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Wave packets and Orr mechanism in turbulent jets
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Instability waves traveling within subsonic turbulent jets have a modal linear growth until
approximatively the end of the potential core. At these stations it is believed that nonlinear
and/or nonmodal effects become important and a mismatch appears between experimental
measurements and linear models. In this paper the response of the linearized operator to
nonlinearities treated here as an external forcing is found to be consistent with a simplified
model of the Orr mechanism, supporting the idea that a nonmodal growth of disturbances
occurs in the downstream region of the jet in response to the modeled nonlinear forcing.
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I. INTRODUCTION

Wave packets are important features for the sound radiation of turbulent jets [1]. The downstream
propagation of the Kelvin-Helmholtz mode, the solution of the near-nozzle local linear instability
problem, matches hydrodynamic fluctuations until the end of the potential core [2]. Beyond this
station, the linear model predicts a decay, while a growth is observed in experimental measurements.
The linear solution also significantly underpredicts sound radiated by subsonic jets [3]. This mismatch
has been understood to be due to the jitter of wave packets [4], whose statistical signature in the
frequency domain is manifest in a decay of the coherence between two points as the distance between
these is increased. As linear time-invariant wave-packet models lead invariably to unit two-point
coherence, nonlinearity is believed to be the missing piece in the said models, and in this work
we try to understand the underlying dynamic features from the perspective of deriving predictive
reduced-order wave-packet models.

While the upstream region is dominated by a modal spatial growth of perturbations, underpinned
by the Kelvin-Helmholtz mechanism [5], less is known about the dynamics of the downstream
region, towards the end of the potential core, where the Kelvin-Helmholtz mode stabilizes and
then decays. One hypothesis is that a nonmodal growth of disturbances seeded by nonlinearities
becomes important in that region. Zhang [6] has performed an optimal disturbance analysis in
which a sequence of matched optimal growth solutions was able to reproduce the experimental
levels. In the same study a linearized Euler-equation calculation started at the end of the potential
core using fluctuations taken directly from a large-eddy simulation (LES) supports the idea that
the same nonmodal dynamics are present in the LES data. A locally parallel resolvent analysis has
been performed by Tissot et al. [7] and the optimal responses match the experimental results in the
downstream region of the jet, suggesting again a nonmodal mechanism as the homogeneous linear
models fail in this region. In the same work, a four-dimensional variational (4DVar) data assimilation
was performed in order to find the minimal external forcing, interpreted as the active nonlinearities,
necessary to match the experimental data. A sensitivity analysis showed that the response to the
forcing possesses traits typical of the Orr mechanism. We start from the results of that paper, which
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we compare with a simplified model of the Orr mechanism, in order to show that it is a plausible
dynamic feature of wave packets forced by the background turbulence. Even if we rely in Sec. III on
results from Tissot et al. [7], the paper is written as an independent study focusing on the presence
of the Orr mechanism in the downstream region of turbulent jets.

Orr [8] has shown for inviscid linearized Couette flow that even though a modal instability
mechanism does not exist for this flow, it is possible to obtain an initial-value problem leading to
arbitrarily large disturbance growth. The associated eigenspectrum comprises a continuous branch
of neutrally stable critical-layer modes [9–11], thus no modal instability can occur, but a non-normal
growth can occur [12]. These studies have been performed in the context of hydrodynamic stability,
where the flow linearization is considered strictly valid. This mechanism may nonetheless be active
in fully turbulent flow; for instance, Jiménez [13,14] has educed the Orr mechanism in transient
amplifications of disturbances in bursting events in the logarithmic layer of turbulent channel flow
data. In the present paper, our aim is to explore wave-packet dynamics in turbulent jets and to illustrate
the presence of the Orr mechanism in the downstream region where the flow is convectively stable.

Wave packets are most often defined in the Fourier domain. The Orr mechanism has already been
described in frequency space by Sipp and Marquet [15], Dergham et al. [16], and Garnaud et al.
[17]. The present work develops a quantitative approach to educe the Orr mechanism. We build a
spatial Orr model equivalent to the temporal initial-value problem solved by Orr [8]. This consists,
for a given frequency, in the spatial propagation of an inflow condition that develops in linearized,
homogeneous shear flow; for a jet, the magnitude of such shear is given by a representative value in
the downstream region, which is the focus of this study.

We present in Sec. II the temporal and spatial models of the Orr mechanism. Perturbations
propagated by the spatial model are compared in Sec. III with jet wave packets forced by
nonlinearities. The work is summarized in Sec. IV.

II. MODELS OF THE ORR MECHANISM

A. Basic equations

We recall in this section the methodology described by Orr [8] to solve the initial-value problem
of the inviscid plane Couette flow, in two-dimensional Cartesian streamwise and wall-normal
coordinates x and y, respectively. Consider the base flow defined by

U (y) = Sy for y = [0,1], (1)

where S is the magnitude of the shear. Small disturbances to this base flow can be characterised
by the stream function ψ , whose evolution, considering the linearized inviscid flow equations, is
described by (

∂·
∂t

− Sy
∂·
∂x

)
∇2ψ = 0. (2)

Streamwise and wall-normal velocity fluctuations can be obtained as u = ∂ψ/∂y and v =
−∂ψ/∂x, respectively. Since the stream function and vorticity ξ are related by

∇2ψ = −ξ, (3)

we have (
∂·
∂t

− Sy
∂·
∂x

)
ξ = 0, (4)

which simply states that vorticity fluctuations are advected with the local flow velocity. Modal
solutions of the above equation are obtained assuming ξ (x,y,t) = ξ̂ (y)ei(αx−ωt) and are given as [9]

ξ̂ (y) = δ(y − yc), (5)
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where δ is the Dirac delta distribution and yc is the critical point. The wave number α and frequency
ω are related by ω = αU (yc); hence, the phase speed of disturbances is simply U (yc). We thus have
a continuous spectrum of modal solutions comprised of neutral disturbances (real-valued ω and α)
concentrated on a vortex sheet at y = yc, which are advected by the local flow velocity [9]. The
velocity (u,v) associated with these modes, where v is the solution of (A2) [9], decays exponentially
with distance from the critical point (see Appendix B); thus, the resulting modes are clearly not
orthogonal with respect to the standard L2 inner product applied to the velocity components, making
possible algebraic growth or decay by constructive and destructive interferences.

B. Temporal model

Instead of considering a modal analysis, a nonmodal solution of an initial-value problem governed
by Eq. (2) can be solved by considering the ansatz

∇2ψ(x,y,t) = −ξ (x,y,t) = F (x − Syt,y), (6)

with F an arbitrary function, determined by the initial conditions of the problem. This imposes that
the vorticity disturbances, advected by local flow velocity, are tilted by the shear.

Starting from a given initial value ψ0(x,y) = ψ(x,y,t = 0), the right-hand side of (6) can be
determined by

F (x,y) = ∇2ψ0(x,y). (7)

The solution can then been determined by solving the Poisson equation (6), which amounts to
extracting the two velocity components from a known vorticity distribution. This model can be
considered as kinematic in the sense that the solution at any time can be solved independently.

C. Spatial model

Now we construct a spatial version of the Orr mechanism, allowing computation of the Fourier-
transformed component ψ̃(x,y,ω) = ∫ ∞

−∞ ψ(x,y,t)eiωtdt for each frequency ω, with a given inflow
condition. This is done by starting from Eq. (6), which can be rewritten as

1

2π

∫ ∞

−∞
∇2ψ̃(x,y,ω)e−iωt dt = 1

2π

∫ ∞

−∞
F̃ (α,y)ei(x−Syt)αdα, (8)

with F̃ (α,y) = ∫ ∞
−∞ F (x,y)e−ixαdx. To arrive at similar Fourier integrals on both the left- and

right-hand sides, we perform the change of variables ω = Syα,

1

2π

∫ ∞

−∞
∇2ψ̃(x,y,ω)e−iωt dω = 1

2π

∫ ∞

−∞
F̃

(
ω

Sy
,y

)
ei(ωx/Sy−ωt) 1

Sy
dω, (9)

and thus obtain

∇2ψ̃(x,y,ω) = F̃2(y)ei(ωx/Sy), (10)

with F̃2(y) = 1
Sy

F̃ ( ω
Sy

,y). An interesting property is the scaling of the solution with ωx
S

. The temporal
and spatial models are formally equivalent and the solution of the spatial problem can thus be
rigorously defined as the Fourier transform of the solution of the temporal problem; however, the
spatial formulation is adequate to study the development of disturbances in x, which potentially
leads to transient growth in space. Similar to Eq. (7), we can determine the right-hand side of (10)
at x = 0:

F̃2(y) = ∇2ψ̃(0,y,ω). (11)

The solution ∇2ψ̃(x,y,ω), which amounts to the opposite of the Fourier-transformed vorticity
−ξ̃ (x,y,ω), can be determined once we provide ψ̃(0,y,ω) at the reference position x = 0, as
well as ∂2ψ̃/∂x2(0,y,ω). Alternatively, ξ̃ (0,y,ω) can be directly specified. This inflow vorticity is

093901-3



TISSOT, LAJÚS, JR., CAVALIERI, AND JORDAN

FIG. 1. Temporal Orr solution ψ(x,y,t) with the initial condition (12) at (a) t = −5, (b) t = 0, and (c)
t = 5.

propagated in space by the term ei(ωx/Sy) representing convection of each vortex sheet by the local
mean velocity.

Obtaining the velocity components from ∇2ψ̃(x,y,ω) can be done by using the Green’s function
given by Case [9]. Details are given in Appendix A. The procedure amounts to writing the vorticity
as a sum of the neutral critical-layer modes in (5); each mode has distributions of the u and v

components, which can then be superposed to form the full solution of the problem. This makes
possible nonmodal growth by constructive or destructive interferences between theses modes, as
will be seen next.

D. Comparison with numerical solutions

In this section, we verify, using a particular initial-value problem, the equivalence between the
temporal and the spatial problems. We consider with the initial value

ψ0(x,y) = sin(ry)e−x2/L2
. (12)

We have then

F (x − Syt,y) = −2L2 − 4x2 + r2L4

L4
sin(ry)e−x2/L2

. (13)

We solve the Poisson equation numerically using a Fourier-Chebyshev pseudospectral method.
Here Nx = 1000 streamwise wave numbers and Ny = 201 Chebyshev collocation points in the
transverse direction have been used. We choose r = π and L = 0.5. The domain is x = [−60,60]
and y = [0,1]. Homogeneous Dirichlet boundary conditions are enforced to the stream function at
y = 0 and y = 1, which implies free-slip boundary conditions and zero-average streamwise mass
flux of the perturbation. We take S = 1.0365 in order to be consistent with the jet study at St = 0.6
in Sec. III. The numerical solution of the temporal Orr model is shown in Fig. 1. As expected, we
observe a tilting of the perturbation by the shear, with an amplitude of ψ that grows and decays with
time.

The equivalent spatial model can be built by taking

F̃ (α,y) = −√
πL(α2 + r2) sin(ry)e−L2α2/4 (14)
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FIG. 2. Spatial Orr solution Re[ψ̃(x,y,ω)], with ω = 3.77, for (a) the Fourier transform of the temporal
solution ψ(x,y,t), (b) the spatial model solved numerically, and (c) the spatial model solved using Green’s
functions.

and then

F̃2(y) = −
√

πL

Sy

[(
ω

Sy

)2

+ r2

]
sin(ry)e−L2(ω/Sy)2/4. (15)

Figure 2 displays a comparison between ψ̃(x,y,ω) for ω = 3.77 (i.e., St = ω/2π = 0.6) computed
by performing the Fourier transform of the temporal solution [Fig. 2(a)] and solving Eq. (11)
numerically with the Fourier-Chebyshev method [Fig. 2(b)]. Figure 2(c) shows a solution of Eq. (11)
obtained using the Green’s function of Case [9], as explained in Appendix A. We observe a tilting
of the solution in space and an amplitude growth and decay with a maximum at x = 0. As discussed
in the preceding section, since the spectrum is composed of neutral modes, the observed growth
is necessarily nonmodal and can be seen to result from constructive or destructive interferences
between the different vorticity waves, or critical-layer modes, as they are advected with the local
flow velocity. The observed tilting of the perturbation is a direct consequence of the term ei(ωx/Sy)

in Eq. (10), translating the fact that perturbations are advected faster in high-speed regions than in
low-speed regions.

The good agreement between the solutions validates the methods. We can see in this example
how the solution of the initial-value problem manifests in the Fourier-domain solution as a tilting
of the structure in space. This gives us confidence in interpreting the tilting in space of a harmonic
perturbation as an effect of the Orr mechanism.

III. ORR MECHANISM IN TURBULENT-JET WAVE PACKETS

In order to determine if an Orr mechanism is active in turbulent-jet wave packets, we start from
results established by Tissot et al. [7]. Based on a 4DVar data assimilation combined with the
parabolized stability equations (PSEs), the sensitivity of the PSE solution, for a M = 0.4 jet, with
respect to an external forcing, interpreted as the active nonlinearities, has been determined. Details
of the jet measurements are given by Cavalieri et al. [2]. An optimal infinitesimal forcing is obtained,
where optimality is such that the corresponding linearized flow response matches the first proper
orthogonal decomposition (POD) mode of the experimental power spectral density (PSD) of the
velocity fluctuations. The procedure is thus optimal in finding the forcing terms missing in linear
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FIG. 3. Centerline streamwise fluctuating energy at St = 0.6 for the first POD mode of PIV measurements
(◦), the observation operator for the homogeneous PSE (∗), the observation operator for the forced PSE (�),
and the PSE solution of the forced PSE (�).

wave-packet models, such as linear PSE; the forcing is then interpreted as the relevant missing
nonlinear effects.

The parabolized stability equations [18] model the evolution of disturbances over a slowly varying
base flow, considered here as the mean flow of the jet. The formulation used here is similar to that used
in previous works [2,19,20]. The assumption of a slowly varying base flow allows decomposition of
the perturbation associated with mode (ω,m) into slowly and rapidly varying (wavelike) parts [18]

q̃ω,m(x,r) = q(x,r) exp

(
i

∫ x

0
α(ξ )dξ

)
, (16)

where q(x,r) is the slowly varying part and exp(i
∫ x

0 α(ξ )dξ ) the wavelike part. The (ω,m) index is
dropped for compactness and we focus on the azimuthal mode m = 0, which is the most acoustically
efficient for low frequencies [2,21]. The decomposition (16) is introduced into the compressible
Navier-Stokes equations. The nonlinear terms are then neglected, assuming small perturbations over
the experimental mean flow. The first axial derivatives of α and second axial derivatives of q are
neglected, assuming a slow variation of these variables in the streamwise direction. We consider as
well an external forcing term

f̃ ω,m(x,r) = f (x,r) exp

(
i

∫ x

0
α(ξ )dξ

)
, (17)

representing the effect of nonlinearities, similarly to what is done in resolvent analysis applied to
turbulent flows [7,22]. We finally obtain equations of the form

E
∂q
∂x

+ (A + αB)q = f ,

∫ ∞

0
q · ∂q

∂x
r dr = 0, (18)

where the first equation is used to obtain the evolution of q and the second is a restriction ensuring
that q is a slowly varying function [18].

The objective of 4DVar data assimilation is to seek f minimizing

J (q,α, f ) = 1

2

∫ L

0
‖H(q,α) − Y‖2dx, (19)
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FIG. 4. Infinitesimal forcing and associated response. Colors are Re(δq̃u) and isocontours are Re(δ f̃
u
); solid

lines are for positive values and dashed lines are for negative values. The thick solid line is the critical-layer
position.

where H(q,α) is an observation operator allowing passage from the state space to the observation
space

H(q,α) = Q

∣∣∣∣q exp

(
i

∫ x

0
α(ξ )dξ

)∣∣∣∣
2

(20)

and Y is the PSD of streamwise and radial velocity measurements. Here Q is a rectangular matrix
of 0’s and 1’s, whose rows contain a 1 in order to select the components and the radial positions
that are observed, here the axial and radial velocities for the positions where there are available
time-resolved particle image velocimetry (PIV) results. TheJ function is thus a metric for deviations
of the PSE solution in Eq. (18) from experimental measurements. Sensitivity of J with respect to
f is determined by an adjoint method.

As an illustration, Fig. 3, presenting results extracted from [7], shows the PSD of the streamwise
velocity component at the jet centerline, with a comparison between measurements, linear PSEs, and
the PSE forced by the converged 4DVar solution. The ability of the optimally forced PSE to reproduce
experimental measurements gives us confidence in further interpretations. In the following, we focus
on sensitivity results around f = 0, i.e., the first iteration of the 4DVar algorithm. This is the reason
why no penalty term to the forcing is used in Eq. (19).

Let δ f̃ = −(∂J /∂ f ) exp(i
∫ x

0 α(ξ )dξ ) be the optimal infinitesimal forcing. We define the
infinitesimal response δq̃ = q̃f − q̃h, where q̃h is the solution of the homogeneous PSE (i.e., the
linear wave-packet model) and q̃f is the solution of the PSE forced by γ δ f̃ , with γ = 10−8. We
here simplify the notation used by Tissot et al. [7], dropping (m,ω) indices. We present results
for St = 0.6, which is a representative case; results for other Strouhal numbers are shown in
Appendix C.

The response to forcing δq̃ comprises a tilting of the perturbations, visible in Fig. 4, associated
with a growth and decay of the vertical velocity magnitude (Fig. 5). These are qualitative traits of
the Orr mechanism, and we propose to compare this response more quantitatively with the spatial
model of the Orr mechanism developed in the preceding section. We focus on the quantities at the
critical layer, i.e., the position where the phase speed of the perturbation matches the mean flow
velocity. As pointed out by Lindzen [23], this is the position where the wave travels with the local
flow velocity and thus where the Orr mechanism is expected to be active. The phase velocity is
defined as c = ω

α
, where α is the local wave number predicted by the PSE. We neglect in that sense

the slow phase variations of the slowly varying part of the PSE solution.
We will approximate the jet flow in the downstream region by an inviscid bidimensional Couette

flow. This approximated Couette flow is clearly a minimalistic description of the base flow, but one
that nonetheless possesses the same salient features of the jet at the critical layer; the shear S is taken
for the axial position where the vertical velocity |δq̃v|2 of the PSE response is maximum, which
corresponds at St = 0.6 to (xCL/D = 6,rCL/D = 0.35) (see the red point in Fig. 5). This is located
in a region where the jet has a more homogenized shear and the mean profile has developed to a
more distributed shape. The shear is S = −1.0365 at St = 0.6 and we use the perturbation inflow
radial profile given by δq̃ from the PSE, with the same local streamwise wave number α = 5.0 in
order to have access to the local phase velocity. To ensure consistency between the Orr model and
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FIG. 5. Infinitesimal forcing and associated response. Colors are |δq̃v|2 and isocontours are |δ f̃
v|2. The

red point indicates the position where the conditions (shear, mean flow velocity, inflow profile, and local wave
number) are used for building the Couette flow approximation. The dashed line is the line where the PSE and
the Orr model are compared.

jet flow, a linear base-flow profile UOrr(y) = S(1 − y) is considered with y = [0,1] and S prescribed
above. The PSE perturbation profile at xCL is translated in such a way the critical-layer positions of
the jet (rCL) and the Orr model (yCL = c/S) correspond. It is then interpolated in the new domain to
define the inflow perturbation. Thus, we enforce, for instance, vOrr(y − yCL) = vPSE(r − rCL).

We define moreover the tilting angle, in the same way as in [13], as the angle of isophase lines

φ = π

2
− arctan

(
∂θ/∂y

∂θ/∂x

)
, (21)

where θ is the phase of the streamwise component of the perturbation. For qualitative comparison,
the streamwise component of the Orr solution is shown in Fig. 6. A perfect match between this
simplified solution and the PSE result is not expected, especially for positions far from the specified
inflow or far from the critical layer. We can however observe qualitative similarities of the axial
velocity between the PSE and Orr models, especially the observed tilting angle.

In Fig. 7, a comparison of the PSD of the vertical velocity |v|2 and of the tilting angle φ between
the model of the Orr mechanism and δq̃ from the PSE is shown along a line drawn in Fig. 5. This
line is defined by r/D = rCL/D = const for the PSE and for the Orr model the corresponding values
are taken where the local flow velocity matches that of the PSE, i.e., yCL = 0.27 at St = 0.6 (see
Fig. 6). The good agreement allows us to say that the response to the optimal nonlinear forcing is
amplified by an Orr mechanism in the downstream region of the jet.

The same procedure has been performed for the homogeneous wave packet q̃h in Fig. 8. The
perturbation computed by the linear PSE is propagated using the spatial Orr model. The inflow is this
time calibrated at x/D = 4, the maximum value position of |q̃h,v|2. In the linear PSE case, the PSD

0 1 2 3 4 5 6 7 8 9
x

0

0.5

1

y

−2.5 × 10−6

0

2.5 × 10−6

FIG. 6. Spatial Orr solution [Re(u)] with inflow calibrated on the jet wave-packet response δq̃ at x/D = 6.
The red point indicates the position where the conditions from the PSE (shear, mean flow velocity, inflow
profile, and local wave number) are used for building the Couette flow approximation. The dashed line is the
line where the PSE and Orr model are compared.
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FIG. 7. Comparison between the PSE response to the sensitivity forcing and the spatial Orr model. For the
PSE, we take the values of |v|2 and tilting angle along r/D = 0.35, the critical-layer position at x/D = 6. For
the Orr model, the values are taken at y = ω/Sα = 0.27 such that the mean-flow velocity corresponds to the
one at the critical layer in the PSE. The vertical dashed line is the position where the PSE has neutral growth.

|v|2 does not correspond to the Orr mechanism as well as in the case of the forcing response. This is
an expected result since the linear PSE is subject to an exponential growth in the upstream region,
while the Orr model contains only neutral modes, which when acting together can lead at best to
an algebraic growth. However, the tilting angles φ are similar. The perturbation is tilted between
x/D = 4 and x/D = 6 as soon as the wave packet becomes neutral, and a critical layer appears
(quasireal phase speed c). This good prediction by the Orr model can be explained by the fact that
critical-layer modes are also active in the downstream region of the linear PSE. This is corroborated
by the fact that in a locally parallel stability analysis, at these axial positions, the Kelvin-Helmholtz
mode has already joined the critical-layer branch as we move downstream [5]. By comparing the
results for unforced and forced wave packets, we interpret the role of nonlinearities as an additional
forcing that intensifies the activity of the critical-layer modes, which then leads to growth in space
via the Orr mechanism.
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φ PSE
φ Orr
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FIG. 8. Comparison between the linear PSE and the spatial Orr model. For the PSE, we take the values of
|v|2 and tilting angle along r/D = 0.4, the critical-layer position at x/D = 4.6. For the Orr model, the values
are taken at y = ω/Sα = 0.47 such that the mean-flow velocity corresponds to the one at the critical layer in
the PSE. The vertical dashed line is the position where the PSE has neutral growth.
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FIG. 9. Similar results to Fig. 7, comparing δq from the PSE with the spatial Orr model for St = 0.5.

The fact that Couette flow is able to reproduce the same features as the jet in the downstream
region indicates that the critical-layer modes play a central role in that region.

IV. CONCLUSION

We have developed a model of the spatial Orr mechanism, defined in the frequency domain, that
is equivalent to the standard temporal model. The model allows a quantitative comparison of wavy
disturbances with the spatial Orr mechanism, in a manner similar to that used to compare intermittent
events in wall-bounded flows with their temporal equivalents [13,14].

We have compared the response of PSEs subject to an optimal infinitesimal forcing, representing
the effect of salient nonlinearities [7], with the propagation of the perturbation by the simplified Orr
model. Good agreement suggests that in the region downstream of the potential core, wave packets
in jets are submitted to nonlinearities induced either by background turbulence or by nonlinear
wave-packet interactions and that the associated response is amplified by the Orr mechanism.

Critical-layer modes, when acting together to produce constructive and destructive combinations,
are the essence of the nonmodal transient growth described by the Orr mechanism. These modes,
which appear explicitly in the solution of the spatial model of the Orr mechanism, play a central
role in the wave-packet dynamics. They are already active in homogeneous linear wave packets, and
background turbulence intensifies their contribution by additional forcing, which becomes dominant
when the Kelvin-Helmholtz mode becomes stable due to the base-flow divergence.

APPENDIX A: RESOLUTION USING GREEN’S FUNCTIONS

A solution of the Poisson equation (10) can be found using Green’s functions. First, let us perform
a Fourier transform of (10) in the streamwise direction

(
−α2 + ∂2·

∂y2

)
ψ̂(α,y,ω) = F̃2(y)

∫ +∞

−∞
ei(ωx/Sy−αx)dx = F̃2(y)2πδ

(
ω

Sy
− α

)
. (A1)

Let us now define the Green’s function G(y,y ′,α), the solution of

(
−α2 + ∂2·

∂y2

)
G(y,y ′,α) = δ(y − y ′). (A2)
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FIG. 10. Similar results to Fig. 8, comparing the linear PSE with the spatial Orr model for St = 0.5.

The Green’s function G(y,y ′,α) has been determined by Case [9] and is given in Appendix B. The
solution ψ̂(α,y,ω) is then found as

ψ̂(α,y,ω) =
∫ 1

0
G(y,y ′,α)F̃2(y ′)2πδ

(
ω

Sy ′ − α

)
dy ′. (A3)

Finally, performing the inverse Fourier transform in the streamwise direction, we obtain

ψ̃(x,y,ω) = 1

2π

∫ +∞

−∞

∫ 1

0
G(y,y ′,α)F̃2(y ′)2πδ

(
ω

Sy ′ − α

)
dy ′eiαxdα, (A4)

which upon integration over α can be further simplified to

ψ̃(x,y,ω) =
∫ 1

0
G

(
y,y ′,

ω

Sy ′

)
F̃2(y ′)ei(ωx/Sy ′)dy ′. (A5)

The role of the critical layer in the Orr mechanism can be seen in Eq. (A5). For each y position,
the effect of the perturbation F̃2(y) considered at the critical layer fixes the response through the
impulse response at that point (Green’s function). The full response is the superimposition of these
effects for all y.

We can note that the expression (A5) is a general form of Eq. (4) in the temporal Orr model
of Jiménez [14]. The Green’s function is in that case the one of the unbounded case G(y,y ′,α) =
− 1

2α
e−α|y−y ′ | (see Appendix B 1).

APPENDIX B: DETERMINATION OF THE GREEN’S FUNCTION

In order to find the Green’s function of Eq. (A2), we consider that the homogeneous problem is
solved left (index ·L) and right (index ·R) of the Dirac position y ′. Solutions of the homogeneous
problem (

−α2 + ∂2·
∂y2

)
G(y,y ′,α) = 0 (B1)

are of the form

G = Aeαy + Be−αy. (B2)
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FIG. 11. Similar results to Fig. 7, comparing δq from the PSE with the spatial Orr model for St = 0.7.

Here A and B are chosen for each side of the Dirac such that continuity is ensured, the boundary
conditions are satisfied, and

lim
ξ→0

∫ y ′+ξ

y ′−ξ

(
−α2 + ∂2·

∂y2

)
G(y,y ′,α)dy = 1 ⇒ ∂G

∂y
(y ′+,y ′) − ∂G

∂y
(y ′−,y ′) = 1. (B3)

1. Unbounded case

For unbounded flow, boundary conditions are that disturbances cannot grow indefinitely as
y → ±∞. Hence, we must have BL = 0 and AR = 0 if α > 0, and AL = 0 and BR = 0 if α < 0.
Continuity leads to

G(y,y ′,α) = Ce−|α||y−y ′ | (B4)

and Eq. (B3) gives C = − 1
2α

.

2. Bounded case

Following now Case [9], G(0,y ′,α) = 0 leads to AL + BL = 0 and then

GL(y,y ′,α) = C sinh(αy). (B5)

For the right part, Eq. (B2) can be rewritten as

GR = A′
Reα(1−y) + B ′

Re−α(1−y) (B6)

and G(1,y ′,α) = 0 leads to

GR(y,y ′,α) = D sinh[α(1 − y)]. (B7)

Case [9] showed that the appropriate constants for respecting continuity and Eq. (B3) are

C = − sinh[α(1 − y ′)]
α sinh(α)

, D = − sinh(αy ′)
α sinh(α)

. (B8)

APPENDIX C: RESULTS FOR OTHER STROUHAL NUMBERS

Figures 9–12 contain plots similar to Figs. 7 and 8 for two other Strouhal numbers: St = 0.5 and
St = 0.7. Behavior similar to that at St = 0.6 is observed, which reinforces the interpretations made
in the text. At St = 0.5 for the forced PSE in Fig. 9, the match of |v|2 is not as good because the
wave packet extends farther downstream.
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FIG. 12. Similar results to Fig. 8, comparing the linear PSE with the spatial Orr model for St = 0.7.

We did not display lower Strouhal numbers because wave packets have a longer spatial extent
and then the relevant downstream region, where the Kelvin-Helmholtz mode becomes stable, occurs
too far downstream. Thus, we could not check the model validity for these lower St due to a too
short window in the axial direction in the experimental data. Higher Strouhal numbers were not used
either because we could not compare with PIV data in [7] due to aliasing issues of experimental data
[2]. We expect the Orr model to work in a wider range since linear models succeed in predicting the
linear wave packets well above St = 0.7 [24]. Moreover, limitations of the Orr model are relaxed
at higher frequencies since, due to the scaling ωx

Sy
, it is easier to ensure that the base flow is slowly

divergent in the wavelength scale.
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