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Two-dimensional natural doubly diffusive convection in a vertical slot driven by an
imposed temperature difference in the horizontal is studied using numerical continuation
and direct numerical simulation. Two cases are considered and compared. In the first a
concentration difference that balances thermal buoyancy is imposed in the horizontal and
stationary localized structures are found to be organized in a standard snakes-and-ladders
bifurcation diagram. Disconnected branches of traveling pulses TPn consisting of n,

n = 1,2, . . . , corotating cells are identified and shown to accumulate on a tertiary branch
of traveling waves. With Robin or mixed concentration boundary conditions on one wall
all localized states travel and the hitherto stationary localized states may connect up with
the traveling pulses. The stability of the TPn states is determined and unstable TPn shown
to evolve into spatio-temporal chaos. The calculations are done with no-slip boundary
conditions in the horizontal and periodic boundary conditions in the vertical.
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I. INTRODUCTION

Natural doubly diffusive convection is of considerable importance in a variety of applications,
ranging from oceanography [1] to crystal growth [2]. This type of convection arises in systems
driven by an imposed horizontal temperature difference or imposed horizontal heat flux when this is
opposed by a compensating concentration difference or concentration flux. With fixed temperature
and concentration boundary conditions this system has been studied in both two [3–5] and three
dimensions [6]. For typical parameter values the onset of convection leads to stationary but subcritical
states [4,5] that rapidly evolve into a state of corotating rolls, whose sense of rotation is determined
by the Lewis number of the fluid. Early work has focused on the two-dimensional problem, and
in particular on the onset of convection and small amplitude behavior near onset [3]. This work
has demonstrated that unless the horizontal gradients are balanced exactly convection will take the
form of a large cell with upflow along one sidewall and downflow along the other, provided that the
system is not too extended in the horizontal. In particular, no conduction state is present, and normal
convection develops as a secondary instability of this base flow. In three dimensions the spatial
organization of the resulting flow depends crucially on the aspect ratio of the cavity [6,7]. Complex
time dependence can result when the primary branch of steady convection fails to restabilize owing
to the presence of instability with respect to convection with a different orientation, a situation that
leads to strongly nonlinear oscillations near the onset of primary instability [6].

Past work has demonstrated that this system can also exhibit spatially localized convection, at
least in the balanced case already mentioned. The calculations in Refs. [5,8] show that in an infinite
vertical slot the subcritical primary bifurcation to spatially periodic convection is accompanied by
the simultaneous bifurcation of two families of spatially localized structures. These are organized in
a snakes-and-ladders bifurcation diagram familiar from earlier studies of model equations such as
the Swift-Hohenberg equation with a quadratic-cubic nonlinearity [9]. Related structures are present
in three dimensions as well [7]. However, balanced natural doubly diffusive convection also admits
structures that travel up or down the sidewalls, even though such states do not form as the result
of a primary convective instability [4]. In the subcritical regime, one anticipates that such traveling
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structures could be excited via finite amplitude instabilities. The basic question concerns the param-
eter regimes admitting such finite amplitude states, and the properties of such states, if they exist.

The present paper is devoted to developing an approach to answering this question. The first issue
that arises is how to locate in parameter space states that are not connected to the primary instability
mode, or indeed to any local bifurcation. For this purpose we employ a two-step procedure. We relax
the assumption of balanced horizontal gradients, enabling us to compute states that do travel up or
down a sidewall in the form of a traveling wave. Secondary bifurcation from these extended states
can lead to traveling but spatially modulated states, and in fact to spatially localized traveling pulses.
Once solutions of this type are obtained these states are numerically continued towards the balanced
case. Our strategy proves successful: a family of traveling pulses is found even in the balanced case,
but every such family is disconnected from all the other known states. Our strategy resembles that
employed by Nagata [10] in his original discovery of exact coherent structures in plane Couette flow,
with the rotation rate of a narrow-gap Taylor-Couette system used as the homotopy parameter.

We mention two other key components of our study. We impose the condition of no net vertical
flux on all our solutions and adopt periodic boundary conditions in the vertical, albeit with a large
period. This assumption has a nontrivial effect on the bifurcation to spatially localized structures
since these are highly extended when they first appear [9]. However, the effect of these boundary
conditions is well understood [11] and our system behaves in exactly the manner anticipated as
the spatial period increases. Moreover, farther from the bifurcation responsible for localization the
spatially localized structures become insensitive to the details of the boundary conditions in the
vertical, and hence can safely be computed with finite period periodic boundary conditions. We also
emphasize that the states we study all have a single temporal frequency that manifests itself as drift.
In this sense they are to be thought of as drifting steady states, in contrast to spatially localized
traveling wave convection that is characterized by two frequencies, one corresponding to the group
speed and associated with the drift speed of the envelope of the wave, and the other to the phase
speed and hence the rate at which the underlying wave travels through the wave packet [12–14].
These types of states are usually the result of a modulational instability of a primary traveling wave,
i.e., the result of a primary Hopf bifurcation of the conduction state.

This paper is organized as follows. In Sec. II we summarize the basic equations and boundary con-
ditions employed in the present work and then describe, in Sec. III, the numerical techniques we use.
In Sec. IV we present the results obtained, first for the balanced case and then for the almost balanced
case (even though our results were obtained in the other order). Our results are summarized in Sec. V.

II. GOVERNING EQUATIONS

We consider a binary fluid mixture confined in a two-dimensional vertically extended container
with the two opposite sidewalls, at x = 0,�∗, maintained at prescribed (and unequal) temperatures
and concentrations (Fig. 1). We adopt periodic boundary conditions in the z direction with spatial
period H ∗, and denote the dimensionless aspect ratio by � ≡ H ∗/�∗. We suppose that the wall
at x = 0 is maintained at a constant temperature T ∗

r and concentration C∗
r while along the wall

x = �∗ the temperature is maintained at Tr + �T ∗ with �T ∗ > 0. Along this wall we apply a
Robin type boundary condition on the concentration C∗: (1 − α)∂xC

∗ + αC∗ ≡ Cr + �C∗. When
no convection is present, this condition describes a wall that is maintained at a constant concentration
Cr + �C∗ with �C∗ > 0. In the presence of convection, however, the concentration gradient near
the sidewall steepens resulting in a concentration difference �C∗ across the system that increases
with the Grashof number, defined below. A boundary condition of this type corresponds to a
semipermeable wall at x = �∗ that allows solute to seep into the interior 0 < x < �∗ from a solute
reservoir in x > �∗. In particular, when α = 1 the right sidewall is completely permeable and the
interior is then in full contact with the solute bath outside.

We use the Boussinesq approximation with the fluid density ρ given by ρ = ρ0 + ρT (T ∗ − T ∗
r ) +

ρC(C∗ − C∗
r ), where T ∗ and C∗ are, respectively, the (dimensional) temperature and concentration,

and ρT < 0 and ρC > 0 are the thermal and solutal expansion coefficients at the reference temperature
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FIG. 1. Sketch of the geometry indicating the assumed dimensionless boundary conditions.

T ∗
r and concentration C∗

r . The Soret and Dufour (cross-diffusion) effects are ignored. Using
�∗, �∗2/ν∗, ν∗/�∗,�T ∗, and �C∗ as units of length, time, velocity, temperature difference T ∗ − T ∗

r ,
and concentration difference C∗ − C∗

r , the dimensionless equations read

∂tu + (u · ∇)u = −∇p + ∇2u + Gr(T + NC)ez, (1)

∂tT + (u · ∇)T = Pr−1∇2T , (2)

∂tC + (u · ∇)C = Sc−1∇2C, (3)

∇ · u = 0, (4)

where u ≡ (u,w),∇ ≡ (∂x,∂z) in the now dimensionless (x,z) coordinates, with x in the horizontal
direction and z in the vertical direction. The Prandtl number Pr, the Schmidt number Sc, the
Grashof number Gr, and the buoyancy ratio N are defined by Pr = ν∗/κ∗, Sc = ν∗/D∗, Gr =
g∗|ρT |�T ∗�∗3/ρ0ν

∗2, and N = −ρC�C∗/|ρT |�T ∗, respectively. Here g∗ is the acceleration due to
gravity. The domain is �-periodic in the z direction, and the boundary conditions along the vertical
walls read

x = 0 : T = C = u = w = 0, (5)

x = 1 : T − 1 = (1 − α)∂xC + αC − 1 = u = w = 0, (6)

where α ∈ [0,1] is a real parameter. The results that follow are computed for Sc = 11, Pr = 1, and
N = −1. The problem then has the trivial solution u = 0, T = C = x for any value of the parameter
α, and this solution is linearly stable up to a critical Grashof number that depends on the Lewis
number Le = Sc/Pr, as well as on the parameter α and the aspect ratio �.

It is useful to rewrite the above equations in terms of the departures T̃ ≡ T − x and C̃ ≡ C − x

from the conduction profile:

∂tu + (u · ∇)u = −∇p + ∇2u + Gr(T̃ − C̃)ez, (7)

∂t T̃ + (u · ∇)T̃ = −u + Pr−1∇2T̃ , (8)

∂t C̃ + (u · ∇)C̃ = −u + Sc−1∇2C̃, (9)

∇ · u = 0, (10)
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subject to

x = 0 : T̃ = C̃ = u = w = 0, (11)

x = 1 : T̃ = (1 − α)∂xC̃ + αC̃ = u = w = 0. (12)

Equations (7)–(10) with the boundary conditions (11)–(12) are invariant under translations in the
vertical, z → z + d, (u,w,p,T̃ ,C̃) → (u,w,p,T̃ ,C̃), with translations by multiples of � acting as
the identity, as well as the reflection R1 : z → −z, (u,w,p,T̃ ,C̃) → (u, − w,p,T̃ ,C̃), with respect
to an arbitrary origin z = 0. When α = 1 the equations also have a reflection symmetry in x:
R2 : x → 1 − x, (u,w,p,T̃ ,C̃) → (−u,w,p,T̃ ,C̃). The convecting state that sets in at the critical
value of the Grashof number, Gr = Grc, is invariant under the double reflection R ≡ R1 ◦ R2 and is
therefore stationary. When α �= 1 the reflection symmetry R2 is broken and the convection pattern
starts to drift, as described in [15]. The following section is devoted to understanding the properties
of both stationary (α = 1) and drifting states (0 � α < 1) in the strongly nonlinear regime.

III. NUMERICAL METHOD

We use a numerical arclength continuation method to follow both steady states and traveling waves
(steady states in a moving frame). The equations are discretized in space using a spectral element
method in which the domain is decomposed in the vertical direction into ne equal spectral elements
of size nx×nz. In each element, the fields are approximated by a high-order interpolant through the
Gauss-Lobatto-Legendre points. Our numerical continuation method is based on a Newton solver
for the time-independent version of the equations (and boundary conditions) written in a frame
moving with velocity c. The unknowns include the velocity, temperature and concentration at the
grid points, the Grashof number Gr and the wave velocity c. The Jacobian itself is never computed
but its action on a given vector as well as the evaluation of the right-hand side at each Newton step
follow Mamun and Tuckerman [16] as described elsewhere [5,7,8,17]. When calculating a traveling
wave solution, an additional equation that fixes the phase must be added:∫




[(u − u†)∂zu
† + (w − w†)∂zw

† + (T − T †)∂zT
† + (C − C†)∂zC

†]d
 = 0, (13)

where 
 = [0,1]×[0,�] and the † indicates a previously calculated solution along the current
solution branch. This solution can be updated during continuation. Finally, the linear stability of the
solutions obtained in the continuation process is calculated using the Arnoldi method as described
in Ref. [16]. More details on the code and its adaptation to other problems arising in fluid dynamics
can be found in Refs. [7,17–19].

IV. RESULTS

A. The symmetric case: α = 1

Figure 2 shows the bifurcation diagram computed using numerical continuation of steady states
when α = 1, � = 10λc. Here λc = 2.513 is the approximate wavelength of the state that first sets
in in an infinite system, as the Grashof number increases through Grc ≈ 650.937. The steady states
come in two types, spatially extended states and spatially localized states. The former correspond
to periodic convection and in the present case consist of 10 pairs of stationary inclined corotating
rolls, hereafter referred to as P10. In the following we refer to the critical Grashof number as
Gr10, Gr10 ≈ 650.937, since steady states with a different number of roll pairs also bifurcate from
the conduction state, albeit for Gr > Gr10. The figure shows that this primary bifurcation is strongly
subcritical and is therefore accompanied by a saddle-node bifurcation at Gr ≈ 516.77. We mention
that the primary bifurcation generates a pattern with 10 pairs of counterrotating rolls. However, as
one proceeds along the P10 branch the clockwise rolls within each roll pair rapidly weaken and
shrink to zero, leaving a set of 10 counterclockwise rolls within the domain that gradually strengthen
as one proceeds up the branch.

093501-4



LOCALIZED TRAVELING PULSES IN NATURAL DOUBLY . . .

 0

 5

 10

 15

 20

(a) (b)

(c)

 500  600  700  800

E

Gr

 0

 5

 10

 500  600  700

 0

 1

 2

 500  600  700

Gr

Gr

E

E

P7P10

P7

P10

Leven

Lodd

FIG. 2. (a) Bifurcation diagram showing the kinetic energy E ≡ 1
2

∫ �

0

∫ 1
0 u2 + w2 dx dz along the P10, P7,

Lodd, and Leven branches of stationary solutions as a function of the Grashof number Gr when α = 1, � = 10λc.
The branch E = 0 shown in black corresponds to the conduction state and is stable up to Gr10 ≈ 650.937,
where a subcritical bifurcation to a branch of 10 pairs of counterrotating rolls takes place. The clockwise rolls
fade away as one proceeds up the corresponding P10 branch, leaving a state with 10 counterclockwise rolls.
Along this branch, a secondary bifurcation takes place at Gr ≈ 648.466 producing a pair of snaking branches of
spatially localized states (black curves). These branches terminate at a secondary bifurcation at Gr ≈ 581.183
located on the branch P7 of periodic states that bifurcates from the conduction state at Gr7 ≈ 715.54. The
branches in blue indicate the so-called rung solutions and correspond to drifting asymmetric localized states.
(b) A closer view of the snaking region. (c) Zoom of the lower part of the snakes-and-ladders structure of the
snaking region.

As expected on the basis of general theory [11,20] the bifurcation to the periodic state is
accompanied by a pair of branches of spatially localized states that bifurcate from the periodic
state at a very small amplitude (Gr ≈ 648.466), and likewise subcritically. This bifurcation moves
to lower and lower amplitude as the domain size grows and approaches Gr10 in the limit of infinite
domains. The localized states exhibit snaking within a substantial interval of Grashof numbers, as
described elsewhere [8], wherein the spatially localized states grow in spatial extent by successively
adding pairs of rolls, one roll at either end. This growth process terminates when the available
domain is full; in the present case the wavelength of the rolls within these isolated structures is
larger than the wavelength λc of the periodic state with the result that the localized states terminate at
Gr ≈ 581.183 on branch P7 consisting of seven corotating rolls within the domain. The two branches
of localized states are intertwined and accompanied by interconnecting branches of traveling unstable
asymmetric states shown in blue that extend from a fold on one branch to the corresponding fold
on the other. In the theory these states correspond to the rungs of the so-called snakes-and-ladders
structure [9] of the solutions within the snaking region.

Figures 3 and 4 show details of the two snaking branches, while Fig. 5 shows sample solutions
along the first rung of asymmetric states. Figure 3 shows the branch (in bold) of localized states
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FIG. 3. The snaking branch Lodd with an odd number of rolls (bold, left panel) and the corresponding
solutions shown at successive saddle nodes (right panels). The rightmost solution is the periodic solution at the
termination point of Lodd on P7. Parameters: α = 1, � = 10λc.

with an odd number of convection rolls, hereafter Lodd, while Fig. 4 shows the branch of localized
states with an even number of rolls, hereafter Leven. In each case the panels on the right show
the solution, appropriately centered, at successive folds on the snaking branch. All the rolls rotate
counterclockwise. Note that the rolls at the right folds are more vigorous than those at the left folds
and that the nucleation of new rolls takes place near the left folds. Both branches bifurcate together
from P10 and terminate together on P7 with seven rolls in the domain.

Figure 6 shows the individual rungs of the snakes-and-ladders structure. Since the rungs form
via pitchfork bifurcations from a circle of stationary states (i.e., via parity-breaking bifurcations at
either end), each rung branch consists of a pair of asymmetric states, traveling in opposite directions.
The speed c drops to zero as the square root of distance from either end, thereby forming an oval
structure in the c(Gr) plots shown on the right; the narrowest states drift the fastest.

However, despite its richness the bifurcation diagram in Fig. 2 is incomplete. Figure 7 shows
a more complete diagram showing a secondary branch of stationary states, referred to as M5,
that bifurcates from P10 at higher amplitude (Gr ≈ 626.7). The states on this branch are so-called
mixed modes and near Gr = 626.7 these resemble the 10-roll state with a superposed modulation
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FIG. 4. The snaking branch Leven with an even number of rolls (bold, left panel) and the corresponding
solutions shown at successive saddle nodes (right panels). The rightmost solution is the periodic solution at the
termination point of Leven on P7. Parameters: α = 1, � = 10λc.
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FIG. 5. Closeup of the first rung of the snakes-and-ladders structure of the snaking region (left panel).
Solutions on the right correspond (from left to right) to Gr = 524.52, 570.09, and 614.63. The asymmetric
states on the rung take the form of traveling pulses whose speed decreases to zero at either end of the branch
where the reflection symmetry R is restored. Parameters: α = 1, � = 10λc.

with wavelength 2λc, i.e., this secondary bifurcation corresponds to a 2:1 spatial resonance. With
increasing distance along the branch the contribution from the 10-roll state decreases rapidly with the
result that the five-roll state dominates. We show sample profiles along this branch in panels 1–4 of
Fig. 7(c). We emphasize in particular the increasing length of each roll within the resulting M5 state as
Gr increases, and the splitting of its core that takes place near the fold labeled 3 in Fig. 7(a). Near the
energy maximum of M5 there is a tertiary parity-breaking bifurcation that leads to a traveling 5-roll
state. Panel 5 in Fig. 7(c) shows a snapshot of an upward-traveling wave of this type; the asymmetry
associated with a nonzero speed is manifest. Figure 8 shows that, as expected from a parity-breaking
bifurcation, the speed varies as the square root of the distance from the bifurcation point in the
vicinity of Gr = 695.2. Both this state and the related TW6 state identified below are unstable.

We now turn to the disconnected states labeled TPn in Fig. 7(a). These states correspond to spatially
localized traveling pulses of convection, with TPn consisting of a group of n corotating rolls within
the domain, all traveling with the same speed. Figure 9 shows the speed of the single-roll state TP1

as a function of the Grashof number Gr. In the figure states with c > 0 travel downward while those
with c < 0 travel upward. Figure 10 shows the speeds c for downward-traveling TPn, n = 1,2,3,
in each case with the corresponding solution profiles at the three locations indicated in the top left
panel. Upward-traveling pulses are obtained by applying the symmetry R1 to each profile (Fig. 9).
The rolls comprising each pulse are largely similar, despite an expected asymmetry between the fore
and aft fronts that connect each structure to the background conduction state. In these plots states
labeled 1 have larger energy than states labeled 3, a consequence of the small amplitude precursor
that travels in front of the pulse and with the same speed. Thus at fixed Gr higher energy states
move more slowly than lower energy states. The precursor itself develops in the vicinity of the fold
and is associated with the growing asymmetry between the fore and aft fronts as the energy of the
pulse grows along the higher energy branch. Along this branch the speed decreases slightly with
increasing Gr (and hence increasing energy) while the opposite is the case for the TP1 states on the
lower energy branch whose speed increases with increasing Gr (Fig. 10, top left panel). However, this
straightforward behavior does not generalize to the TP2 and TP3 states (Fig. 10, top right panels).

Figures 7 and 10, computed for � = 10λc, suggest that the localized traveling pulses can be
viewed as finite segments of a periodic traveling wave state. As a result we view the traveling
pulses as accumulating on a heteroclinic cycle (in the comoving frame) consisting of an infinite
TW segment connected fore and aft to the background conduction state. Figure 11 provides further
evidence for this view; in the figure, computed for � = 12λc, the TPn states appear to converge
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FIG. 6. (a) Bifurcation diagram showing the kinetic energy E in the comoving frame, restricted to the rung
states and the conduction state. (b) The speed c along each rung branch. Since the rungs form via parity-breaking
bifurcations from circles of stationary states at either end, each rung branch consists of a pair of asymmetric
states, traveling in opposite directions. Parameters: α = 1, � = 10λc.

on the TW states as n → ∞. Such finite traveling pulses form whenever the speeds of the fore
and aft fronts coincide. However, the speeds of these fronts are expected to be unequal (owing to
the absence of the reflection symmetry R1 for moving structures), requiring the presence of a 1:1
resonance between the speeds in order to obtain a bound state of two such fronts, i.e., a traveling
pulse state that travels with a single speed. Imposing this requirement leads to a nonlinear eigenvalue
problem for c(Gr), as reported in Fig. 10. For further discussion of finite trains of traveling pulses
see Ref. [21].

We have also determined the linear stability of the traveling pulse states identified in Figs. 7 and
11. In both cases these states were found to be unstable, in agreement with the instability of the TW
state determined earlier. However, stable traveling states can be found when α < 1 as described next.

B. The nonsymmetric case: α < 1

We now turn to the case α < 1 corresponding to broken R2 symmetry. We first examine the
effects of weak symmetry-breaking (α ≈ 1). Because of the loss of R2 symmetry all the steady
solutions we have computed for α = 1, both periodic and spatially localized, now travel. This loss
of symmetry results in the breakup of the α = 1 snakes-and-ladders structure of the snaking region
into a stack of isolas, exactly as in the Swift-Hohenberg equation with broken reversibility [22]. The
breakup into isolas is a consequence of the reconnection between the steady states that now travel
and the rung states that travel because they were already asymmetric (Fig. 12). The mixed modes
M5 likewise travel and reconnect with the TW branch which now splits into two distinct branches,
one of upward-traveling waves and the other of downward-traveling waves (Fig. 12). Thus the loss
of the R2 symmetry generates a multitude of traveling states, both extended and localized.

093501-8



LOCALIZED TRAVELING PULSES IN NATURAL DOUBLY . . .

 0

 5

 10

 15

 20

 25
(a) (b)

(c)

 500  600  700  800

E

Gr

 0

 0.5

 1

 500  600  700  800

1 2 3 4 5

M5

•1

•

2

•3

•

5

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��

TW5

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��

M5

•

4

Gr

E

TP1

TP2

TP3

FIG. 7. (a) A more complete bifurcation diagram showing an additional secondary branch of stationary
solutions that bifurcates subcritically from P10 at Gr = 626.7 [panel (b)], producing a branch M5 of five
corotating rolls [solution profiles 2–4 in panel (c)]. Along M5 there is a tertiary bifurcation producing a branch
of traveling periodic solutions (TW5, in blue), profile 5 in (c). Both up and down traveling states have identical
energy and so appear as a single branch in the figure (the figure shows the kinetic energy in the comoving
frame). Three additional disconnected branches of unstable traveling pulses (labeled TPn, n = 1,2,3) are also
shown. Parameters: α = 1, � = 10λc.
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FIG. 8. The speed c along the TW5 branch created in the tertiary parity-breaking bifurcation identified in
Fig. 7. Parameters: α = 1, � = 10λc.

093501-9



D. LO JACONO, A. BERGEON, AND E. KNOBLOCH

-0.2

 0

 0.2

 750  800

c

Gr c > 0
�

�

c < 0

FIG. 9. Upward-traveling (c < 0) and downward-traveling (c > 0) single-roll pulses TP1 corresponding to
the folds in the left panel. For TP2 and TP3 the results are similar. Parameters: α = 1, � = 10λc.

Figure 13(a) shows that as soon as α < 1 the branches of upward- and downward-traveling
pulses also split, with the solid curves representing upward-traveling pulses and the broken curves
representing downward-traveling pulses. The splitting becomes more prominent as α decreases
and manifests itself in the behavior of the speed c shown in Fig. 13(b). The figure shows that the
branch of downward-traveling pulses (dashed line) exhibits complex behavior already at α = 0.97.
For α = 0.95 we have been unable to follow the downward-traveling pulses at all. In contrast,
the upward-traveling pulses can be followed in α with no difficulty (solid line). The origin of this
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FIG. 10. Top panels: Wave speeds of the three disconnected downward-traveling pulses TPn shown in
Fig. 7. Bottom panels: Snapshots of the solutions at locations indicated in the top left panel. In each case the
state labeled 1 has larger energy E than that labeled 3. Upward-traveling pulses are obtained by applying the
symmetry R1 to each of the states shown. The figure suggests that the TPn states, n = 1,2,3, can be viewed as
finite segments of the domain-filling TW5 state. Parameters: α = 1, � = 10λc.
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FIG. 11. Bifurcation diagram showing the kinetic energy E in the comoving frame as a function of the
Grashof number Gr for α = 1, � = 12λc for comparison with Fig. 7. The traveling pulses TPn, 1 � n � 4,
persist (side panels) but remain unstable. The figure emphasizes that the TPn states can be viewed as finite
segments of a domain-filling TW state, here TW6.

 0

 5

 10

 15

 20

 25
(a) (b)

(c)

(d)

 500  600  700  800

E

Gr

 0.25

 0.75

 520  550

 7

 9

 680  710

Gr

Gr

E

E

TP1

TP2

TP3

P10

M10

FIG. 12. (a) Bifurcation diagram for α = 0.999, � = 10λc, showing the kinetic energy E as a function of
the Grashof number Gr. All states now travel, and we use black curves to indicate spatially extended traveling
states and blue curves to indicate spatially localized traveling states. Panels (b) and (c) show appropriate
enlargements of panel (a) so that the reconnections within the snakes-and-ladders structure of the snaking
region that take place as soon as α < 1 become (barely!) visible. An additional mixed mode state, labeled
M10 and shown in panel (d), was omitted from Figs. 2 and 7 in the interests of clarity but is included here for
completeness. Like P10 and P7 (not shown) the M10 state drifts as soon as α < 1.
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FIG. 13. (a) The TP1 branches and (b) the corresponding speed c when α changes from α = 1 (red) to
0.99 (green), 0.97 (blue), and 0.95 (black) in a domain of aspect ratio � = 10λc. As soon as α < 1 the upward
(continuous lines, c < 0) and downward (dashed lines, c > 0) traveling states split, resulting in behavior that
depends on the direction of travel. We have been unable to follow the TP1 branch for downward-traveling pulses
for α < 0.97.

behavior is unclear but is most likely associated with the inability of the fore and aft fronts to lock to
one another, thereby destroying the localization responsible for the presence of the one-pulse state.
Both fronts have natural speeds of propagation. These are equal and opposite when α = 1 owing to
the presence of the center symmetry but become unequal as soon as α < 1. As a result one or other
front depins more easily [22]. However, the overall motion of the TP1 state can reduce the overall
speed difference thereby stabilizing the structure, or it can enhance it thereby leading to premature
depinning and hence the absence of localized states altogether. We believe that this mechanism is
responsible for the remarkable robustness of upward-traveling TP1 states and the corresponding
fragility of downward-traveling TP1 states.

Figure 14 sheds additional light on this process. The figure shows the evolution of the branch of
upward-traveling TP1 states with the parameter α in a global bifurcation diagram. The figure shows
that as α decreases the region of existence of these states expands rapidly towards smaller values
of the Grashof number [Fig. 14(a)] and reveals that for α ≈ 0.95 it connects with a second branch
of traveling 1-pulses present at yet lower values of Gr [Fig. 14(b)]. This second branch originates
in the breakup of the α = 1 snakes-and-ladders structure as explained above. Figure 14(c) shows
the evolution of the resulting greatly extended TP1 branch as α decreases all the way to α = 0; cf.
Ref. [23]. This figure is of interest since in the Swift-Hohenberg equation the isolas of traveling
pulses shrink to zero as the equivalent of the parameter α decreases, and the traveling localized states
disappear at finite α [22].

Figure 15 shows the corresponding reconnection behavior for TP2 as α decreases from α = 1
(black branch) to α = 0.99 (red branch) and then to α = 0.95 (blue branch). The figure shows that
the reconnection process is now much more complex although its basic effect remains unchanged.
The solution branch becomes more and more complex as α decreases further and we have not
succeeded in following the solution branch in this regime. Yet more complex behavior appears to
occur for TPn, n � 3.

Figure 16(a) provides an overview of the bifurcation diagram for α = 0 and � = 10λc, while
Fig. 16(b) shows the TP1 branch in greater detail. The snapshots to the right show that at larger
amplitudes the TP1 state is quite broad (profiles 1 and 5). It becomes quite localized as Gr decreases
towards the left fold and then undergoes the nucleation of a precursor (profile 3), a transition that
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FIG. 14. The kinetic energy E of the TP1 branch of upward-traveling pulses for (a) α = 0.97 and (b)
α = 0.95, both shown in red and superposed on the branches of steady and traveling states present for α = 1
(black dotted lines). (c) The kinetic energy E of the TP1 branch over a much larger range of α: α = 1 (dotted),
0.9 (dashed), 0.5 (dashed-dotted), and 0 (solid). All solutions are computed for � = 10λc.

takes place in the vicinity of the lower right fold. Near the fold labeled 4 the precursor attaches
to the main pulse, creating a broad localized structure that broadens yet more by location 5 on the
branch. Figures 17(a) and 17(b) provide a detailed picture of the near-threshold behavior for this
set of parameter values and in particular of the stability properties of TP1. Figure 17(c) shows, in
particular, that the primary bifurcation for this value of α is a supercritical Hopf bifurcation to a
traveling wave state TW6 with six wavelengths within the domain. However, this state soon loses
stability via a secondary Hopf bifurcation, i.e., a torus bifurcation. Figure 17(d) shows that the
stable small amplitude TW6 states coexist with the detached branch of traveling pulses TP1, with
the interval of stable pulses indicated by a heavy line. Comparison with Fig. 16(a) shows that the
state TW8 is also stable in this regime. However, the stability region of TP1 does not overlap with
that of TW7, a fact whose consequences are explored in the following section. Figure 18 shows the
corresponding speeds c.

 0

 5
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 550  800

E

Gr

FIG. 15. Bifurcation diagram showing the TP2 branch for α = 1 (black), 0.99 (red), and 0.95 (blue) for
comparison with Fig. 14.
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FIG. 16. (a) Overview of the bifurcation diagram for α = 0, � = 10λc. Red lines refer to the traveling
waves TW6, TW7 and TW8 shown in the panels on the right, with the filled triangles indicating secondary Hopf
bifurcations. Note that TW7 and TW8 both acquire stability at larger amplitude. (b) Enlargement of the branch
of the single-roll traveling pulses TP1 showing the locations corresponding to the snapshots also shown on the
right.
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FIG. 17. (a) Bifurcation diagram showing the kinetic energy E as a function of Gr for α = 0 and � = 10λc

with different enlargements shown in panels (b)–(d) with (c) and (d) including stability information. Panel (b)
shows the detached branch of traveling pulses TP1 (black curve) while panel (d) indicates their stability: heavy
continuous (light dotted) lines indicate stable (unstable) solutions. The TP1 lose stability at a Hopf bifurcation
at Gr = 388.41 (thin vertical blue line). Filled triangles indicate this and other secondary Hopf bifurcations.
Stable TP1 coexist with stable TW6 and stable TW8 but not with stable TW7; these traveling wave states (red
curves) are created in successive primary Hopf bifurcations as shown in panels (c) and (d).
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FIG. 18. (a) Speed c as a function of Gr for α = 0 and � = 10λc along the branches shown in Fig. 17.

C. Direct numerical simulations for α = 0

In this section we describe the results of direct numerical simulations of Eqs. (1)–(4) with N = −1
and the boundary conditions (5)–(6) with α = 0 for Grashof numbers that straddle the loss of stability
of the TP1 state [Fig. 17(d)]. Since α = 0 the symmetry R of the α = 1 system is strongly broken and
upward and downward-traveling disturbances travel with very different speeds. Figure 19(a) shows
a stable upward-traveling TP1 state at Gr = 386.4 in a space-time diagram showing the vertical
velocity w(x = 0.5,z,t) as a function of time, with time increasing towards the right. The pulse
travels with speed c ≈ 0.086 in agreement with the speed computed from Newton iteration, with a
compact but nonmonotonic leading front and an extended trailing tail. Figure 19(b) contrasts this
behavior with that occurring at Gr = 390.4 (c ≈ 0.163), i.e., in the region just beyond the loss of
stability of TP1 at Gr ≈ 386.5. In this regime the TP1 state is predicted to be unstable, a prediction
that is confirmed by the simulation. The simulation reveals that the unstable TP1 state evolves by
emitting a small amplitude rapidly propagating precursor that extracts an ever-increasing amount
of energy from the pulse, slowing it down, until such time as the pulse falls apart, generating a
rapidly expanding region of spatio-temporal chaos. This turbulent state persists as time increases
and is therefore apparently stable; in particular, there is no transition to any of the other stable states
such as TW8 that coexist with this state. Figure 20(a) shows the chaotic state over a larger time
interval. The figure shows a chaotic state consisting of rapidly traveling waves that intermittently
collapses into a state consisting of one or more relatively long-lived slow-moving slugs of convection
embedded in a laminar background that in turn breaks up into a chaotic state. The resulting lacunae

tt0

Γ
(a) (b)

5000

Γ

5000

zz

0

FIG. 19. Direct numerical simulations of the case α = 0 at (a) Gr = 386.4 (c ≈ 0.086) and (b) Gr = 390.4
(c ≈ 0.163) in a � = 10λc domain, showing w(x = 0.5,z,t) in a space-time plot with time increasing to the
right.
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FIG. 20. (a) Continuation of the chaotic behavior in Fig. 19(b) for Gr = 390.4 on the time interval
[5000,10 000]. (b) An enlargement of the region on the right of panel (a). Bottom panels show the corresponding
time series of wm(t) ≡ w(0.5,0.5�,t) and Em(t) ≡ 1

2 (u2
m + w2

m), where um(t) = u(0.5,0.5�,t) over the time
interval [5000,10 000] (left panels) and [9500,10 000] (right panels).

in the chaotic state may extend over a part of the domain or indeed the whole vertical extent of the
domain. This unusual behavior resembles that associated with dispersive chaos [24,25] as well as
the relaxation oscillations observed in binary fluid convection in a horizontal layer [26].

A detailed examination of Fig. 20(a) reveals that the chaotic state consists of several components
that repeat in an intermittent and spatially aperiodic manner. These include relatively long-lived
upward-drifting pulses of the type seen in Fig. 19(a) whose breakup recapitulates that shown in
Fig. 19(b). These states emit low-amplitude, low-wave-number TW that travel downward with a
speed that is substantially faster than that of the upward-drifting pulses [Fig. 20(b)]. The upward-
drifting pulse ultimately starts to pulsate and turns into a larger amplitude traveling wave resembling
TW7 that travels downward with speed close to the computed TW7 speed (c ≈ 0.0725). At this
value of Gr the TW7 is barely unstable, with a growth rate 0.355×10−3, accounting for the relatively
long time for which the solution resembles TW7 before departing from it. As a result the dynamics,
in this part of the space-time plot at least, resemble a complex oscillation between three states, an
upward-drifting spatially localized pulse state resembling TP1 and two different extended traveling
wave states, both of which travel downward. Figure 18 confirms that the pulse TP1 and the traveling
waves TW7 do indeed have opposite speeds at this value of the Grashof number, Gr = 390.4, and
given the trend revealed in Fig. 18(a) it is likely that the smaller wavelength waves present in the
chaotic regime in Fig. 19(b) likewise have a downward phase velocity.

Figure 20(b) shows that the lacunae that are interspersed throughout the chaotic state are in fact
all filled with the small-amplitude traveling waves. This is as expected, given that the base state is
unstable to traveling waves at this value of Gr. The lacunae are themselves generated in almost all
cases by the same process: a rapid upward expansion of the void owing to the progressive collapse
of a downward-traveling wave TW7, followed by a slower downward-moving front that closes the
void with the TW7 speed. In other words, the voids are closed off by the invasion of the void by these
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FIG. 21. (a) Transient chaotic behavior at Gr = 391 over the time interval [5000,10 000] initialized at t = 0
with an unstable TP1 solution at Gr = 391. (b) An enlargement of the time interval [7500,8500] showing abrupt
collapse of the chaotic state into a modulated traveling wave MTW4.

larger amplitude waves, and it is this invasion that determines their lateral extent. It is noteworthy
that the process that opens the void conserves phase, i.e., no phase slips take place during this process
[Fig. 20(b)], indicating that the frequency and wavelength adjust to the falling amplitude in just the
right way to maintain phase. Since the wavelength is approximately conserved [Fig. 20(b)] the ob-
served change in phase speed can be ascribed to the change in oscillation frequency as the amplitude
falls. This conclusion is consistent with the presence of folds in the TW branches shown in Fig. 18(a),
a trend that is likely followed by the smaller wavelength TW present in the chaotic state. We conclude
that the observed chaotic state is mediated by connections in phase space between upward-traveling
localized pulses and downward-traveling TW of small and large amplitude but identical wavelength.

Thus far we have examined the dynamics in the “gap” between stable TP1 states and stable
TW7 states. In Fig. 21(a) we examine what happens when Gr is increased to Gr = 391 at which
the TW7 state is stable. The figure shows that rather than collapsing to the stable TW7 state the
spatio-temporally chaotic state remains, albeit as a long transient. Moreover, this state collapses to
a new state, a periodically modulated TW4 state, hereafter MTW4. This is a two-frequency state,
with one frequency corresponding to drift and the other to the temporal modulation, and appears to
be stable. This statement is consistent with the observation that the kinetic energy E(t) is a single
frequency oscillation (not shown). It follows that the TW7 is not part of the spatio-temporally chaotic
attractor at Gr = 390.4, and that the collapse to MTW4 occurs spontaneously because the instability
of this state manifests itself at a phase when the state is not close to a TW7 state [Fig. 21(b)].
We surmise that if the instability manifests itself during a different phase of the oscillation the
final outcome might be different, for example, resulting in a collapse to the now stable TW7 state.
These observations suggest that the collapse of the spatio-temporally chaotic state is unrelated to
the change of stability of TW7 but that it is nevertheless highly complex, with extreme sensitivity to
initial conditions. Detailed exploration of this transition is beyond the scope of this work, however.

V. CONCLUSIONS

In this paper we have studied the properties of stationary and traveling states in natural doubly
diffusive convection in the so-called opposing case, i.e., when the temperature and solute gradients
across the system balance and a stationary conduction state is present. Steady convecting states
were found when the system possesses a reflection symmetry, in the present case a center symmetry.
In this case we found, by explicit computation, that steady localized states are organized in a
snakes-and-ladders structure familiar from studies of the bistable Swift-Hohenberg equation [20].
Since the equations are not variational the asymmetric localized states lying on the rungs of this
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structure all drift; we were able to compute the drift speed by solving the corresponding nonlinear
eigenvalue problem. One unexpected discovery was the presence of a branch of stationary mixed
modes, referred to as M5, extending well outside the snaking region. This branch originates in
a subsidiary secondary bifurcation from the primary branch of periodic states, and exhibits a
parity-breaking bifurcation to traveling waves. The resulting traveling waves persist over a wide
range of Grashof numbers and coexist with stable stationary convection. By employing homotopy
methods, following earlier work by Beaume et al. [27] and Mercader et al. [23], we were able to
identify a series of spatially localized traveling “pulses” that appear to accumulate on the branch
of traveling waves. Detailed stability calculations revealed that these traveling states are in fact
linearly unstable, at least for the parameter values explored. Despite this the important message of
this paper remains that nongradient systems may exhibit a wide variety of disconnected spatially
localized traveling states that may or may not be stable. We have described a procedure that allows
one to identify such states, a homotopy method that allows one to latch onto these solutions for one
set of boundary conditions, followed by continuation back to the desired boundary conditions.

As part of the homotopy procedure we have explored the consequences of progressively breaking
the center symmetry of the system by decreasing the homotopy parameter α (a Biot number of the
right wall) away from the value α = 1 required for center symmetry. As expected, once α < 1 all
stationary states drift. However, in addition, a number of reconnections with the drifting states present
already for α = 1 take place, leading to the generation of traveling pulses over a wide range of values
of the Grashof number, some of which are now stable. Explicit stability calculations, corroborated by
direct numerical simulations, identified parameter regimes with such stable traveling pulses. While
the details of the mathematical origin of these pulses remain to be fully understood (Ref. [28] may be
helpful), it is evident that the dynamics of natural doubly diffusive convection are much more complex
than existing studies indicate. In fact, the states we have computed are of a rather simple type: they are
stationary states or equilibria in an appropriately moving frame. It is known, however, that in systems
in which the primary bifurcation is a subcritical Hopf bifurcation to extended traveling waves, one
typically finds localized traveling waves as well. These states are of an altogether different type, being
quasiperiodic in time: the wave travels with phase speed cp through an envelope that moves with the
group speed cg �= cp. States of this type are expected to be present in the system studied here once
α differs from α = 1 sufficiently so that the Hopf frequency is no longer small but are much harder
to compute numerically [14]. We propose to investigate quasiperiodic localized traveling waves and
the quasiperiodic spatially extended MTW states identified in the previous section in future work.

Finally, we have used direct numerical simulation to determine the dynamics of the system
when the localized traveling pulses lose stability. These calculations, performed for α = 0, i.e.,
fixed concentration flux on the right wall, revealed complex dynamics at quite small amplitude.
This behavior, characterized by strong intermittency, coexists with stable large amplitude traveling
wave convection. We have presented numerical evidence suggesting that at least some aspects
of this behavior may be understood in terms of switching between three competing states: slow
upward-drifting convection pulses and two classes of spatially extended downward-traveling waves.
However, owing to the relatively large aspect ratio of the system the switching does not take place
synchronously throughout the computational domain and occurs instead in patches, leading to the
observed spatio-temporal intermittency.
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