Grc as a function of Pr for the main modes at Ta = 0 for (a) thermally
insulating boundaries and (b) thermally conducting boundaries.
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FIG. 7. Variation of the critical thresholds Grc as a function of the Taylor number Ta for different instability
modes for (a) thermally insulating boundaries and (b) thermally conducting boundaries. The oblique modes are
given as dashed lines, while the transverse and longitudinal modes are given as solid lines.

effect, however, is more important in the case of the fixed orientations (transverse or longitudinal,
depending on the instability), indicating thus that, in any case, oblique modes become the dominant
instabilities when rotation is applied. Note that the Rayleigh instability can change its temporal
behavior from stationary to oscillatory in the case with rotation, while the other instabilities retain
their usual temporal behavior.

A. Shear instability

The effect of the rotation on the thresholds of the shear instability is studied first. The evolution
with Ta of the critical Grashof number Grc corresponding to stationary oblique modes is plotted in

TABLE II. Critical thresholds obtained for pure convection (Ta = 0) and convection submitted to rotation
(Ta = 100). Here STM, OLM, RLM, SOM, OOM, and ROM stand for stationary transverse, oscillatory
longitudinal, Rayleigh longitudinal, stationary oblique, oscillatory oblique, and Rayleigh oblique modes,
respectively.

Ta Characteristics Grc kx,c ky,c ωc

Insulating walls

0 STM (Pr = 0.01) 8165.19 2.68 0 0
0 OLM (Pr = 0.1) 7342.14 0 1.02 38.96
100 STM (Pr = 0.01) 9234.09 2.61 0 0
100 SOM (Pr = 0.01) 8474.03 2.52 −0.97 0
100 OLM (Pr = 0.1) 8770.32 0 1.07 46.65
100 OOM (Pr = 0.1) 8009.86 0.20 1.04 42.19

Conducting walls

0 STM (Pr = 0.01) 8076.92 2.68 0 0
0 OLM (Pr = 0.1) 20466.78 0 2.01 126.46
0 RLM (Pr = 0.7) 18152.24 0 8.23 0
100 STM (Pr = 0.01) 9106.81 2.61 0 0
100 SOM (Pr = 0.01) 8383.69 2.52 −0.98 0
100 OLM (Pr = 0.1) 21759.98 0 1.84 126.34
100 OOM (Pr = 0.1) 20911.98 0.23 1.97 125.46
100 RLM (Pr = 0.7) 19405.55 0 8.34 215.05
100 ROM (Pr = 0.7) 18794.52 1.82 8.01 0
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FIG. 8. Variation of the thresholds Grc for the stationary shear instability as a function of the Taylor number
Ta for different Prandtl numbers Pr for (a) thermally insulating boundaries and (b) thermally conducting
boundaries.

Fig. 8. Three values of the Prandtl number Pr are considered (0.01, 0.05, and 0.08) and the results
are given for both insulating walls [Fig. 8(a)] and conducting walls [Fig. 8(b)].

In the range of Ta studied (Ta � 10 000), for both thermal boundary conditions [Figs. 8(a)
and 8(b)], the thresholds increase linearly with Ta for the smallest values of the Prandtl number (Pr =
0.01 and 0.05 for insulating boundaries and Pr = 0.01, 0.05 and 0.08 for conducting boundaries)
in the asymptotic low-Pr range (domain of constant threshold in Fig. 6). In contrast, at Pr = 0.08
for insulating boundaries [Fig. 8(a)], we observe an initial linear variation of the thresholds with Ta,
followed by a rapid increase. Further calculations performed for Pr = 0.09 and 0.1 in the insulating
case show that the Ta range of linear variation shrinks when Pr is increased, indicating a more
effective stabilization of these shear modes by rotation.

The effect of the rotation on the critical wave vector �kc can be described through the variation with
Ta of its norm (defined as |�kc| =

√
k2
x,c + k2

y,c) and its orientation in the xy plane. In practice, we
follow the normal to the wave vector (i.e., the axis of the generated counterrotating rolls perturbation)
with respect to the x axis and define the angle φ = arctan(− kx,c

ky,c
) (φ is equal to 90◦ for the transverse

modes and 0◦ for the longitudinal modes). The action of the rotation on the norm of the wave
number is reported in Figs. 9(a) (insulating walls) and 9(b) (conducting walls) and its action on φ in
Fig. 10 (conducting walls). For Ta = 0, the wave vector �kc for the stationary transverse shear modes
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FIG. 9. Variation of the wave-number norm |�kc| for the stationary shear instability as a function of the
Taylor number Ta for different Prandtl numbers Pr for (a) thermally insulating boundaries and (b) thermally
conducting boundaries.
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FIG. 10. Variation of φ (the roll axis angle in the xy plane) for the stationary shear instability as a function
of the Taylor number Ta for different Prandtl numbers Pr (thermally conducting boundaries).

is defined by only the component kx,c and φ = 90◦. When the Taylor number is increased, �kc starts
to spin in the clockwise direction, thus creating a negative transverse component ky,c. Its norm |�kc|
undergoes a growth phase for the smallest values of Pr. This growth phase is shorter and weaker
and is followed by a decrease phase for larger values of Pr, this decrease becoming very steep in the
conducting case for Pr = 0.08.

The spinning of the wave vector in the clockwise direction is well depicted in Fig. 10 where the
variation with Ta of φ, the angle of the rolls axis with respect to the x axis, is plotted. In this figure
we show only the case of the thermally conducting walls since the observed variation in the case of
insulating walls is typically the same. The angle φ evolves very quickly from φ = 90◦ for Ta = 0
to φ = 0◦ for moderate values of Ta depending on Pr (Ta ≈ 3250 for Pr = 0.08, Ta ≈ 4500 for
Pr = 0.05, and Ta ≈ 5000 for Pr = 0.01), indicating a change of the shear modes from transverse
to longitudinal. The variation of φ is very steep at small Ta, in a domain where the basic flow
also strongly changes its orientation in the clockwise direction due to the creation of the transverse
velocity component as a result of the applied rotation. The spinning of the wave vector continues
more slowly beyond the longitudinal orientation of the rolls with negative values of φ. Note that the
decrease of φ with Ta does not depend much on Pr: It is only slightly less steep when Pr is increased.
Such a deviation of the wave vector when the Taylor number is increased was already mentioned
by Chandrasekhar [22] in the case of rotating Rayleigh-Bénard convection. An illustration of the
change of the marginal eigenvector with the applied rotation is given in Fig. 11: The modification

FIG. 11. Structure of the eigenvector (a) without (at Ta = 0) and (b) with (at Ta = 1000) rotation for the
stationary shear instability at the marginal state (Pr = 0.01, thermally conducting boundaries). The isosurfaces
correspond to [plus (green) or minus (red)] a given value of the temperature perturbation.
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FIG. 12. Isovalues of the thresholds Gr0 for the Rayleigh instability (red solid lines) and of the corresponding
angular frequency ω (black dashed lines) in the wave-number plane (kx,ky) for Pr = 0.7 and (a) Ta = 0,
(b) Ta = 1, and (c) Ta = 500. The blue points indicate the position in the (kx,ky) space of the critical stationary
thresholds (circles) and, in (c), of the oscillatory threshold (square).

of the marginal roll orientation is well depicted. The marginal roll structure has also changed: The
inclined rolls obtained for Ta = 0 become rather square rolls at Ta = 1000, in connection with the
decreasing velocity in the basic flow when rotation is applied.

B. Thermal (Rayleigh) instabilities

In the case of the thermal instabilities occurring for thermally conducting boundaries, the study
was performed for two values of the Prandtl number: Pr = 0.7 and 7. These two values correspond to
typical values for air and water, respectively. Gershuni et al. [11] reported the existence of two modes
for this instability: a stationary longitudinal mode and an oscillatory transverse mode. They showed
that the longitudinal mode is the most unstable. In this work, for different cases, we have determined
the two thresholds GrLc (stationary longitudinal mode) and GrTc (oscillatory transverse mode) and
we always found that GrTc > GrLc , which is consistent with the paper of Gershuni et al. [11].

We first draw attention to the fact that the critical threshold for this instability is very difficult to
locate when the rotation is introduced. The main reason is that the stationary mode (with smaller
threshold for Ta = 0) is localized in a very thin region of the wave-number space, which is itself
inside a large area where the mode is oscillatory. For Ta = 0, the stationary mode is longitudinal and
can be found quite easily by setting kx equal to 0. In contrast, under the influence of the rotation,
the stationary mode becomes oblique and has to be found in the (kx,ky) space, which becomes more
and more difficult as Ta is increased. Indeed, the minimization procedure will more easily find the
minimum for the oscillatory mode, which has a large basin of existence in the (kx,ky) space.

The situation will be more clearly depicted in Fig. 12, where the thresholds for these instabilities,
as well as the corresponding angular frequencies, are given in the wave-number plane (kx,ky) for
Pr = 0.7 and three values of the Taylor number, Ta = 0 [Fig. 12(a)], Ta = 1 [Fig. 12(b)], and
Ta = 500 [Fig. 12(c)]. We can see the very localized region for the stationary mode corresponding
to ω = 0. This region, originally elongated along the ky axis for Ta = 0, is, at the same time, moved
to positive kx and inclined to the right when the rotation is applied. We can also see the large basin
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FIG. 13. Thresholds Gr0 for the Rayleigh instability (dashed lines) and corresponding angular frequency
(solid lines) as a function of the kx wave number for Pr = 0.7. The thresholds are given for both the first (dashed
lines with squares) and second (dashed lines with circles) unstable eigenvalues at (a) ky = 8 for Ta = 0 and (b)
ky = 7.25 for Ta = 500.

of existence for the oscillatory mode. Originally symmetric with respect to the ky axis at kx = 0 for
Ta = 0, this basin is also moved towards positive kx and tilted to the right.

In order to better understand how the stationary and oscillatory modes are connected, the
thresholds and angular frequencies are now plotted as a function of kx at constant ky , close to
the critical values, in Fig. 13. The thresholds corresponding to the two leading eigenvalues are
plotted at Pr = 0.7 for Ta = 0 [Fig. 13(a)] and Ta = 500 [Fig. 13(b)]. For the two values of Ta, we
see that the critical stationary mode is created locally from the oscillatory mode. More precisely,
the two complex-conjugate eigenvalues associated with the complex-conjugate oscillatory modes
collide on the real axis (their angular frequency goes to zero) and then split, in a very narrow kx

interval, into two real eigenvalues associated with two stationary modes, one of these modes being
the critical mode (conversely, we also characterize that as a collision of the steady eigenvalues). The
stationary and oscillatory Rayleigh modes are then in close connection, one being in continuity with
the other.

Figures 12 and 13 can also give indications of the different thresholds and the difficulties to get
them. For Ta = 0 [Figs. 12(a) and 13(a)], the kx interval for the stationary mode is at the minimum
of the oscillatory thresholds in the wave-number domain. For Ta = 0 (and also for weak values
of Ta), the basin of attraction of the oscillatory mode will then naturally lead the minimization to
find the critical stationary threshold. In contrast, for large values of Ta as Ta = 500 [Figs. 12(c)
and 13(b)], the minimums of the oscillatory and stationary thresholds have different positions in
the (kx,ky) space. Due to its large basin of attraction, the critical oscillatory threshold will be found
easily by the minimization; however, strategies are needed to find the critical stationary threshold.
We have used the fact that the critical stationary threshold is not very far in the (kx,ky) space from
the critical oscillatory threshold: We calculate the instability threshold in the (kx,ky) domain close
to the critical oscillatory threshold until the localization of the stationary instability and we then
apply the minimization procedure. Note finally that the different localizations of the minimums for
the stationary and oscillatory thresholds in the (kx,ky) space (as observed for Ta = 500) could allow
the oscillatory instability to become eventually dominant when Ta is further increased.

Figure 14 depicts the dependence of the critical Grashof numbers Grc for the Rayleigh instability
on the Taylor number Ta. The thresholds for both stationary and oscillatory instabilities are given
for Pr = 0.7 [Fig. 14(a)] and Pr = 7 [Fig. 14(b)]. We see that, in the range of Ta studied, Grc grows
almost linearly with respect to the Taylor number in all cases. This indicates a stabilization of the
basic flow due to the rotation. In addition, the thresholds for the stationary and oscillatory instabilities
remain very close to each other. For Pr = 0.7 [Fig. 14(a)], however, it is observed that the stationary
mode remains the dominant mode in the range of Ta studied. In contrast, for Pr = 7 [Fig. 14(b)],
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FIG. 14. Critical Grashof numbers Grc for the Rayleigh instabilities as a function of the Taylor number Ta
for (a) Pr = 0.7 and (b) Pr = 7. The thresholds for both stationary and oscillatory modes are presented. The
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c to highlight the possible crossing of the critical curves.

the stationary mode is dominant only for Ta up to approximately 400. Beyond this value, due to
a crossing of the critical curves, the oscillatory mode becomes dominant. Note that, for Pr = 0.7,
extrapolation of both critical curves to larger Ta also indicates a possible crossing of the curves for
Ta ≈ 4400.

The norms of the critical wave number associated with these instabilities, as well as the critical
angular frequency for the oscillatory mode obtained at Pr = 7, are given in Figs. 15(a) and 15(b),
respectively. For Pr = 0.7, the wave number slightly decreases, reaches a minimum at Ta ≈ 300, and
begins to grow, quickly reaching a linear law. In contrast, for Pr = 7, the wave numbers corresponding
to both stationary and oscillatory instabilities grow linearly with respect to the Taylor number and
the angular frequency grows as a power law of the type C Tan with C = 1.33 and n = 0.47.

The deviation of the critical rolls when the Taylor number Ta is increased is depicted in Fig. 16.
For Ta = 0, the modes are longitudinal and thus the angle φ between the rolls axis and the x axis
is equal to zero. When Ta is increased, the modes become oblique modes, with a deviation in the
clockwise direction. The deviation is weaker than for the transverse modes of the shear instability.
It appears to be the same for Pr = 0.7 and 7 in the case of the stationary instability and to be more
accentuated for the oscillatory instability. An illustration of the marginal roll orientation change
when rotation is applied is given in Fig. 17. Note also that, in both cases (without or with rotation),
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FIG. 15. Critical properties of the Rayleigh instabilities as a function of the Taylor number Ta for different
Pr numbers: (a) wave-number norm |�kc| and (b) angular frequency ωc of the oscillatory mode at Pr = 7.
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FIG. 16. Variation of φ (the roll axis angle in the xy plane) for the Rayleigh instability as a function of the
Taylor number Ta for different Prandtl numbers Pr.

the marginal rolls are confined in the upper or lower part of the cavity, i.e., in both zones where the
basic temperature gradient is destabilizing.

C. Oscillatory instability

The influence of rotation on the oscillatory instability was studied for both thermal boundary
conditions and in each case for different values of the Prandtl number. The stability curves showing
the critical thresholds as a function of the Taylor number Ta are given in Fig. 18. For both boundary
conditions, we observe a stabilization of the oscillatory instability when rotation is applied. For
insulating walls [Fig. 18(a)], two regimes are found as a function of the Taylor number: a first regime
at small Ta where the stabilization is moderate and the thresholds evolve almost linearly with Ta
and another regime for larger Ta with a steep increase of the thresholds. The increase of the Prandtl
number induces a sooner transition between the regimes (at Ta ≈ 7500 for Pr = 0.05, Ta ≈ 3000
for Pr = 0.1, and Ta ≈ 1000 for Pr = 0.15) and a steeper increase of the thresholds. Conversely, for
conducting walls [Fig. 18(b)], the stabilization of the flow is more regular and the same evolution of
the thresholds Grc with Ta is found for the different values of the Prandtl number. For the smallest
Pr values (Pr = 0.1 and 0.15), however, a smaller slope of the stability curves Grc(Ta) is found for
values of Ta above 6000.

FIG. 17. Structure of the eigenvector (a) without (at Ta = 0) and (b) with (at Ta = 2500) rotation for
the stationary Rayleigh instability at the marginal state (Pr = 0.7 and thermally conducting boundaries). The
isosurfaces correspond to [plus (green) or minus (red)] a given value of the temperature perturbation.
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FIG. 18. Variation of the thresholds Grc for the oscillatory instability as a function of the Taylor number
Ta for different Prandtl numbers Pr for (a) thermally insulating boundaries and (b) thermally conducting
boundaries.

The change of the wave-number norm with Ta for the oscillatory instability is shown in Fig. 19.
For the insulating boundaries [Fig. 19(a)], the critical wave number |�kc| increases for small Taylor
numbers, reaches a maximum, and finally decreases. This behavior depends on the Prandtl number:
When Pr is increased, the maximum decreases, occurs for smaller Ta, and the final decrease is
steeper. For Pr = 0.1, we can also note a kink occurring during the final decrease. The behavior
is quite different for conducting boundaries [Fig. 19(b)]. For Pr = 0.3 and 0.4, the critical wave
number still experiences an initial increase and then a decrease when Ta is increased, but these
changes remain moderate. In contrast, for Pr = 0.1 and 0.15, after a slow variation of the critical
wave number with Ta, we observe a drift of the wave-number norm to larger values. This indicates
that, for these Pr values, the smaller thresholds observed in Fig. 18(b) when Ta is increased have
been found for large wave numbers.

The orientation of the oscillatory mode under the influence of the rotation is depicted in Fig. 20.
For Ta = 0, the critical mode is longitudinal, i.e., it corresponds to φ = 0. For insulating boundaries
[Fig. 20(a)], the rolls are globally deviated in the clockwise direction, roughly following the same
curve for the different Pr values. This clockwise deviation, however, is limited up to some value
of Ta depending on the Prandtl number (Ta ≈ 3750 for Pr = 0.1, and Ta ≈ 750 for Pr = 0.15) and
a slighter counterclockwise deviation can then be observed. The largest clockwise deviations are
thus observed for the smaller values of Pr. For conducting boundaries [Fig. 20(b)], the deviation
evolves regularly in the clockwise direction. It is the weakest for Pr = 0.4 and 0.3 and the largest for
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FIG. 19. Variation of the wave-number norm |�kc| for the oscillatory instability as a function of the Taylor
number Ta for different Prandtl numbers Pr for (a) thermally insulating boundaries and (b) thermally conducting
boundaries.
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FIG. 20. Variation of φ (the roll axis angle in the xy plane) for the oscillatory instability as a function of
the Taylor number Ta for different Prandtl numbers Pr for (a) thermally insulating boundaries and (b) thermally
conducting boundaries.

Pr = 0.15 and 0.1. For these latter values of Pr, this largest deviation associated with the strongest
increase of the wave-number norm [Fig. 19(b)] indicates the strong increase with Ta of a positive
kx,c component.

Concerning the critical angular frequency ωc for these oscillatory modes (Fig. 21), it increases
under the influence of the rotation and the increase is stronger when Pr is increased. For insulating
boundaries [Fig. 21(a)], we still observe two regimes: the first regime with a moderate increase of ωc

and the second regime with a steeper increase. Steeper regimes are found when Pr is increased and
the change of regime occurs earlier. For conducting boundaries [Fig. 21(b)], the critical frequency
evolves more regularly, but with a globally more important increase. Note that for Pr = 0.4 the
increase of ωc with Ta is almost linear.

V. ENERGY ANALYSIS

Important information concerning the physical mechanisms involved in the transition to the
instability and in the stabilization by the applied rotation can be obtained from the calculation, at
threshold, of the fluctuating kinetic energy budget. The basic steady solution at threshold and the
critical eigenvector both enter the equation of energy budget. Here we recall some mathematical
definitions of these budgets, which we will present and discuss in the next section.
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FIG. 21. Variation of the critical angular frequency ωc for the oscillatory instability as a function of the
Taylor number Ta for different Prandtl numbers Pr for (a) thermally insulating boundaries and (b) thermally
conducting boundaries.
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A. Fluctuating kinetic energy

The fluctuating kinetic energy is defined by the scalar product of the disturbance by its complex
conjugate k = Re(uiu

∗
i /2) (Re and the asterisk superscript denoting the real part and the complex

conjugate, respectively). The equation governing the budget of the kinetic energy is given by

∂k

∂t
= ks,U + ks,V + kpres + kbuoy + kvisc, (23)

where ∂k/∂t is the rate of change of the fluctuating kinetic energy, ks,U = −Re(wu∗ dUb

dz
) and

ks,V = −Re(wv∗ dVb

dz
) represent the production of fluctuating kinetic energy by shear of the basic

flow, kpres = −Re(u∗ ∂p

∂x
+ v∗ ∂p

∂y
+ w∗ ∂p

∂z
) is the redistribution of fluctuating kinetic energy by the

pressure fluctuations, kbuoy = Re(Grw∗θ ) is the buoyancy contribution to the fluctuating kinetic
energy, and finally kvisc = Re(u∗∇2u + v∗∇2v + w∗∇2w) is the viscous dissipation of fluctuating
kinetic energy. Note that the two terms connected with the rotation do not contribute to the kinetic
energy budget [Eq. (23)] as they have opposite contributions that are annihilated. The contribution of
the rotation will then only be viewed through the change of the basic flow quantities and perturbations.

We can also define the total fluctuating kinetic energy as K = ∫
V

k dV . The rate of change of K

is thus given by the volume integral energy terms (denoted by Ki)

dK

dt
= Ks,U + Ks,V + Kbuoy + Kvisc. (24)

The volume integral pressure term is zero and therefore has not been included in Eq. (24). Note
that the disturbances associated with the critical eigenvector are defined to within a multiplicative
constant and need to be appropriately normalized. This normalization will be done with the viscous
dissipation, more precisely |Kvisc| = −Kvisc, using the fact that Kvisc is stabilizing by nature and
thus a negative term [Kvisc = ∫

V
(�v · ∇2�v)dV = − ∫

V
( �∇�v)2dV ]. Moreover, at threshold, the critical

eigenvector is associated with an eigenvalue of zero real part. This implies that ∂k/∂t and ∂K/∂t

are both equal to zero at marginal stability.
Applying the normalization to Eq. (24), we get a new equation involving normalized energy terms

at threshold K ′
i = Ki/|Kvisc|:

K ′
s,U + K ′

s,V + K ′
buoy = 1. (25)

Conversely, each energy term in Eq. (23) can be normalized by |Kvisc|, which yields k′
i terms and, at

the threshold, we get

k′
s,U + k′

s,V + k′
pres + k′

buoy + k′
visc = 0. (26)

Note that all terms K ′
i and k′

i have been normalized and are then intrinsic quantities of the flow
perturbations. The calculation of all the individual energy contributions K ′

i enables us to determine
which term plays a dominant role in triggering the instability through production of fluctuating
kinetic energy. The corresponding spatial fields k′

i can in turn be analyzed to locate the production
regions. Positive (negative) energy terms are destabilizing (stabilizing).

B. Fluctuating thermal energy

The thermal energy balance could also be of interest, particularly in the case of the thermal
Rayleigh instability. Hence, by taking the equation of the temperature fluctuation [Eq. (20)],
multiplying it by the complex conjugate of the temperature disturbance, and isolating the real part,
we obtain an equation related to the production rate of the fluctuating thermal energy e = Re(θθ∗/2):

∂e

∂t
= el + ev + ed, (27)

093902-20



EFFECT OF ROTATION ON THE STABILITY OF SIDE- . . .

where el = −Re(θ∗u∂�b

∂x
) = −Re(θ∗u) represents a production term related to the imposed

longitudinal gradient of temperature, ev = −Re(θ∗w ∂�b

∂z
) = −Re(θ∗w dTb

dz
) represents a production

term related to the vertical gradient of temperature, and ed = Pr Re[θ∗( d2θ
dz2 − k2θ )] is a dissipation

term linked to heat diffusion. Similarly to (27), we can also obtain an equation for the total fluctuating
thermal energy E = ∫

V
e dv:

∂E

∂t
= El + Ev + Ed, (28)

where El , Ev , and Ed are the volume integral quantities related to the local distributions el , ev , and
ed , respectively. After normalization with respect to |Ed | = −Ed and at the threshold, we get

e′
l + e′

v + e′
d = 0 (29)

and

E′
l + E′

v = 1. (30)

C. Contributions to the critical Grashof number

It is also interesting to see through which energetic contributions the rotation will act on the
critical thresholds. The approach we propose is to express the critical Grashof number, given in
relation to the reference case without rotation, as a function of different energetic contributions
expressed as characteristic ratios. To do this, we recall that the basic flow [Ub(z),Vb(z)] is directly
proportional to Gr, Ub(z) = Grub(z), and Vb(z) = Grvb(z). Thus, Gr can be factored out of the shear
energy terms, so K ′

s,U = GrK ′′
s,U and K ′

s,V = GrK ′′
s,V . A similar transformation applies to the energy

due to buoyancy, which can be written as K ′
buoy = GrK ′′

buoy. Equation (25) at the marginal stability
can then be written as

Grc(K ′′
s,U + K ′′

s,V + K ′′
buoy) = 1. (31)

Taking account of the fact that K ′′
s,V = 0 in the case without rotation (Ta = 0), Eq. (31) can be used

to write

Grc0

Grc
=

RK
U︷ ︸︸ ︷(

K ′′
s,U

K ′′
s,U0 + K ′′

buoy0

)
+

RK
V︷ ︸︸ ︷(

K ′′
s,V

K ′′
s,U0 + K ′′

buoy0

)
+

RK
b︷ ︸︸ ︷(

K ′′
buoy

K ′′
s,U0 + K ′′

buoy0

)
. (32)

Concerning (30), we can also factorize Gr Pr from E′
v , which yields E′

v = Gr PrE′′
v . By introducing

this in Eq. (30), after some simple manipulations we obtain

Grc0

Grc
=

1/RE
l︷ ︸︸ ︷(

1 − E′
l0

1 − E′
l

) RE
v︷ ︸︸ ︷(

E′′
v

E′′
v0

)
= RE

v

RE
l

. (33)

Note that the values with the subscript 0 refer to the case without rotation (Ta = 0).

VI. ANALYSIS OF THE RESULTS

In this section, the results obtained for the three types of instability are analyzed, using energy
considerations when interesting. In the case of the shear instability (Pr = 0.01) we choose to analyze
the result corresponding to the case of the insulating walls. This choice is motivated by the fact that
buoyancy does not play a significant role and thus the nature of the boundary condition (insulation or
conduction) does not affect the results. Contrarily to this case, the oscillatory instability (Pr = 0.1)
is affected by the nature of the boundary condition and thus we will consider the two cases. The
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FIG. 22. Local kinetic energy contributions along z for the shear instability at Pr = 0.01 and (a) Ta = 0,
(b) Ta = 1000, (c) Ta = 5000, and (d) Ta = 10 000.

Rayleigh instability is only present in the case of conductive walls, but we have noticed a significant
change between the cases for Pr = 0.7 and Pr = 7. Hence, the two cases will be considered here.

A. Shear instability

The spatial fields k′
i corresponding to the different kinetic energy contributions for the shear

instability are shown in Fig. 22 for different values of the Taylor number. For Ta = 0 [Fig. 22(a)], we
observe a strong destabilization associated with the longitudinal shear term k′

s,U in the center region
(z = 0) where the inflection point of the basic profile is located, while the term k′

s,V is zero in the
absence of rotation. A main stabilization contribution, principally located near the walls, is associated
with the viscous term k′

visc. The buoyancy term k′
buoy also acts as a negative contribution (stabilization),

but it is very weak. Finally, the pressure term k′
pres ensures the local energetic equilibrium in the fluid

layer by a transfer of energy from the production region at the center towards the dissipation zones
along the walls. When the Taylor number is increased, the shear terms k′

s,U and k′
s,V are modified,

particularly through the modification of the basic velocity profiles. The transverse shear energy term
k′
s,V begins to grow while the term k′

s,U decreases, until k′
s,V becomes dominant [see Fig. 22(c) for

Ta = 5000]. For larger values of Ta [Ta = 104; see Fig. 22(d)], these two contributions continue to
evolve and reach a state in which the instability is triggered by the transverse velocity profile, while
the longitudinal velocity contribution becomes zero at the center and even acts as a stabilization
factor in the region between the walls and the center of the fluid layer.

The global kinetic energy contributions are given in Fig. 23(a) as a function of the Taylor number.
We see that the buoyancy term, which remains weak and slightly negative, is negligible in the
energy balance and that the main contributions to the destabilization come from the shear terms. For
small Taylor numbers, the major contribution K ′

s,U is related to the longitudinal shear term, which
decreases as the Taylor number is increased. In contrast, the term K ′

s,V related to the transverse
velocity profile increases with Ta and becomes dominant for Ta ≈ 1800. The decreasing K ′

s,U term
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FIG. 23. (a) Contributions to the total fluctuating kinetic energy and (b) ratios RK
U , RK

V , and RK
b defining

Grc0/Grc as a function of the Taylor number for the shear instability at Pr = 0.01.

eventually becomes negative for Ta ≈ 7000, which means that, for larger Ta, only the K ′
s,V term

contributes to the destabilization.
To better show how these energy terms participate in the observed increase of the threshold Grc

with Ta, Fig. 23(b) gives the ratios RK
U , RK

V , and RK
b defined in Eq. (32), as well as Grc0/Grc, as

a function of the Taylor number. Note first that the buoyancy contribution RK
b remains very small

for these shear instabilities. Without rotation (Ta = 0), RK
V is equal to zero (no transverse flow)

and Grc0/Grc = RK
U + RK

b = 1 ≈ RK
U . When Ta is increased, the stabilization effect corresponds to

the decrease of the quantity Grc0/Grc. This quantity is the sum of the rapidly decaying term RK
U ,

which even becomes negative at Ta ≈ 7000, and the term RK
V connected with the transverse velocity

created by the rotation, which undergoes an initial growth phase up to Ta ≈ 3000 and then a regular
and moderate decrease. The initial decrease of Grc0/Grc is then due to the strong decrease of RK

U

that overpasses the increase of RK
V . In contrast, for large Ta, both terms contribute to the decrease

of Grc0/Grc, but RK
V is the unique contributor to the instability triggering. Note that the contribution

related to the transverse basic velocity surpasses that related to the longitudinal basic velocity at
Ta ≈ 1800.

We finally can deepen the analysis of the shear terms K ′′
s,U and K ′′

s,V , which are the main parts
of RK

U and RK
V , respectively. The term K ′′

s,U (K ′′
s,V ) is given by the integral across the layer of k′′

s,U

(k′′
s,V ), which can itself be written as the product of two terms: −(dub/dz) [−(dvb/dz)], a quantity

related to the analytical basic flow, which is independent of Grc and only dependent on Ta, and
Re(wu∗/|Kvisc|) [Re(wv∗/|Kvisc|)], a quantity related to the velocity disturbances at the threshold
Grc. These terms are given in Fig. 24. They are all symmetric with respect to z = 0.

We consider the components related to K ′′
s,U and given in Figs. 24(a) and 24(b). For Ta = 0, we

see that the main positive contribution to K ′′
s,U comes from the positive values of −dub/dz around the

center associated with the maximum positive values of Re(wu∗/|Kvisc|), whereas the negative values
of −dub/dz along the walls are associated with rather small positive values of Re(wu∗/|Kvisc|) and
will give only a small negative contribution. When the Taylor number is increased, −dub/dz is
drastically reduced at the center, even reaching values close to zero for Ta above 10 000. At the
same time, the broad peak of Re(wu∗/|Kvisc|) is first reduced in width, corresponding to a change
of the perturbation structure, before decreasing in intensity. All these changes contribute together to
the strong decrease of K ′′

s,U . Note that negative values of Re(wu∗/|Kvisc|) are also observed at the
half-distance between the center and the walls. Associated with positive values of −dub/dz, they
will give the negative contribution to K ′′

s,U observed in Fig. 22.
Concerning the components related to K ′′

s,V and given in Figs. 24(c) and 24(d), they are indeed
zero for Ta = 0 and will develop with the applied rotation, with a first quick phase of increase
and a second phase of moderate decrease. The main positive contribution to K ′′

s,V comes from
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FIG. 24. Distributions along z of (a) −(du/dz), (b) Re(wu∗/|Evisc|), (c) −(dv/dz), and (d) Re(wv∗/|Evisc|)
for the shear instability at Pr = 0.01 and different values of Ta.

the negative values of −dvb/dz around the center associated with the maximum negative values of
Re(wv∗/|Kvisc|), whereas positive values of −dvb/dz along the walls are associated with rather small
values of Re(wv∗/|Kvisc|) and will give only a small negative contribution. When Ta is increased, the
eventual decrease of these components remains moderate, explaining that K ′′

s,V (i.e., the transverse
velocity profile) keeps a destabilizing contribution at quite large Ta.

B. Thermal (Rayleigh) instability

For the thermal instability, contrarily to the shear instability, buoyancy is expected to play a role
as this instability owes its existence to the unstable temperature stratification of the basic flow. We
consider the total energy budgets for this Rayleigh instability as a function of the Prandtl number
Pr ranging from 0.1 to 10 (Fig. 25). Two values of the Taylor number are considered: Ta = 0
(longitudinal rolls) and Ta = 500 (oblique rolls). In both cases, we observe a strong increase of the
buoyancy term K ′

buoy with the increase of the Prandtl number in the region 0.1 < Pr < 3, whereas
the other terms (shear terms K ′

s,U and K ′
s,V ) are strongly damped. For Pr > 3, all the terms evolve

more slowly and tend towards asymptotic values, 1 for K ′
buoy and 0 for K ′

s,U and K ′
s,V , indicating

that buoyancy becomes the dominant term.
It can be interesting to see whether the thresholds for this Rayleigh instability can be obtained

from a critical Rayleigh number RaB defined at the level of the stratified layers along the boundaries.
Taking the case Ta = 0 as an example, we could write

RaB = gγ�T̃ L3

κν
= 1100, (34)

with the characteristic temperature difference �T̃ = 3.5 10−4 Gr Prh| �∇T̃ |0 (obtained from the
dimensionless temperature gradient at the boundary taken over the unstably stratified height
[Fig. 5(b)], multiplied by the reference temperature h| �∇T̃ |0) and L = h/4. The value 1100
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FIG. 25. Global energy terms K ′
i versus the Prandtl number for Ta = 0 (solid lines) and Ta = 500 (dashed

lines).

corresponds to the critical Rayleigh number in an unstably stratified extended layer with rigid-free
boundaries [22]. We then obtain

3.5 × 10−4

64
Gr Pr

gγ | �∇T̃ |0h4

κν
= 1100,

which finally gives

Rac = GrcPr = 800

√
1100

3.5
≈ 14 180. (35)

If we compare with the values of the critical Rayleigh number Rac for the Rayleigh instability
expressed as a function of Pr in Fig. 26, we see that the value 14 180 approximates quite well the
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FIG. 26. Threshold for the Rayleigh instability expressed as the critical Rayleigh number Rac as a function
of the Prandtl number Pr (Ta = 0).
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FIG. 27. Variation of the energy ratios RE
l and RE

v given by Eq. (33) as a function of the Taylor number Ta
for the Rayleigh instability at threshold for (a) Pr = 0.7 and (b) Pr = 7.

values of Rac obtained asymptotically for large enough Pr (Pr > 3, for example), in the domain
where buoyancy is the main destabilizing force.

We can now analyze the influence of the rotation. In Fig. 27, we present the contributions to
the critical Grashof number RE

l and RE
v obtained from the thermal energy analysis and defined in

Eq. (33). For both values of Pr, RE
l is almost constant and RE

v decreases as Ta is increased in a
hyperbolic way.

The energy ratio RE
v is built on E′′

v , which is the integral of a spatial field. This spatial field can be
decomposed as a product of two terms, one related to the basic flow (−dTb/dz)/Gr Pr and the other
related to the fluctuations at the critical threshold Re(θ∗w)/|Ed |. These two terms are presented in
Fig. 28. We see that the decrease of RE

v observed when rotation is applied is due to the decrease of
the basic temperature gradient (−dTb/dz)/Gr Pr attenuated by a slighter increase of the fluctuations
product Re(θ∗w)/|Ed |. For both values of Pr, the same type of change with Ta is observed.

C. Oscillatory instability

The global kinetic energy contributions for the oscillatory instability are given in Fig. 29(a) as
a function of the Taylor number for both the adiabatic case at Pr = 0.05 and the conducting case
at Pr = 0.15. We see that for this oscillatory instability, both shear and buoyancy contributions are
involved. The longitudinal shear term K ′

s,U will decrease with the applied rotation, whereas the
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FIG. 28. For the Rayleigh instability at threshold (Pr = 0.7), z profiles of (a) the basic temperature gradient
(−dTb/dz)/Gr Pr and (b) the fluctuation product Re(θ∗w)/|Ed |, which by integration on the fluid layer give E′′

v .
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FIG. 29. (a) Contributions to the total fluctuating kinetic energy and (b) ratios RK
U , RK

V , and RK
b defining

Grc0/Grc as a function of the Taylor number for the oscillatory instability in the adiabatic case (Pr = 0.05,
dashed lines) and in the conducting case (Pr = 0.15, solid lines).

transverse shear term K ′
s,V will increase from zero and eventually become dominant. The buoyancy

term evolves differently depending on the cases considered. For the conducting case at Pr = 0.15,
the buoyancy contribution is smaller than K ′

s,U without rotation and remains smaller when rotation is
applied. It is initially almost constant up to Ta = 5000 and then decreases to give a small contribution
at Ta = 10 000. In contrast, for the adiabatic case at Pr = 0.05, the buoyancy contribution remains
larger than K ′

s,U , which even decreases towards negative values (small stabilizing contribution).
This buoyancy contribution first decreases with the increase of Ta before slightly increasing, thus
remaining a non-negligible contribution.

To better show how these energy terms contribute to the observed increase of the threshold Grc
with Ta, Fig. 29(b) gives the ratios RK

U , RK
V , and RK

b defined in Eq. (32), as well as Grc0/Grc, as
a function of the Taylor number, for the two previous cases. In both cases, the stabilization effect
obtained when Ta is increased (decrease of the quantity Grc0/Grc) is due to the strong decrease of
RK

U and RK
b , attenuated by the initial increase of RK

V .

VII. CONCLUSION

Rotation occurs in many geophysical situations and in engineering applications where flows
initiated by temperature gradients are present. It is known that this rotation can affect the flow
dynamics through the action of the noninertial Coriolis forces and it is this effect we wanted to
study here. Our paper focused on a simple heated situation, more precisely, the buoyant convection
generated by a horizontal gradient of temperature in an infinite fluid layer, which is known as the
Hadley circulation, and studied the effects induced by applying a rotation around the vertical axis.

First, the basic flow profile with rotation was derived and the influence of the rotation, quantified
by the Taylor number Ta, was depicted. The original longitudinal velocity profile is decreased in
intensity when rotation is applied and its structure is progressively changed, with eventually a no-flow
central zone and boundary layers along the top and bottom walls. In addition, a transverse velocity
component is created, which first increases with the rotation intensity, overcomes the longitudinal
velocity, and then decreases. Different asymptotic behaviors for these velocity components were
revealed: The initial increase of the transverse component occurs as Ta1/2 and the departure of the
longitudinal component from the Hadley profile as Ta, whereas the asymptotic decrease at large Ta
for these two components occurs as Ta−1/2.

The stability of these flows was then studied. The three different instabilities obtained without
rotation for different Prandtl numbers (steady shear instability, oscillatory instability, and steady
Rayleigh instability) are all stabilized by the rotation. The stabilization is connected with the
decrease of the longitudinal velocity component of the basic flow when rotation is applied. For
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the shear instability, the main contribution to the instability is the energy based on the shear of the
basic flow, which decreases as the rotation is increased and changes from being dominated by the
longitudinal component to being dominated by the transverse component created by the rotation.
For the oscillatory instability, we observe the same change of influence between the longitudinal and
transverse velocity components, but a destabilizing buoyancy contribution is also involved. Finally,
for the Rayleigh instability, the stabilization is related to the decrease of the destabilizing thermal
energy term connected with the vertical basic temperature gradient. In all cases, the increase of the
critical thresholds is accompanied by a spinning of the wave vector (originally oriented along the
main axes) corresponding to a progressive change of the orientation of the marginal perturbation
rolls due to the applied rotation. The spinning is particularly important for the shear instabilities,
initially corresponding to transverse rolls.

The next step for this study on the influence of rotation on thermal convection would be to
consider three-dimensional cavities differentially heated between opposite vertical walls.
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