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The rheological behavior of a dilute emulsion comprised of neutrally buoyant drops
suspended in an immiscible medium under the combined influence of a uniform electric
field and simple shear flow is analyzed. Considering the drops and suspending medium as
Newtonian and leaky dielectrics, the effective emulsion stress tensor is obtained when the
fluid motion is governed by the Stokes equations. The present study takes into account an
arbitrarily oriented uniform electric field in the plane of shear flow. A small-deformation
analysis is performed to study this coupled electrohydrodynamic problem considering
weak imposed shear flow and weak surface charge convection. Analytical expressions
are obtained for the effective shear viscosity and normal stress differences of the dilute
emulsion. The tilt angle (orientation angle of the applied electric field relative to the direction
of shear flow) is found to affect the emulsion rheology. Key results show that the dilute
emulsion exhibits non-Newtonian behavior such as shear-rate-dependent effective viscosity
and nonzero first and second normal stress differences. In the absence of shape deformation
and charge convection, a dilute emulsion displays shear thinning or shear thickening
behavior depending on the drop polarization and tilt angle. The effective viscosity of
the dilute emulsion can be lower or higher than the viscosity of the suspending medium
depending on the electrical property ratios, tilt angle, and relative strength of the electric
stress as compared with viscous stress. Surface charge convection significantly affects the
electrohydrodynamic flow and thereby modifies the effective viscosity and normal stress
differences. The applied electric field significantly affects the drop shape and orientation
angle and thereby modifies the effective viscosity and normal stress differences. Both the
surface charge convection and shape deformation can increase or decrease the effective
viscosity and normal stress differences. Notably, the presence of surface charge convection
and shape deformation leads to the generation of electric torque, which further results
in a nonzero antisymmetric component of the emulsion stress tensor. We establish that
fine-tuned rheology of a dilute emulsion can be obtained by proper choices of the tilt angle.
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I. INTRODUCTION

Rheological behavior of complex fluids or soft matters is of immense interest to science
and engineering communities not only due to remarkable rheological properties exhibited by
these materials, but also attributed to far-ranging applications in chemical, biochemical, and
pharmaceutical industries [1–3]. In these applications, it is common to have emulsions (comprised
of immiscible dispersed liquid drops in a continuous liquid phase) that show complex flow
characteristics in response to external stresses [4]. The macroscopic rheological properties of such
emulsions depend not only on the emulsification process but also on the distribution of drops, size of
drops, morphology of drops, and drop-drop interactions [5,6]. Understanding the relationship among
these controlling factors is of prime importance for the design and performance of emulsifiers. The
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electric field, in this regard, is one of the promising external effects that can be used to alter or
manipulate the emulsion rheology [7].

Starting from the seminal work of Taylor [8,9] on the effective viscosity of dilute emulsion,
remarkable effort has been dedicated to understanding the relation between drop-level flow dynamics
and macroscopic rheological properties. Taylor [8] has studied the hydrodynamics of a neutrally
buoyant Newtonian drop suspended in another Newtonian fluid undergoing a simple shear flow.
When the shear flow is weak, Taylor obtained that the imposed shear flow deforms the drop into
an ellipsoidal shape and the major axis of the ellipsoid makes an angle of π/4 with the shear
flow direction. The presence of the drop perturbs or modifies the imposed shear flow around
itself, which yields a rheology of a dilute emulsion that is different from the rheological behavior
of suspending fluid. Neglecting the shape deformation, Taylor obtained that the dilute emulsion
behaves as a Newtonian fluid but with increased effective viscosity as compared with the viscosity
of the suspending fluid. Incorporating the effects of shape deformation, Schowalter et al. [10]
showed that the dilute emulsion exhibits elastic properties such as normal stress differences, which
are generally characteristic of viscoelastic fluids. Later, several authors investigated theoretically
and experimentally the emulsion rheology in the presence of inertia [11,12], viscoelasticity [13],
surfactant [14,15], and interfacial slip [16,17] (refer to the works of Faroughi and Huber [18] and
Pal [19,20] for more detail reviews) for both dilute and concentrated emulsions.

External uniform electric fields have been shown to manipulate the emulsion rheology [21–23].
Application of a uniform electric field not only alters the drop shape but also induces electrohydro-
dynamic (EHD) straining flow [24]. Thus, in the combined presence of a uniform electric field and
shear flow, the relative strength of the electric field as compared with the shear rate will strongly
influence the drop shape, orientation, and flow field [25], which in turn will affect the emulsion
rheology. The effect of a uniform electric field acting in the direction of the velocity gradient was
studied experimentally for a concentrated emulsion in shear flow [22]. Interesting observations
were made by Ha and Yang [22], who investigated the rheology of oil-in-oil emulsions when the
electrical conductivity of the drop phase is smaller than the suspending phase. They measured that
the effective viscosity of the emulsion can be larger or smaller than the viscosity of the suspending
medium depending on the relative magnitude of electric and viscous stresses and electrical properties
of the oils. Fernandez [26–28] has performed numerical simulations and obtained similar rheological
behavior. Vlahovska [29] has given a theory for the dilute emulsion in the combined presence of
a uniform electric field and shear flow for two different cases: (i) highly viscous drops and (ii)
weak flow. A small-deformation analysis for highly viscous drops that incorporates effects of
shape deformation and charge convection shows that the dilute emulsion exhibits shear thinning or
thickening behavior and normal stress differences. In the weak-flow limit, the emulsion rheology is
only obtained up to leading order, which shows that the electric field does not affect the effective
viscosity but induces normal stress differences [29]. In a recent study we investigated the pivotal role
of shape deformation and charge convection on the uniform electric-field-induced alteration in the
emulsion rheology when the imposed shear flow is weak [30]. However, the dilute emulsion does
not show shear thinning or thickening behavior in the weak-flow limit but exhibits normal stress
differences [30].

All the reported studies [29,30] have explored the effect of a uniform electric field for the particular
case in which the electric field is acting parallel to the direction of the velocity gradient. However,
the direction of the uniform electric field relative to the direction of shear flow can significantly affect
the drop shape, drop orientation, and flow field [31,32]. Despite the ease with which the direction
of the electric field can be controlled, we are unaware of a study that explores the effect of the
orientation of the uniform electric field on the emulsion rheology. Motivated by these considerations,
in the present study, a small-deformation analytical theory is developed to understand the problem
of the emulsion rheology of a dilute suspension of noninteracting drops in the combined presence
of shear flow and an arbitrarily oriented (in the plane of shear flow) uniform electric field. Both
the surface charge convection and shape deformation effects are incorporated by performing regular
perturbation expansion. We emphasize the physical mechanism in which the direction of the electric
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FIG. 1. Schematic representation of the physical setup of a liquid suspended drop subjected to the combined
influence of a uniform electric field and background shear flow.

field plays a significant role in manipulating emulsion rheology. We present results for experimentally
relevant oil-in-oil emulsions.

II. MATHEMATICAL FORMULATION

A. System description

We consider a physical system comprised of neutrally buoyant, Newtonian, leaky dielectric liquid
drops of density ρ, viscosity μi , conductivity σi , and permittivity εi , suspended in another Newtonian,
leaky dielectric liquid medium of density ρ, viscosity μe, conductivity σe, and permittivity εe. The
drops are immiscible to the suspending medium and the fluid-fluid interface is characterized by a
constant surface tension γ . In the absence of external forces, the drops remain spherical in shape with
radius a. This equilibrium configuration is disturbed by the combined presence of a uniform electric
field Ē∞ and background shear flow V̄∞ as depicted in Fig. 1. The uniform electric field is of the
form Ē∞ = Ec(Exex + Eyey), where Ec is the magnitude of electric field and Ex and Ey represent
the relative strength of the electric field in the direction of shear flow and the velocity gradient,
respectively. The electric-field vector is oriented at an angle φt = tan−1(Ey/Ex) with respect to the
direction of shear flow (φt is termed the tilt angle). The background simple shear flow is of the form
V̄∞ = Gyex , where G is the shear rate. The combined presence of Ē∞ and V̄∞ creates electrical and
hydrodynamic stresses across the drop interface, which not only alter the flow field in and around
the drops but also deform the drops into nonspherical shape. The altered flow field and shape of the
drops affect the shear rheology of a dilute emulsion, the determination of which is the main objective
of the present study.

To identify the important dimensionless parameters, we nondimensionalize different quantities by
using the following scales [29]: length ∼a, velocity ∼Ga, electric field ∼Ec, viscous stress ∼μeG,
pressure ∼μeG, and electric stress ∼εeE

2
c . The present EHD problem can be described by the

following dimensionless parameters [29]: viscosity ratio λ = μi/μe, conductivity ratio R = σi/σe,
permittivity ratio S = εi/εe, Reynolds number Re = ρGa2/μe (which is a measure of fluid inertia
relative to viscous effect), capillary number Ca = μeGa/γ (which is a measure of viscous stress
relative to capillary stress), electric Reynolds number ReE = εeG/σe (which is a measure of charge
relaxation time relative to convection time), and Mason number M = εeE

2
c /μeG (which is a measure

of electric stress relative to viscous stress). From now on, we represent all quantities in dimensionless
form unless stated otherwise. Subscripts i and e will be used to represent quantities inside and
outside the drop, respectively. Both Cartesian and spherical coordinates are shown in Fig. 1 with x

the direction of shear flow, y the direction of velocity gradient, and z the direction of vorticity.
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B. Governing equations and boundary conditions

We assume that both the drop and suspending phases can be described by the leaky dielectric
model. The leaky dielectric model takes into account small but finite electric conductivity, which
leads to accumulation of electric charges at the fluid-fluid interface, while the bulk remains charge
free [33,34]. Thus, the electrostatic problem for leaky dielectric liquids is governed by the Laplace
equation for electric potential

∇2ψi = 0, ∇2ψe = 0, (1)

where ψ represents the electric potential, which is related to the electric field in the form E = −∇ψ

(using the irrotationality property of the electric field). The complete description of the electrostatic
problem requires further boundary and interfacial conditions. The electric potential outside the drop
ψe is bounded and satisfies the far-field specified electric potential condition

ψe = −E∞ · r as r → ∞, (2)

where r is the position vector measured from the drop centroid. The electric potential inside the drop
ψi is bounded. The electric potential at the drop interface is continuous

ψi = ψe at r = rs(θ,φ), (3)

where rs(θ,φ) = 1 + f (θ,φ) is the radial position of the deformed drop interface. The function
f (θ,φ) is an unknown that represents the angular variation of deformed drop shape. The electric
potentials satisfy the charging condition at the drop interface [35]

n · (R∇ψi − ∇ψe) = −ReE∇s · (qsus) at r = rs(θ,φ), (4)

where qs = n · (S∇ψi − ∇ψe)|r=rs
is the surface charge density, us = ui |r=rs

is the surface velocity,
n = ∇(r − rs)/|∇(r − rs)| is the outward unit normal at the drop interface, and ∇s = [∇ − n(n · ∇)]
is the surface divergence operator. Equation (4) shows that the electric Reynolds number ReE governs
the balance between charge convection and Ohmic conduction. The surface charge convection term
on the right-hand side of Eq. (4) represents the EHD coupling between electric potential and surface
velocity.

We assume that the fluid flow in and around the drop is governed by the viscous forces, while the
fluid inertia is negligible (i.e., Re = 0). In the creeping flow limit, the flow field is described by the
Stokes and continuity equations in the form

∇pi = λ∇2ui , ∇ · ui = 0,

∇pe = ∇2ue, ∇ · ue = 0, (5)

where p and u represent pressure and velocity fields, respectively. The complete description of the
flow problem requires further boundary and interfacial conditions. The pressure and velocity fields
outside the drop (pe and ue) are bounded. The velocity field outside the drop satisfies the far-field
specified shear flow condition

ue = V∞ as r → ∞. (6)

The velocity and pressure fields inside the drop (pi and ui) are bounded. The velocity field at the
drop interface is continuous

ui = ue at r = rs(θ,φ). (7)

At steady state, the kinematic condition gives zero normal velocity at the drop interface

ui · n = ue · n = 0 at r = rs(θ,φ). (8)
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The hydrodynamic and electric stresses are balanced by the capillary stress at the drop
interface [35]

(
τH

e + MτE
e

) · n − (
τH

i + MτE
i

) · n = 1

Ca
(∇ · n)n at r = rs(θ,φ), (9)

where τH and τE are hydrodynamic and electric stress tensors of the form

τH
i = [−piI + λ{∇ui + (∇ui)

T }], τH
e = [−peI + {∇ue + (∇ue)T }] (10)

and

τE
i = S

[
Ei(Ei)

T − 1
2 |Ei |2I

]
, τE

e = [
Ee(Ee)T − 1

2 |Ee|2I
]
. (11)

The combination of hydrodynamic and electric stress terms on the left-hand side of Eq. (9) represents
the EHD coupling between the flow field and electric stress. Note that Eq. (9) combines both the
tangential and normal components of stress balance equations.

C. Description of the electric potential and flow field

The electric potential inside the drop that satisfies the Laplace equation and is bounded for r � 1
can be represented in terms of growing spherical solid harmonics in the form

ψi =
∞∑

n=0

rn

n∑
m=0

[an,m cos(mφ) + ân,m sin(mφ)]Pn,m, (12)

where Pn,m is the associated Legendre polynomial of degree n, order m, and argument cos θ .
Similarly, the electric potential outside the drop that satisfies the Laplace equation and is bounded
for r � 1 can be represented in terms of decaying spherical solid harmonics and unperturbed far-field
electric potential in the form

ψe = −E∞ · r +
∞∑

n=0

r−n−1
n∑

m=0

[b−n−1,m cos(mφ) + b̂−n−1,m sin(mφ)]Pn,m. (13)

The coefficients an,m, ân,m, b−n−1,m, and b̂−n−1,m are unknown, which we have to determine by using
the boundary conditions given in Eqs. (3) and (4).

The velocity and pressure fields inside the drop, which satisfy the Stokes and continuity equations
and are bounded for r � 1, can be represented in terms of growing spherical solid harmonics by
using Lamb’s general solution in the form [36]

ui =
∞∑

n=1

[
∇ × (rχn) + ∇�n + n + 3

2(n + 1)(2n + 3)λ
r2∇pn − n

(n + 1)(2n + 3)λ
rpn

]
, (14)

pi =
∞∑

n=0

pn, (15)
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where pn, �n, and χn are the growing spherical solid harmonics of the form

pn = λrn

n∑
m=0

[An,m cos(mφ) + Ân,m sin(mφ)]Pn,m,

�n = rn

n∑
m=0

[Bn,m cos(mφ) + B̂n,m sin(mφ)]Pn,m,

χn = rn

n∑
m=0

[Cn,m cos(mφ) + Ĉn,m sin(mφ)]Pn,m. (16)

Similarly, the velocity and pressure fields outside the drop, which satisfy the Stokes and continuity
equations and are bounded for r � 1 can be represented in terms of decaying spherical solid
harmonics and unperturbed far-field velocity field by using Lamb’s general solution in the form [36]

ue = V∞ +
∞∑

n=1

[
∇ × (rχ−n−1) + ∇�−n−1 − n − 2

2n(2n − 1)
r2∇p−n−1 + n + 1

n(2n − 1)
rp−n−1

]
, (17)

pe =
∞∑

n=0

p−n−1, (18)

where p−n−1, χ−n−1, and �−n−1 are decaying spherical solid harmonics of the form

p−n−1 = r−n−1
n∑

m=0

[A−n−1,m cos(mφ) + Â−n−1,m sin(mφ)]Pn,m,

�−n−1 = r−n−1
n∑

m=0

[B−n−1,m cos(mφ) + B̂−n−1,m sin(mφ)]Pn,m,

χ−n−1 = r−n−1
n∑

m=0

[C−n−1,m cos(mφ) + Ĉ−n−1,m sin(mφ)]Pn,m. (19)

The coefficients An,m, Ân,m, Bn,m, B̂n,m, Cn,m, Ĉn,m, A−n−1,m, Â−n−1,m, B−n−1,m, B̂−n−1,m, C−n−1,m,
and Ĉ−n−1,m are unknowns, which we have to determine by using the boundary conditions given in
Eqs. (7)–(9).

D. Effective stress of a dilute emulsion of noninteracting drops

The effective shear rheology of an emulsion comprised of a dilute suspension of noninteracting
drops is different from that of the shear rheology of the suspending fluid. This is attributed to the
disturbance flow generated by the drops. The applied electric field modifies the drop shape, drop
orientation, and flow field due to the generation of electrical stresses at the drop interface. The volume
average effective emulsion stress � for a dilute suspension of force-free drops can be represented as
[37–39]

� = −pI + 2�+�(d), (20)

where p is some arbitrary pressure field in the suspending medium (which gives an isotropic
contribution to stress), � = [(∇V∞) + (∇V∞)T ]/2 is the rate of strain tensor in the suspending
medium (which represents the extensional or straining component of imposed shear flow), and �(d)

is the stresslet tensor (which represents the excess stress generated due to presence of drops). Here
�(d) gives rise to anisotropy in the emulsion stress. The stresslet tensor for a dilute emulsion (with
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ν the volume fraction of drop phase) is given by [38]

�(d) = 3ν

4π

∫
Sd

(
1

2

{(
τH

e · n
)
r + [(

τH
e · n

)
r
]T − 2

3
I
(
τH

e · n
) · r

}
− [uen + (uen)T ]

)
dSd, (21)

where the integration has to be performed over the drop surface Sd . The integral on the right-hand
side of Eq. (21) can be obtained as [39,40]∫

Sd

[
1

2

((
τH

e · n
)
r + [(

τH
e · n

)
r
]T − 2

3
I
(
τH

e · n
) · r

)
− [uen + (uen)T ]

]
dSd

=
(

−2π

3

)
∇∇(r5p−3), (22)

where p−3 = r−3 ∑2
m=0 [A−3,m cos(mφ) + Â−3,m sin(mφ)]P3,m is a decaying solid harmonic.

It is convenient to define three important dynamical quantities to characterize an incompressible
homogeneous emulsion. The first one is the effective shear viscosity, which can be expressed in
dimensional terms as [41]

μeff = �̄xy

G
, (23)

where the dimensional stress component �̄xy can be expressed as �̄xy = μeG�xy . The effective
shear viscosity reflects the viscous nature of the emulsion. The second and third quantities of interest
are the first and second normal stress differences, which reflect the elastic nature of the emulsion and
the nonisotropy of normal stresses. The first and second normal stress differences can be expressed
in dimensional terms as [41]

N̄1 = �̄xx − �̄yy, N̄2 = �̄yy − �̄zz. (24)

The dimensionless effective viscosity (normalized by μe) and normal stress differences
(normalized by μeG) can be written as

ηeff = μeff

μe

= �xy, N1 = �̄xx − �̄yy

μeG
= �xx − �yy, N2 = �̄yy − �̄zz

μeG
= �yy − �zz. (25)

Substituting the value of the integral from Eq. (22) into Eq. (21), we obtain the general expression
for the effective viscosity and normal stress differences

ηeff = 1 − 3νÂ−3,2, N1 = −6νA−3,2, N2 = 3ν

2
(2A−3,2 + A−3,0). (26)

III. ASYMPTOTIC SOLUTION FOR WEAK FLOW AND WEAK CHARGE CONVECTION

The exact solution of the present electrohydrodynamic problem is not possible for arbitrary values
of the dimensionless parameters, due to the nonlinearities and coupled nature of the mathematic
model. The first source of difficulty is associated with the drop shape, which is not known a priori.
Determination of the drop shape involves electric and hydrodynamic stresses at the drop interface,
while determination of the electric potential and flow field involves the drop shape. Thus, an analytical
solution cannot be obtained for arbitrary drop shape. However, an analytical solution can be obtained
for small drop deformation in which the drop remains nearly spherical. This can be accomplished by
two different ways for two different physical systems [42]: (i) weak flow or a small-capillary-number
limit (i.e., Ca � 1) and (ii) high-viscosity ratio limit (i.e., λ � 1). Vlahovska [29] has performed a
small-deformation perturbation analysis for the high-viscosity limit for the particular case in which
the applied electric field is oriented in the direction of the velocity gradient (i.e., E∞ = ey). Here we
explore the weak-flow limit, which physically signifies that the imposed flow is too weak to deform
the drop significantly. In the presence of an electric field, the drop deformation is also influenced
by the electric capillary number CaE = CaM , which signifies the relative strength of electric stress
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as compared with capillary stress [35]. Thus, in addition to Ca � 1 we also assume M ∼ 1, so
deformation due to electric stress is also small.

The second source of difficulty in the present mathematical model is associated with the surface
charge convection, which couples the electric field and flow field. Due to charge convection,
determination of the electric field requires the knowledge of surface velocity. Thus, an analytical
solution cannot be obtained for arbitrary values of ReE . However, an analytical solution can be
obtained for weak charge convection in which the charge distribution over the drop surface is
dominated by the Ohmic conduction. This can be accomplished by considering ReE � 1 [43].
Thus, in the present study we address the weak-flow and weak-charge-convection limits by
performing a regular perturbation analysis considering Ca and ReE as perturbation parameters.
Ha and Yang [22] performed experiments on the emulsion of silicone oil drops (with μi = 0.13 Pa s,
σi = 6.2 × 10−12 S/m, and εi = 5.2ε0, where ε0 is the permittivity of free space) suspended in a
castor oil medium (with μe = 0.85 Pa s, σe = 6.6 × 10−10 S/m, and εe = 2.7ε0). For a physical
system of silicone oil drops of radius a = 100 μm in the presence of an electric-field strength of
Ec = 4 × 105 V/m and shear rate of G = 2.5 s−1, we obtain Ca ∼ 0.1, ReE ∼ 0.1, M ∼ 1, and
Re ∼ 10−3. To study this kind of system, we expand the electric potential and velocity field in the
asymptotic form [35]

ψ = ψ (0) + ReEψ (ReE ) + Caψ (Ca) + · · · ,

u = u(0) + ReEu(ReE ) + Cau(Ca) + · · · . (27)

A similar expansion is also employed for all the dependent variables such as surface charge
distribution, pressure, and stresses. Note that the superscript (0) is used to represent the leading-order
quantity (in the absence of charge convection and shape deformation), (ReE) is used to represent
the first correction due to charge convection, and (Ca) is used to represent the first correction due to
shape deformation.

The radial position of the deformed drop is also expanded in the asymptotic form [31,44]

rs = 1 + f (θ,φ) = 1 + Caf (Ca) + Ca ReEf (Ca ReE ) + Ca2f (Ca2) + · · ·, (28)

where f (Ca), f (Ca ReE ), and f (Ca2) are the corrections in drop shape at respective orders. Here f (Ca)

represents the first correction in drop shape, f (Ca ReE ) represents the first effect of charge convection
on the shape deformation, and f (Ca2) represents the O(Ca2) correction in drop shape.

Here we obtain solutions for leading-order O(ReE) and O(Ca) problems sequentially. The main
objective is to determine the effective emulsion stress of a dilute emulsion for O(ν), O(ν ReE), and
O(ν Ca). Important to note here is that our analysis is restricted to a dilute emulsion, so ν � 1.
We are not considering the higher-order corrections in volume fraction [e.g., O(ν2), which might
be of significance when there are drop-drop EHD interactions for higher volume fractions [45]] by
assuming Ca > ν and ReE > ν. The solution method is straight forward and details can be found
in the reported studies [31,32]. Here we outline the important steps for completeness. Note that all
the algebraic manipulations are performed using the symbolic package MAPLE. After substituting
the asymptotic expansion for different variables, we obtain the governing equations and respective
boundary conditions at different orders [31,32]. We use the following steps to obtain different
quantifies of interest [35]. (i) At each order, the electrostatic problem becomes linear and decoupled
from the flow problem at that order. Thus, we first determine the electric potential and obtain the
electric stresses at the drop interface. (ii) Then the flow problem can be solved by using these
electric stresses. To do this we use the velocity and tangential stress boundary conditions to obtain
the velocity and pressure fields. (iii) The stresslet tensor is calculated to obtain the effective shear
viscosity and normal stress differences. (iv) The normal stress balance equation is employed to
determine the drop shape.
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A. Leading-order solution

The leading-order electric potential distribution is due to the imposed uniform electric field E∞.
There is no convection of charges and the drop remains spherical, which means that the leading-order
electrostatic problem is linear and decoupled from the leading-order flow problem. Thus, we first
solve for the electrostatic problem. The electric potential distribution inside and outside the drop at
the leading order is obtained as

ψ
(0)
i = r

[
a

(0)
1,1 cos φ + â

(0)
1,1 sin φ

]
P1,1 (29)

and

ψ (0)
e = −r[ExP1,1 cos φ + EyP1,1 sin φ] + r−2

[
b

(0)
−2,1 cos φ + b̂

(0)
−2,1 sin φ

]
P1,1, (30)

where the unknown coefficients are obtained as

a
(0)
1,1 = − 3Ex

R + 2
, â

(0)
1,1 = − 3Ey

R + 2
, b

(0)
−2,1 = Ex

(
R − 1

R + 2

)
, b̂

(0)
−2,1 = Ey

(
R − 1

R + 2

)
. (31)

The leading-order surface charge distribution is obtained as

q(0)
s = er · (

R∇ψ
(0)
i − ∇ψ (0)

e

)∣∣
r=1 = [

c
(0)
1,1 cos φ + ĉ

(0)
1,1 sin φ

]
P1,1, (32)

where c
(0)
1,1 and ĉ

(0)
1,1 are of the form

c
(0)
1,1 = 3

(
R − S

R + 2

)
Ex, ĉ

(0)
1,1 = 3

(
R − S

R + 2

)
Ey. (33)

The leading-order flow field is due to the generation of electrical stresses and the imposed shear
flow. As the leading-order flow problem is linear in electrical stress and shear flow, we can obtain
the total velocity and pressure fields by simply linearly combining the velocity and pressure fields
due to imposed uniform electric field and imposed simple shear flow

u(0)
i = uE(0)

i + uS(0)
i , p

(0)
i = p

E(0)
i + p

S(0)
i ,

u(0)
e = uE(0)

e + uS(0)
e , p(0)

e = pE(0)
e + pS(0)

e , (34)

where the superscripts E and S are used to represent the contributions from the uniform electric
field and shear flow, respectively. The velocity and pressure fields inside the drop due to a uniform
electric field and shear flow are obtained as

uE(0)
i = ∇�

E(0)
2 + 5

42λ
r2∇p

E(0)
2 − 2

21λ
rpE(0)

2 ,

uS(0)
i = ∇ × (

rχS(0)
1

) + ∇�
S(0)
2 + 5

42λ
r2∇p

S(0)
2 − 2

21λ
rpS(0)

2 (35)

and

p
E(0)
i = p

E(0)
2 , p

S(0)
i = p

S(0)
2 , (36)

where the expression for the solid harmonics is mentioned in Appendix A. The velocity and pressure
fields outside the drop due to a uniform electric field and shear flow are obtained as

uE(0)
e = ∇�

E(0)
−3 + 1

2 rpE(0)
−3 , uS(0)

e = ∇�
S(0)
−3 + 1

2 rpS(0)
−3 (37)
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and

pE(0)
e = p

E(0)
−3 , pS(0)

e = p
S(0)
−3 , (38)

where the expression for the solid harmonics is mentioned in Appendix A.
After obtaining the velocity and pressure fields, we determine the hydrodynamic stress tensor and

substitute it in Eq. (20) to obtain the effective emulsion stress. The leading-order effective viscosity
is obtained as

η
(0)
eff = 1 − 3νÂ

(0)
−3,2. (39)

Substituting the expression for Â
(0)
−3,2, we obtain η

(0)
eff as

η
(0)
eff =

[
1 + ν

(
5λ + 2

2λ + 2

)]
︸ ︷︷ ︸

η
(0)
eff,T

+ ν

[
27

5

ExEyM(S − R)

(R + 2)2(λ + 1)

]
︸ ︷︷ ︸

η
(0)
eff,E

. (40)

The term η
(0)
eff,T represents the emulsion viscosity in the absence of an electric field, which was

first obtained by Taylor [8]. The term η
(0)
eff,E is an extra contribution due to the applied electric field.

The leading-order normal stress differences are obtained as

N
(0)
1 = −6νA

(0)
−3,2, N

(0)
2 = 3ν

2

(
2A

(0)
−3,2 + A

(0)
−3,0

)
. (41)

Substituting the expressions of A
(0)
−3,0 and A

(0)
−3,2, we obtain N

(0)
1 and N

(0)
2 as

N
(0)
1 = 27

5

ν(E2
x − E2

y)M(S − R)

(R + 2)2(λ + 1)
,

N
(0)
2 = 27

5

νE2
yM(S − R)

(R + 2)2(λ + 1)
. (42)

B. The O(ReE) solution

The O(ReE) electric potential distribution is due to the fluid flow-induced redistribution of charges
at the drop surface. The O(ReE) charging condition can be written as

er · (
R∇ψ

(ReE )
i − ∇ψ (ReE )

e

)∣∣
r=1 = −∇s · (

q(0)
s u(0)

s

)∣∣
r=1. (43)

The right-hand side of Eq. (43) can be expressed in terms of surface harmonics as

− ∇s · (
q(0)

s u(0)
s

)∣∣
r=1 = {(Z1,1 cos φ + Ẑ1,1 sin φ)P1,1 + (Z3,1 cos φ + Ẑ3,1 sin φ)P3,1

+ [Z3,3 cos(3φ) + Ẑ3,3 sin(3φ)]P3,3}, (44)

where the coefficients Zn,m and Ẑn,m are obtained in terms of the coefficients present in uE(0)
i , uS(0)

i ,
and q(0)

s (refer to Appendix B for detailed expressions). It is apparent from Eq. (44) that the O(ReE)
electric potential distributions inside and outside the drop are of the form

ψ
(ReE )
i = {

r
(
a

(ReE )
1,1 cos φ + â

(ReE )
1,1 sin φ

)
P1,1 + r3

(
a

(ReE )
3,1 cos φ + â

(ReE )
3,1 sin φ

)
P3,1

+ r3
[
a

(ReE )
3,3 cos(3φ) + â

(ReE )
3,3 sin(3φ)

]
P3,3

}
(45)

and

ψ (ReE )
e = [

r−2
(
b

(ReE )
−2,1 cos φ + b̂

(ReE )
−2,1 sin φ

)
P1,1 + r−4

(
b

(ReE )
−4,1 cos φ + b̂

(ReE )
−4,1 sin φ

)
P3,1

+ r−4
(
b

(ReE )
−4,3 cos φ + b̂

(ReE )
−4,3 sin φ

)
P3,3

]
, (46)
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where the unknown coefficients are obtained as

a(ReE )
n,m = b

(ReE )
−n−1,m = Zn,m

n(R + 1) + 1
, â(ReE )

n,m = b̂
(ReE )
−n−1,m = Ẑn,m

n(R + 1) + 1
. (47)

The O(ReE) surface charge distribution is obtained as

q(ReE )
s = er · (

S∇ψ
(ReE )
i − ∇ψ (ReE )

e

) = [
c

(ReE )
1,1 cos φ + ĉ

(ReE )
1,1 sin φ

]
P1,1

+ [
c

(ReE )
3,1 cos φ + ĉ

(ReE )
3,1 sin φ

]
P3,1 + [

c
(ReE )
3,3 cos(3φ) + ĉ

(ReE )
3,3 sin(3φ)

]
P3,3, (48)

where c(ReE )
n,m = Zn,m[n(S + 1) + 1]/[n(R + 1) + 1] and ĉ(ReE )

n,m = Ẑn,m[n(S + 1) + 1]/[n(R + 1) + 1].
The O(ReE) flow field is due to the O(ReE) electrical stresses. The velocity and pressure fields

inside the drop are obtained as

u(ReE )
i =

[
∇ × {

r
(
χ

(ReE )
1 + χ

(ReE )
3

)} + ∇(
�

(ReE )
2 + �

(ReE )
4

)
+ r2

λ

(
5

42
∇p

(ReE )
2 + 7

110
∇p

(ReE )
4

)
− r

λ

(
2

21
p

(ReE )
2 + 4

55
p

(ReE )
4

)]
(49)

and

p
(ReE )
i = p

(ReE )
2 + p

(ReE )
4 , (50)

where the expression for the solid harmonics are mentioned in Appendix B. The velocity and pressure
fields outside the drop are obtained as

u(ReE )
e =

[
∇ × {

r
(
χ

(ReE )
−2 + χ

(ReE )
−4

)} + ∇(
�

(ReE )
−3 + �

(ReE )
−5

) − r2

28
∇p

(ReE )
−5

+ r
(

1

2
p

(ReE )
−3 + 1

28
p

(ReE )
−5

)]
(51)

and

p(ReE )
e = p

(ReE )
−3 + p

(ReE )
−5 , (52)

where the expression for the solid harmonics are mentioned in Appendix B.
After obtaining the velocity and pressure fields, we determine the hydrodynamic stress tensor

and substitute it in Eq. (20) to obtain the effective emulsion stress. The O(ReE) effective viscosity
is obtained as

η
(ReE )
eff = −3νÂ

(ReE )
−3,2 . (53)

Substituting the expression of Â
(ReE )
−3,2 , we obtain η

(ReE )
eff as

η
(ReE )
eff

= νM
[

9
10

R−2S−2
R+2 (EyZ1,1 + ExẐ1,1) − 4R+4−S

3R+4

[
9

35 (EyZ3,1 + ExẐ3,1) + 54
7 (EyZ3,3 − ExẐ3,3)

]]
(R + 2)(λ + 1)

.

(54)

The O(ReE) normal stress differences are obtained as

N
(ReE )
1 = −6νA

(ReE )
−3,2 , N

(ReE )
2 = 3ν

2

(
2A

(ReE )
−3,2 + A

(ReE )
−3,0

)
. (55)
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Substituting the expressions of A
(ReE )
−3,0 and A

(ReE )
−3,2 , we obtain N

(ReE )
1 and N

(ReE )
2 as

N
(ReE )
1

= νM
[

9
5

R−2S−2
R+2 (ExZ1,1 − EyẐ1,1) − 4R+4−S

3R+4

[
18
35 (ExZ3,1 − EyẐ3,1) − 108

7 (ExZ3,3 + EyẐ3,3)
]]

(R + 2)(λ + 1)

(56)

and

N
(ReE )
2 = νM

[
9
5

R−2S−2
R+2 EyẐ1,1 − (

4R+4−S
3R+4

)[
9
7ExZ3,1 + 9

5EyẐ3,1 + 54
7 (ExZ3,3 + EyẐ3,3)

]]
(R + 2)(λ + 1)

. (57)

C. The O(Ca) solution

First we determine the O(Ca) correction in drop shape, which can be obtained by using the
leading-order solution. The deformed drop shape correct up to the O(Ca) term can be expressed as

rs(θ,φ) = 1 + Caf (Ca), (58)

where f (Ca) is obtained as

f (Ca) = L
(Ca)
2,0 P2,0 + L

(Ca)
2,2 cos(2φ)P2,2 + L̂

(Ca)
2,2 sin(2φ)P2,2. (59)

Different coefficients L
(Ca)
2,0 , L

(Ca)
2,2 , and L̂

(Ca)
2,0 are obtained in the form

L
(Ca)
2,0 = −3

8

(
E2

x + E2
y

)
M�T

(R + 2)2 , L
(Ca)
2,2 = 3

16

(
E2

x − E2
y

)
M�T

(R + 2)2 , L̂
(Ca)
2,2 = 5

12
DT + 3

8

ExEyM�T

(R + 2)2 ,

(60)

where �T = R2 + 1 − 2S + 3(R − S)(3λ + 2)/5(λ + 1) is the Taylor discrimination function and
DT = (19λ + 16)/(20λ + 20) is the Taylor deformation parameter.

The O(Ca) electric potential is due to the deformed drop shape. The O(Ca) electric potential
distributions inside and outside the drop are of the form

ψ
(Ca)
i = r

[
a

(Ca)
1,1 cos φ + â

(Ca)
1,1 sin φ

]
P1,1 (61)

and

ψ (Ca)
e = r−2[b(Ca)

−2,1 cos φ + b̂
(Ca)
−2,1 sin φ

]
P1,1

+ r−4
{(

b
(Ca)
−4,1 cos φ + b̂

(Ca)
−4,1 sin φ

)
P3,1 + [

b
(Ca)
−4,3 cos(3φ) + b̂

(Ca)
−4,3 sin(3φ)

]
P3,3

}
, (62)

where the unknown coefficients are given in Appendix C. Importantly, the unknown coefficients
a(Ca)

n,m , â(Ca)
n,m , b(Ca)

n,n , and b
(Ca)
−n−1,n are linear in L

(Ca)
2,0 , L

(Ca)
2,2 , and L̂

(Ca)
2,2 .

The O(Ca) surface charge distribution can be obtained as

q(Ca)
s =

[
S

{
∂ψ

(Ca)
i

∂r
+ f (Ca) ∂

2ψ
(0)
i

∂r2
− ∂f (Ca)

∂θ

∂ψ
(0)
i

∂θ
− 1

sin2θ

∂f (Ca)

∂φ

∂ψ
(0)
i

∂φ

}∣∣∣∣∣
r=1

−
{

∂ψ (Ca)
e

∂r
+ f (Ca) ∂

2ψ (0)
e

∂r2
− ∂f (Ca)

∂θ

∂ψ (0)
e

∂θ
− 1

sin2θ

∂f (Ca)

∂φ

∂ψ (0)
e

∂φ

}∣∣∣∣
r=1

]
. (63)
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The O(Ca) flow field is due to the deformed drop shape. The velocity and pressure fields inside
and outside the drop are obtained as

u(Ca)
i =

4∑
n=1

[
∇ × (

rχ (Ca)
n

) + ∇�(Ca)
n + n + 3

2(n + 1)(2n + 3)λ
r2∇p(Ca)

n − n

(n + 1)(2n + 3)λ
rp(Ca)

n

]
,

(64)

p
(Ca)
i =

4∑
n=1

p(Ca)
n , (65)

u(Ca)
e =

4∑
n=1

[
∇ × (

rχ (Ca)
−n−1

) + ∇�
(Ca)
−n−1 − n − 2

2n(2n − 1)
r2∇p

(Ca)
−n−1 + n + 1

n(2n − 1)
rp(Ca)

−n−1

]
, (66)

and

p(Ca)
e =

4∑
n=1

p
(Ca)
−n−1, (67)

where the expression for the solid harmonics are too lengthy to be presented here. Importantly, the
solid harmonics are linear in L

(Ca)
2,0 , L

(Ca)
2,2 , and L̂

(Ca)
2,2 .

After obtaining the velocity and pressure fields, we determine the hydrodynamic stress tensor
and substitute it in Eq. (20) to obtain the effective emulsion stress. The O(Ca) effective viscosity is
obtained as

η
(Ca)
eff = −3νÂ

(Ca)
−3,2. (68)

Substituting the expression of Â
(Ca)
−3,2, we obtain η

(Ca)
eff as

η
(Ca)
eff = ν

[
L

(Ca)
2,0

{
− 3

70

4 + 25λ2 + 41λ

(λ + 1)2 + 162

175

MExEy(−9λ + 8R − 5 + 6Rλ)(R − S)

(λ + 1)2(R + 2)3

}

+L
(Ca)
2,2

{
−3

5

16 + 19λ

λ + 1

}

+ L̂
(Ca)
2,2

{
−162

175

M
(
E2

x + E2
y

)
(20Rλ + 22R − 23λ − 19)(R − S)

(λ + 1)2(R + 2)3

}]
. (69)

The O(Ca) normal stress differences are obtained as

N
(Ca)
1 = −6νA

(Ca)
−3,2, N

(Ca)
2 = 3ν

2

(
2A

(Ca)
−3,2 + A

(Ca)
−3,0

)
. (70)

Substituting the expressions of A
(Ca)
−3,0 and A

(Ca)
−3,2, we obtain N

(Ca)
1 and N

(Ca)
2 as

N
(Ca)
1 = ν

[
L

(Ca)
2,0

{
162

175

M
(
E2

x − E2
y

)
(−9λ + 8R + 6Rλ − 5)(R − S)

(λ + 1)2(R + 2)3

}

+L
(Ca)
2,2

{
−324

175

M
(
E2

x + E2
y

)
(−19 + 20Rλ − 23λ + 22R)(R − S)

(λ + 1)2(R + 2)3

}

+ L̂
(Ca)
2,2

(
6

5

19λ + 16

λ + 1

)]
(71)
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and

N
(Ca)
2 = ν

[
L

(Ca)
2,0

{
162

25

(R − S)M

(R + 2)2(λ + 1)

(
E2

x(λ − 1)

7(λ + 1)
+ E2

y(R − 1)

R + 2

)}

+L
(Ca)
2,2

{
324

175

(R − S)M

(R + 2)2(λ + 1)2

(
E2

x(λ − 1) + E2
y

−17 + 19Rλ + 23R − 25λ

R + 2

)}

+ L̂
(Ca)
2,2

{
ExEy

(
−972

175

M(−9λ + 8R − 5 + 6Rλ)(R − S)

(λ + 1)2(R + 2)3

)
− 6

35

50 + 29λ2 + 61λ

(λ + 1)2

}]
.

(72)

Note that η
(Ca)
eff , N

(Ca)
1 , and N

(Ca)
2 are linear in L

(Ca)
2,0 , L

(Ca)
2,2 , and L̂

(Ca)
2,2 .

IV. RESULTS AND DISCUSSION

A. Emulsion rheology in the absence of charge convection and shape deformation

When the charge convection and shape deformation effects are negligible, the effective shear
viscosity is η

(0)
eff [refer to Eq. (40)]. A closer look into the expression of η

(0)
eff reveals that at leading

order the effects of imposed shear flow and imposed electric field are decoupled. Here η
(0)
eff,T is a

positive quantity, which suggests that the effective viscosity in the absence of an electric field is
always greater than the viscosity of the suspending medium (i.e., η

(0)
eff,T > 1) with a maximum value

in the limit λ → ∞. The limit λ → ∞ represents the Einstein viscosity limit [38]. The Einstein
viscosity limit represents the effective viscosity of a dilute suspension of rigid spheres, which is
given by η

(0)
eff = 1 + 5ν/2. It is important to note that η

(0)
eff,T is independent of shear rate. Thus, a

dilute emulsion of drops shows Newtonian behavior in the absence of an electric field. Interestingly,
η

(0)
eff,E depends on the shear rate (recall the definition of the Mason number M = εeE

2
c /μeG). Thus,

the presence of an electric field yields non-Newtonian rheology even in the absence of charge
convection and shape deformation. However, the mere presence of an electric field is not sufficient
to produce a nonzero contribution of η

(0)
eff,E . A closer look into the expression of η

(0)
eff,E reveals

that electric field has no contribution to η
(0)
eff (i.e., η

(0)
eff,E = 0) in any of the following conditions: (i)

R = S, which is tantamount to perfectly dielectric drops suspended in a perfectly dielectric medium;
(ii) R → ∞, which means that the dispersed drops are perfectly conducting and the suspending
medium is perfectly (or leaky) dielectric; (iii) λ → ∞, which means the suspension of rigid spheres;
and (iv) ExEy = 0, which means an electric field in the direction of shear flow (i.e., E∞ = ex) or an
electric field in the direction of the velocity gradient (i.e., E∞ = ey). The first three conditions (i.e.,
R = S, R → ∞, and λ → ∞) are associated with vanishing EHD flow, while the fourth condition
is associated with an EHD flow for which the straining axis is aligned with the direction of shear
flow or velocity gradient. Thus, the electric field alters the effective viscosity only when the straining
axis of EHD flow is oriented in such a way that ExEy �= 0 (which is equivalent to a tilt angle φt

which satisfies 0 < φt < π/2 or π/2 < φt < π ) and the drops and suspending medium are leaky
dielectric fluids with R �= S. In a reported study, Vlahovska [29] has shown that the electric field does
not affect the leading-order effective viscosity when the electric field acts in the velocity gradient
direction (i.e., E∞ = ey). We also recover the same behavior.

The physical reason for this altered effective viscosity can be understood by looking into the
flow structure around the drop. Imposed shear flow has two components [refer to Fig. 2(a)]: pure
straining flow and pure rotational flow. The axis of the straining flow is oriented at an angle π/4 with
the direction of shear flow. The presence of a drop resists this straining component of imposed shear
flow, while the rotational component has no effect at leading order [46]. The perturbed flow leads to
enhancement of viscous dissipation and thereby increases the effective viscosity. On the other hand,
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Shear flow Straining flow Rotational flow
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y 1x
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EHD uniaxial straining 
flow for R>S

EHD biaxial straining 
flow for R<SElectric field

x

1y

(a)

(b)

FIG. 2. (a) Schematic representation of the hydrodynamic flow around the drop due to imposed shear flow.
(b) Schematic representation of the electrohydrodynamic flow around the drop due to imposed electric field.

the EHD flow generated due to an imbalance of tangential electric stress can be of two types [refer to
Fig. 2(b)], uniaxial straining flow and biaxial straining flow, depending on the polarization of the drop
[47]. When R > S the drop dipole moment, generated due to the surface charge distribution, aligns
with the applied electric field, which leads to generation of uniaxial straining flow. The completely
reverse happens (the drop dipole moment orients opposite to the applied electric field, which leads
to generation of biaxial straining flow) when R < S. The axis of EHD straining flow is always
oriented in the direction of applied electric field (i.e., at an angle φt with the shear flow direction).
In the combined presence of shear flow and a uniform electric field, we identify the following three
representative situations: (i) an electric field acting in the direction of the velocity gradient (i.e.,
φt = π/2), (ii) an electric field acting in the direction of shear flow (i.e., φt = 0), and (iii) an electric
field acting at an angle φt = π/4.

If we consider a Cartesian coordinate system in which one axis is along the direction of the
applied electric field (x1) and the other two are orthogonal to the applied electric field (y1 and z1), the
EHD flow is always axisymmetric in the x1 direction. This axisymmetric flow gives rise to nonzero
diagonal components of the stresslet tensor (�(d)

x1x1
, �(d)

y1y1
, and �(d)

z1z1
); the off-diagonal components

(�(d)
x1y1

, �(d)
y1z1

, and �(d)
z1x1

) vanish. This leads to generation of first and second normal stress differences,
which are denoted by �x1x1 − �y1y1 and �y1y1 − �z1z1 . For φt = π/2 the coordinate system (x1,y1,z1)
coincides with (y,−x,z), while for φt = 0 the coordinate system (x1,y1,z1) coincides with (x,y,z).
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(a) (b)

FIG. 3. Variation of normalized effective shear viscosity with normalized shear rate for (a) R = 0.1 and
(b) R = 10. The other parameters are taken as S = 1 and λ = 0.1.

In both these cases, the normal stress differences in the coordinate system (x1,y1,z1) give rise to only
normal stress differences in the coordinate system (x,y,z). However, for φt = π/4 the normal stress
differences in the coordinate system (x1,y1,z1) give rise to both effective viscosity (i.e., nonzero
off-diagonal components) and normal stress differences in the coordinate system (x,y,z). Thus, the
directionality of the applied electric field gives rise to η

(0)
eff,E . For φt = π/4 the EHD flow augments

the straining component of imposed shear flow when the EHD flow is uniaxial type (i.e., for R > S),
while the EHD flow retards the straining component of imposed shear flow when the EHD flow
is biaxial type (i.e., for R < S). This augmentation (or retardation) of the straining component of
imposed shear flow by EHD straining flow leads to a decrease (or increase) in effective viscosity.

To investigate the shear rate dependence of η
(0)
eff , we plot the variation of normalized effective

viscosity (η(0)
eff − 1)/ν with the normalized shear rate (which is equivalent to M−1 for fixed electric-

field strength) in Fig. 3(a) for (R,S) = (0.1,1) and in Fig. 3(b) for (R,S) = (10,1). The choice of these
property ratios is based on the fact that (R,S) = (0.1,1) resembles the physical situation of silicone
oil drops suspended in castor oil, while (R,S) = (10,1) resembles the physical situation of castor
oil drops suspended in silicone oil [22]. To explicitly show the influence of the electric field, we plot
results for φt = π/4 and φt = 3π/4. We also plot a η

(0)
eff = η

(0)
eff,T line, which represents the vanishing

effect of the electric field on the effective viscosity. Figure 3(a) shows that for φt = π/4 the effective
viscosity not only is larger than the viscosity of suspending medium (i.e., η(0)

eff > 1), but also is larger
than the effective viscosity when the electric field is absent (i.e., η

(0)
eff > η

(0)
eff,T ). This enhancement in

viscosity is also evident from Eq. (40), which shows that η
(0)
eff,E is positive for ExEy > 0 and R < S.

With an increase in normalized shear rate, the effective viscosity decreases, which means that the
emulsion shows shear thinning behavior for φt = π/4. The completely reverse behavior is depicted
in Fig. 3(a) for φt = 3π/4, which shows shear thickening (an increase in viscosity with an increase
in shear rate). We define a critical Mason number (associated with a critical value of the shear rate)
for which (η(0)

eff − 1)/ν = 0 or η
(0)
eff = 1. The critical Mason number is obtained as

η
(0)
eff (Mcr ) = 1 ⇒ Mcr = 5

54

(R + 2)2(5λ + 2)

ExEy(R − S)
. (73)

For M < Mcr the effective viscosity is larger than the viscosity of the suspending medium (i.e.,
η

(0)
eff > 1), while for M > Mcr the effective viscosity is smaller than the viscosity of the suspending

medium (i.e., η
(0)
eff < 1). In the latter regime, we obtain negative values of (η(0)

eff − 1)/ν, which are
associated with a decrease in emulsion viscosity below the viscosity of the suspending medium.
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FIG. 4. Variation of normalized effective shear viscosity with viscosity ratio for R = 0.1 and S = 1.

Thus, a tilted electric field not only induces shear thinning or thickening behavior but also can
decrease the emulsion velocity below the viscosity of suspending medium. For higher values of
normalized shear rate, the electric field has a negligible effect and both curves (for φt = π/4 and
φt = 3π/4) approach the same limit (i.e., η

(0)
eff → η

(0)
eff,T ). Figure 3(b) shows that for φt = π/4 the

emulsion shows shear thickening behavior. Importantly, the effective viscosity decreases below the
viscosity of the suspending medium for M > Mcr . However, the emulsion shows shear thinning
behavior for all values of the shear rate when φt = 3π/4. This distinctive behavior of the emulsion
of castor oil drops in silicone oil as compared with the emulsion of silicone oil drops in castor oil is
due to the fact that R/S < 1 for Fig. 3(a), while R/S > 1 for Fig. 3(b). Thus, the direction of EHD
flow is completely reverse for the two cases under consideration.

To investigate the effect of the tilt angle, we substitute Ex = sin φt and Ey = cos φt and obtain
that the dependence of η

(0)
eff on the tilt angle is sin(2φt ). For (R,S) = (0.1,1), the presence of a

tilted electric field increases the emulsion viscosity when 0 < φt < π/2 and decreases the emulsion
viscosity when π/2 < φt < π . The exactly opposite behavior is obtained for (R,S) = (10,1). The
following important observations can be made. (i) The electric field does not affect the emulsion
viscosity (i.e., η(0)

eff = η
(0)
eff,T ) for φt = 0, π/2, and π . (ii) The effect of the electric field in augmenting

or reducing the emulsion viscosity is maximum for φt = π/4 and 3π/4. This is due to the fact
that for these two tilt angles the EHD straining flow affects the straining component of shear flow
most dominantly. With an increase in Mason number, the strength of the electric field relative to the
viscous stress increases and the electric field plays a more dominant role in determining the decrease
or increase in emulsion viscosity.

To investigate the effect of viscosity ratio, we plot the variation of the normalized effective
viscosity with the viscosity ratio in Fig. 4 for (R,S) = (0.1,1). It is important to note that the tilted
electric field has a significant effect on the emulsion viscosity when the viscosity ratio is small. In the
limit λ → ∞, all the curves approach the Einstein viscosity limit. Figure 4 shows that the applied
electric field has no effect for λ → ∞, irrespective of the electrical properties and tilt angle. This is
due to the fact that the EHD flow is diminished for λ → ∞ and the drops behave as rigid spheres
that strongly resist the straining component of the imposed shear flow. Previous studies have shown
that a dilute emulsion of spherical drops has an effective viscosity smaller than the Einstein viscosity
limit when there is no applied electric field. However, Fig. 4 shows that the application of an electric
field leads to an effective viscosity larger than the Einstein viscosity limit for φt = π/4 and M = 3.
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The presence of an electric field not only alters the effective shear viscosity but also induces normal
stress differences N

(0)
1 and N

(0)
2 [refer to Eq. (42)]. For the special case of an electric field acting in

the velocity gradient direction (i.e., Ex = 0 and Ey = 1), the expressions of N
(0)
1 and N

(0)
2 match

with the results of Vlahovska [29]. It is important to note that the normal stress differences appear
solely due to the electric field; imposed shear flow has no effect on the normal stress differences at
the leading order. Note that the normal stress differences are independent of shear rate. The inverse
of the shear rate is present in the expression of M , but we have already nondimensionalized N1

and N2 by μeG. Thus, the dimensional normal stress differences are independent of shear rate. To
investigate the pivotal role of the tilt angle, we substitute Ex = sin φt and Ey = cos φt . We obtain
that the dependence of N

(0)
1 on the tilt angle is cos(2φt ), while the dependence of N

(0)
2 on the tilt

angle is sin2(φt ). Thus the first normal stress difference vanishes for φt = π/4,3π/4 and reaches
its maximum value for φt = 0,π/2,π . In contrast, the second normal stress difference vanishes for
φt = 0,π and reaches its maximum value for φt = π/2. Most importantly, the sign of N

(0)
1 and N

(0)
2

is strongly influences by the R/S ratio and φt .

B. Effect of charge convection on the emulsion rheology

Now we investigate the effect of surface charge convection on the emulsion rheology, neglecting
the shape deformation. After incorporating the O(ReE) contribution, we obtain the effective viscosity
as

ηeff = η
(0)
eff + ReEη

(ReE )
eff . (74)

The O(ReE) correction term is given in Eq. (54). The dependence on the components of electric
field (Ex and Ey) will be more apparent if we arrange η

(ReE )
eff in the form

η
(ReE )
eff = νM(S − R)

[
l1E

2
x + l2E

2
y + l3ExEy

(
E2

x + E2
y

)
M(S − R)

3500(λ + 1)2(3R + 4)(R + 2)5

]
, (75)

where the terms l1, l2, and l3 are known functions of R, S, and λ, which are mentioned in Appendix D.
A closer look into the expression of η

(ReE )
eff reveals that the effects of the imposed shear flow and

imposed electric field are coupled and η
(ReE )
eff vanishes for M = 0. Importantly, the surface charge

convection alters the effective viscosity of the emulsion even when the applied electric field is
directed in the direction of either the shear flow or velocity gradient. This is in contrast to the
leading-order contribution of the applied electric field, which is nonzero only when ExEy �= 0.
Substituting φt = 0 or φt = π/2, we obtain that the O(ReE) correction in effective stress ReEη

(ReE )
eff

is independent of shear rate. Thus, in the case in which the applied electric field is acting in
the direction of either the shear flow or velocity gradient, the emulsion behaves as a Newtonian
fluid but with altered effective viscosity due to charge convection. However, ReEη

(ReE )
eff depends on

the shear rate when ExEy �= 0 and the drops and suspending medium are leaky dielectric fluids
with R �= S.

The variation of the normalized effective viscosity with the viscosity ratio is depicted in Fig. 5(a)
for (R,S) = (0.1,2). We show the effect of charge convection for φt = 0 and φt = π/2. The effect
of charge convection is noteworthy when the viscosity ratio is small. In the limit λ → ∞, the
velocity at the drop surface vanishes, which yields the effective viscosity of a suspension of rigid
spheres. All the curves in Fig. 5(a) approach the Einstein viscosity limit. Figure 5(a) also shows
that the surface charge convection decreases (or increases) the effective viscosity for φt = 0 (or
φt = π/2). This alteration in effective viscosity is due to the O(ReE) modification of the flow,
which is generated by the O(ReE) electrical tangential stress at the drop interface. We show the
variation of surface charge density qs(θ,φ) = q(0)

s + ReEq(ReE )
s [refer to Eqs. (32) and (48)] with φ

at the plane of shear flow (i.e., θ = π/2) for φt = 0. Figure 5(b) shows that the distribution of qs

in the presence of charge convection (i.e., ReE = 0.1) is significantly different from that of qs in
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FIG. 5. (a) Variation of normalized effective shear viscosity with viscosity ratio. (b) Variation of surface
charge density with φ for θ = π/2 and φt = 0. The other parameters are taken as R = 0.1, S = 2, and M = 1.

the absence of charge convection (i.e., ReE = 0). This altered charge distribution coupled with the
tangential electric field generates an imbalance in tangential electric stress. The O(ReE) imbalance
in tangential electric stress induces EHD flow around the drop, which in turn affects the effective
viscosity.

To investigate the effect of the tilt angle, we plot the variation of the normalized effective viscosity
with the tilt angle in Fig. 6(a) for (R,S) = (0.1,2) and in Fig. 6(b) for (R,S) = (10,2). Both figures
show that the surface charge convection can increase or decrease the effective viscosity depending
on the value of the tilt angle. This is attributed to the fact that the tilt angle controls the direction of
O(ReE) EHD flow and thereby governs the effective viscosity.

Charge convection alters the normal stress differences. After incorporating the O(ReE)
contribution, we obtain the normal stress differences

N1 = N
(0)
1 + ReEN

(ReE )
1 , N2 = N

(0)
2 + ReEN

(ReE )
2 . (76)
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The other parameters are taken as S = 2 and λ = 0.1.
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The O(ReE) corrections are given in Eqs. (56) and (57). The dependence on the components of
the electric field (Ex and Ey) will be more apparent if we arrange N

(ReE )
1 and N

(ReE )
2 in the form

N
(ReE )
1 = νM(S − R)

[
l4

(
E4

x − E4
y

)
M(S − R) + l5ExEy

875(λ + 1)2(3R + 4)(R + 2)5

]
,

N
(ReE )
2 = νEyM(S − R)

[
l6Ex + l7Ey

(
E2

x + E2
y

)
M(S − R)

1750(λ + 1)2(3R + 4)(R + 2)5

]
, (77)

where the terms l4, l5, l6, and l7 are known functions of R, S, and λ, which are mentioned
in Appendix D. Note that the dimensional O(ReE) correction in normal stress differences
μeG ReEN

(ReE )
1 and μeG ReEN

(ReE )
2 depends on shear rate even when the applied electric field acts

in the direction of the shear flow or velocity gradient. Variations of the normalized first and second
normal stresses are shown in Figs. 7(a) and 7(b) for (R,S) = (0.1,2). Surface charge convection leads
to small changes in the first and second normal stresses that are attributed to the O(ReE) EHD flow.

C. Effect of shape deformation on the emulsion rheology

Now we investigate the effect of shape deformation on the emulsion rheology, neglecting the
surface charge convection. The expression of f (Ca) [given in Eq. (59)] suggest that the drop deforms
to an ellipsoidal shape due to the combined effect of the shear flow and electric field. The sole effect
of shear flow is to stretch the drop along the extension axis (i.e., orient the major axis of the ellipsoid
at an angle π/4 with the direction of shear flow). On the other hand, the sole effect of the applied
electric field is to orient the major axis of the ellipsoid parallel (perpendicular) to the applied electric
field for �T > 0 (�T < 0). Simple calculation shows that in the combined presence of shear flow
and an electric field the major axis of the ellipsoidal drop makes an angle φd with the flow direction,
which can be obtained as

φd = 1

2
tan−1

(
L̂

(Ca)
2,2

L
(Ca)
2,2

)
. (78)

Thus, the applied electric field not only makes the drop ellipsoidal but also modulates the
orientation of the drop shape. This altered shape and orientation are important contributing factors
that will affect the resistance to imposed shear flow.
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FIG. 8. Variation of normalized effective shear viscosity with viscosity ratio for (a) R = 10 and (b) R = 0.1.
The other parameters are taken as S = 1 and M = 1.

After incorporating the O(Ca) contribution, we obtain the effective viscosity

ηeff = η
(0)
eff + Caη(Ca)

eff . (79)

The O(Ca) correction is given in Eq. (69). The dependence on the components of the electric
field (Ex and Ey) will be more apparent if we arrange η

(Ca)
eff in the form

η
(Ca)
eff = νM

[
k1E

2
x + k2E

2
y + k3ExEy

(
E2

x + E2
y

)
M(S − R)

7000(λ + 1)3(R + 2)5

]
, (80)

where the terms k1, k2, and k3 are known functions of R, S, and λ, which are mentioned in
Appendix E. A closer look into the expression of η

(Ca)
eff reveals that the effects of the imposed shear

flow and imposed electric field are coupled and η
(Ca)
eff vanishes for M = 0, which was previously

shown by Schowalter et al. [10]. Importantly, the shape deformation alters the effective viscosity of
the emulsion even when the applied electric field is directed in the direction of either the shear flow
or velocity gradient. This is in contrast to the leading-order contribution of the applied electric field
that is nonzero only when ExEy �= 0. Substituting φt = 0 or φt = π/2, we obtain that the O(Ca)
correction in effective stress Caη(Ca)

eff is independent of shear rate. Thus, when the applied electric
field is acting in the direction of either the shear flow or velocity gradient, the emulsion behaves as
a Newtonian fluid but with altered effective viscosity due to shape deformation. However, Caη(Ca)

eff
depends on the shear rate when ExEy �= 0 and the drops and suspending medium are leaky dielectric
fluids with R �= S.

The variation of normalized effective viscosity with the viscosity ratio is depicted in Fig. 8(a)
considering (R,S) = (10,1) for which �T > 0. We show the effect of shape deformation for φt = 0
and φt = π/2. When φt = 0 the applied electric field tries to stretch the drop in the direction of shear
flow, while the imposed shear flow tries to orient the drop at an angle π/4 with the direction of shear
flow. The combined effect leads to φd < π/4. Thus, the drop is aligned more towards the shear flow
direction, which reduces the flow resistance and thereby decreases the effective viscosity as depicted
in Fig. 8(a). In contrast, shape deformation increases the effective viscosity when φt = π/2. This is
due to the fact that when φt = π/2 the applied electric field tries to stretch the drop in the direction
of the velocity gradient, which leads to φd > π/4. Thus, the drop is aligned more towards the
velocity gradient direction, which increases the flow resistance and thereby increases the effective
viscosity. Importantly, Fig. 8(a) also depicts that the high-viscosity limit (i.e., λ → ∞) does not
lead to Einstein viscosity in the presence of shape deformation (i.e., Ca > 0). Figure 8(b) depicts
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FIG. 9. (a) Variation of normalized effective shear viscosity with tilt angle. (b) Variation of drop inclination
angle with tilt angle. The other parameters are taken as R = 10, S = 1, and λ = 0.1.

the variation of normalized effective viscosity with the viscosity ratio considering (R,S) = (0.1,1)
for which �T < 0. When φt = 0 the applied electric field tries to stretch the drop in the direction
of the velocity gradient. Thus, the combined effect of the shear flow and electric field leads to
φd > π/4. This increases the flow resistance and thereby increases the effective viscosity as depicted
in Fig. 8(b). In contrast, shape deformation decreases the effective viscosity when φt = π/2 as the
combined effect of the shear flow and electric field leads to φd < π/4.

To investigate the effect of the tilt angle, we plot the variation of normalized effective viscosity with
the tilt angle in Fig. 9(a) for (R,S) = (10,1). The corresponding variation in drop inclination angle is
depicted in Fig. 9(b). Figure 9(a) shows that the tilt angle significantly affects the effective viscosity
in the presence of shape deformation. This is attributed to the fact that the orientation angle of the
ellipsoidal drop is strongly influenced by the tilt angle [refer to Fig. 9(b)]. The tilt angle modifies φd

and subsequently the O(Ca) flow. This O(Ca) flow gives rise to shape-deformation-induced effective
viscosity.

Shape deformation alters the normal stress differences. After incorporating the O(Ca) contribu-
tion, we obtain the normal stress differences

N1 = N
(0)
1 + CaN (Ca)

1 , N2 = N
(0)
2 + CaN (Ca)

2 . (81)

The O(Ca) corrections are given in Eqs. (71) and (72). The dependence on the components of
the electric field (Ex and Ey) will be more apparent if we arrange N

(Ca)
1 and N

(Ca)
2 in the form

N
(Ca)
1 = ν

[
1

40

(19λ + 16)2

(λ + 1)2 + M

{
k4

(
E4

x − E4
y

)
M(S − R) + k5ExEy

3500(λ + 1)3(R + 2)5

}]
,

N
(Ca)
2 = ν

[
− 1

280

(19λ + 16)(29λ2 + 61λ + 50)

(λ + 1)3 + EyM

{
k6Ex + k7Ey

(
E2

x + E2
y

)
M(S − R)

3500(λ + 1)3(R + 2)5

}]
,

(82)

where the terms k4, k5, k6, and k7 are known functions of R, S, and λ, which are mentioned
in Appendix E. Substituting M = 0 or Ex = Ey = 0 simplifies Eq. (82), which was previously
obtained by Schowalter et al. [10]. Note that the dimensional O(Ca) correction in normal stress
differences μeG CaN (Ca)

1 and μeG CaN (Ca)
2 depends on shear rate even when the applied electric

field acts in the direction of the shear flow or velocity gradient. Variations of the normalized first and
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FIG. 10. (a) Variation of first normal stress with tilt angle. (b) Variation of second normal stress with tilt
angle. The other parameters are taken as M = 1, R = 0.1, S = 1, and λ = 0.1.

second normal stresses are shown in Fig. 10(a) and 10(b) for (R,S) = (0.1,1). Shape deformation
leads to a significant change in the first and second normal stress differences, which is attributed to
the O(Ca) flow.

D. Electric torque and its effect on the emulsion stress

Up to now we have only discussed the importance of the electric field on the dynamical properties
(effective viscosity and normal stress differences) that reflect the characteristics of the stresslet
�(d). Note that the stresslet is the symmetric and traceless part of the emulsion stress tensor. The
antisymmetric part of the emulsion stress tensor, which is termed the rotlet R(d), can be expressed
for a dilute emulsion as [39]

R(d) = 3ν

4π

∫
Sd

1

2

{(
τH

e · n
)
r − [(

τH
e · n

)
r
]T }

dSd. (83)

The integral on the right-hand side of Eq. (83) can also be represented in terms of the hydrodynamic
torque acting on the drop in the form [39]∫

Sd

1

2

{(
τH

e · n
)
r − [(

τH
e · n

)
r
]T }

dSd = −1

2
(ε · T H ), (84)

where ε is the Levi-Cività tensor and T H is the hydrodynamic torque acting on the drop. Combining
Eqs. (83) and (84), we obtain the rotlet

R(d) = − 3ν

8π
(ε · T H ). (85)

The genesis of hydrodynamic torque can be understood if we look into the torque balance
equation, which states that the electric and hydrodynamic torques balance each other in the form
[32]

T H + MT E = 0. (86)

The hydrodynamic torque can be obtained as [39]

T H = −8π∇(r3χ−2), (87)
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where χ−2 = r−2[C−2,0P1,0 + C−2,1P1,1 cos φ + Ĉ−2,1P1,1 sin φ] is a decaying solid harmonic. The
electric torque can be obtained by integrating the electric traction vector in the form

T E =
∫ 2π

φ=0

∫ π

θ=0
rser × (

τE
e · n

)
r2
s sin θdθdφ. (88)

Simple calculation shows that

T H (0) = T E(0) = 0,

T H (ReE ) = −MT E(ReE ) = 4πM

2 + R
(Ẑ1,1Ex − Z1,1Ey)ez,

T H (Ca) = −MT E(Ca)

= −L
(Ca)
2,2

(
144

5

πMExEy(R − 1)2

(R + 2)2

)
ez + L̂

(Ca)
2,2

(
72

5

πM
(
E2

x − E2
y

)
(R − 1)2

(R + 2)2

)
ez. (89)

It is apparent from Eq. (89) that a uniform electric field exerts a nonzero electric torque (which
translates to a hydrodynamic torque) in the presence of charge convection and shape deformation.
This nonzero hydrodynamic torque results in a nonzero antisymmetric component of the emulsion
stress tensor and effectively nonzero component of rotlet. The nonzero components of the rotlet are
obtained as

R(d)
xy = −R(d)

yx = − 3ν

8π

(
ReET H (ReE )

z + CaT H (Ca)
z

)
, (90)

where T H
z is the z component of the hydrodynamic torque. Important to note here is that even though

the electric torque does not influence the effective viscosity and normal stress differences, it does
affect the rheology of the system by producing the antisymmetric component of the emulsion stress
tensor.

V. CONCLUSION

In this paper we have studied the combined influence of a uniform electric field and simple
shear flow on the effective shear rheology of a dilute emulsion comprised of neutrally buoyant,
Newtonian, leaky dielectric drops suspended in an immiscible, Newtonian, leaky dielectric medium.
In particular, we have explored the importance of the direction of a uniform electric field relative to
the direction of shear flow. In the creeping flow limit, we have obtained an analytical solution for
the effective stress of a dilute emulsion by performing regular perturbation analysis for small but
finite values of ReE and Ca. The effective shear viscosity and normal stress differences are obtained
to O(ν), O(ν ReE), and O(ν Ca). Application of a uniform electric field generates electric torque
due to charge convection and shape deformation, which in turn induces hydrodynamic torque on the
drop. The electric torque leads to a nonzero antisymmetric part of the emulsion stress tensor. When
the electric field is acting in the direction of the shear flow or velocity gradient, the dilute emulsion
exhibits the following rheological characteristics [30]. (i) The effective viscosity is independent of
shear rate. (ii) The leading-order EHD flow has no effect on the effective viscosity at O(ν); however,
the charge convection and shape deformation contribute to the effective viscosity to O(ν ReE) and
O(ν Ca), respectively. (iii) First and second normal stress differences are generated due to the
leading-order EHD flow, charge convection, and shape deformation.

The physical picture gets dramatically altered when we consider the tilted electric field. The tilt
angle has a significant effect on the effective viscosity and normal stress differences. The following
important conclusions can be drawn from the present study.

(i) In the absence of charge convection and shape deformation, the EHD flow augments or resists
the straining component of shear flow and thereby alters the effective viscosity and induces normal
stress differences. The present analysis shows that the applied electric field alters the effective

093602-24



UNIFORM ELECTRIC-FIELD-INDUCED NON-NEWTONIAN . . .

viscosity only when ExEy �= 0 and R �= S. Most importantly, the applied electric field induces
shear thinning or thickening behavior, depending on the values of φt and R/S. There is a critical
Mason number Mcr for which the effective emulsion viscosity is the same as the viscosity of
the suspending medium. Notably, the effective viscosity is larger (smaller) than the viscosity of
the suspending medium for M < Mcr (M > Mcr ). The electric field has a significant effect on the
effective viscosity when the drop is less viscous than the suspending medium; the effect of the
electric field is diminished for λ → ∞. The normal stress differences are independent of shear rate,
but the signs of the first and second normal stress differences are strongly influenced by φt and R/S.

(ii) In the presence of charge convection, the distribution of surface charges generates an imbalance
in tangential electric stress, which leads to an O(ReE) modification of flow field and thereby a change
in the effective viscosity and normal stress differences. Charge convection can augment or reduce
the effective viscosity depending on the R/S ratio and φt . The charge-convection-induced alteration
in effective viscosity depends on the shear rate only when ExEy �= 0 and R �= S.

(iii) In the presence of shape deformation, the O(Ca) modification of the flow field alters the
effect viscosity and normal stress differences. When the drop is inclined more towards the shear flow,
the resistance to flow decreases and the shape deformation reduces the effective viscosity. When
the drop is inclined in the velocity gradient direction, the resistance to flow increases and the shape
deformation augments the effective viscosity. The shape-deformation-induced alteration in effective
viscosity depends on the shear rate only when ExEy �= 0 and R �= S.
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APPENDIX A: EXPRESSION OF DIFFERENT TERMS IN THE LEADING-ORDER SOLUTION

The solid harmonics present in the leading-order flow field are obtained as

p
E(0)
2 = λr2

[
A

E(0)
2,0 P2,0 + A

E(0)
2,2 cos(2φ)P2,2 + Â

E(0)
2,2 sin(2φ)P2,2
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,

�
E(0)
2 = r2
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B
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2,0 P2,0 + B
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E(0)
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E(0)
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E(0)
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,
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S(0)
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S(0)
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E(0)
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S(0)
−3,2 sin(2φ)P2,2,
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S(0)
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−3,2 sin(2φ)P2,2, (A1)

where the coefficients are obtained as

A
E(0)
2,0 = −63
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M
(
E2

x + E2
y

)
(R − S)

(R + 2)2(λ + 1)
, B

E(0)
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E(0)
2,0
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E(0)
2,2 = 63

20

M
(
E2

x − E2
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(R + 2)2(λ + 1)
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B
E(0)
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E(0)
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MEyEx(R − S)
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A
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−3,0 = −9

5

M
(
E2

x + E2
y

)
(R − S)

(R + 2)2(λ + 1)
, B

E(0)
−3,0 = A

E(0)
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S(0)
−3,2 = −1

6

2 + 5λ

λ + 1
, B̂

S(0)
−3,2 = − 1

12

λ

λ + 1
. (A2)

APPENDIX B: EXPRESSION OF DIFFERENT TERMS IN THE O(ReE) SOLUTION

The coefficients present on the right-hand side of O(ReE) charging condition are obtained as

Z1,1 = c
(0)
1,1

{− 1
35A
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Â

E(0)
2,2 + Â
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The coefficients present in the solid harmonics of the O(ReE) flow field are obtained as
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where gi(ReE )
n,m , ĝi(ReE )
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n,m , ĝe(ReE )

n,m , hi(ReE )
n,m , ĥi(ReE )

n,m , he(ReE )
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relations

∞∑
n=0

n∑
m=0

(
gi(ReE )

n,m cos mφ + ĝi(ReE )
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Here TE(ReE )
i and TE(ReE )

e are the O(ReE) electric traction vectors of the form
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and
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APPENDIX C: EXPRESSION OF DIFFERENT TERMS IN THE O(Ca) SOLUTION

The coefficients present in the O(Ca) electric potential are obtained as
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APPENDIX D: EXPRESSION OF DIFFERENT KNOWN FUNCTIONS IN EQS. (75) AND (77)

The expressions of l1–l7 are obtained as

l1 = 45(R + 2)2[315R2λ − 386R2 − 124RS − 630RλS − 210Rλ

− 1620R − 1360 − 840λ − 80S − 840Sλ],

l2 = −45(R + 2)2[315R2λ + 1016R2 − 1136RS − 210Rλ + 1200R

− 630RλS − 840λ − 1600S − 840Sλ − 320],
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l3 = 1944[−80S − 54RS + 69R2 + 40 + 130R],

l4 = 33 534R2 − 26 244RS + 63 180R − 38 880S + 19 440,

l5 = −4725(3R + 4)(R + 2)2(λ + 1)(R − 2 − 2S),

l6 = 135(R + 2)2[105R2λ − 22R2 − 70Rλ − 68RS − 220R − 210RλS

− 280Sλ − 280λ − 80S − 240],

l7 = 67 068R2 + 126 360R − 52 488RS + 38 880 − 77 760S. (D1)

APPENDIX E: EXPRESSION OF DIFFERENT KNOWN FUNCTIONS IN EQS. (80) AND (82)

The expressions of k1–k7 are obtained as

k1 = −135(R + 2)2[90R3 + 90λ3R3 + 260λ2R3 + 260R3λ + 1314λ2R2 + 1624λR2 + 640R2

+ 342λ3R2 − 342λ3RS + 2R + 651λ2R + 263λR − 1314λ2RS + 414λ3R − 1624RSλ

− 640RS − 272S + 180λ3 − 1431Sλ2 − 684Sλ3 + 180 + 520λ2 + 520λ − 1043Sλ],

k2 = 45(R + 2)2[290R3 + 395λ3R3 + 1110λ2R3 + 1005R3λ + 2841λ2R2 + 1176λR2 − 128R2

+ 1501λ3R2 − 1501λ3RS + 1898R + 5943λ2R + 5952λR − 2841λ2RS

+ 1817λ3R − 1176RSλ + 128RS − 2768S + 790λ3 − 9273Sλ2 − 3002Sλ3

+ 580 + 2220λ2 + 2010λ − 8967Sλ],

k3 = 972(−12 + 15R − 16λ + 13λR)(5λR2 + 5R2 + 9λR + 6R − 19Sλ + 5λ − 16S + 5),

k4 = 486(15R + 13λR − 16λ − 12)(5λ + 5 − 19Sλ − 16S + 5λR2 + 5R2 + 9λR + 6R),

k5 = 315(5λ + 5 − 19Sλ − 16S + 5λR2 + 5R2 + 9λR + 6R)(λ + 1)(19λ + 16)(R + 2)3,

k6 = −45(R + 2)2[250R3 + 555R3λ + 145λ3R3 + 450λ2R3 + 551λ3R2 + 1952R2

+ 2649λ2R2 + 4158λR2 − 551λ3RS − 4158SRλ + 357λ2R + 667λ3R

− 2649λ2RS + 36λR − 1952SR + 130R − 880S + 500 − 1701Sλ + 290λ3

− 1707λ2S + 1110λ + 900λ2 − 1102Sλ3],

k7 = 486(−12 + 15R − 16λ + 13λR)(5λR2 + 5R2 + 9λR + 6R − 19Sλ + 5λ − 16S + 5).
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