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We analyze one of the simplest active suspensions with complex dynamics: a suspension
of immotile “extensor” particles that exert active extensile dipolar stresses on the fluid
in which they are immersed. This is relevant to several experimental systems, such as
recently studied tripartite rods that create extensile flows by consuming a chemical fuel.
We first describe the system through a Doi-Onsager kinetic theory based on microscopic
modeling. This theory captures the active stresses produced by the particles that can drive
hydrodynamic instabilities, as well as the steric interactions of rodlike particles that lead
to nematic alignment. This active nematic system yields complex flows and disclination
defect dynamics very similar to phenomenological Landau–deGennes Q-tensor theories
for active nematic fluids, as well as by more complex Doi-Onsager theories for polar
microtubule–motor-protein systems. We apply the quasiequilibrium Bingham closure, used
to study suspensions of passive microscopic rods, to develop a nonstandard Q-tensor
theory. We demonstrate through simulation that this BQ-tensor theory gives an excellent
analytical and statistical accounting of the suspension’s complex dynamics, at a far reduced
computational cost. Finally, we apply the BQ-tensor model to study the dynamics of
extensor suspensions in circular and biconcave domains. In circular domains, we reproduce
previous results for systems with weak nematic alignment, but for strong alignment we
find unusual dynamics with activity-controlled defect production and absorption at the
boundaries of the domain. In biconcave domains, a Fredericks-like transition occurs as the
width of the neck connecting the two disks is varied.

DOI: 10.1103/PhysRevFluids.2.093302

I. INTRODUCTION

Active suspensions are nonequilibrium materials composed of suspended particles whose activity,
driven by consumption of a local fuel, lead to particle motions or local induced flows [1,2].
Examples include bacterial swarms [3,4], collections of synthetic colloidal particles [5,6], and
mixtures of cytoskeletal filaments driven by molecular motors [7,8]. One origin of the instabilities
and complex dynamics in active suspension is the stresses created in the surrounding solvent
by the particles’ activity. The solvent is a coupling medium for multiscale dynamics: particle
interactions through the solvent can manifest at the system scale as collective motion, which feeds
back to alter their interactions. Theoretical and numerical studies have investigated various aspects of
active suspensions at different scales, from single-particle dynamics to suspension rheology. While
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discrete-particle simulations that incorporate long-ranged hydrodynamic effects can capture ob-
served large-scale features of these systems [9–13], constructing accurate continuum models is essen-
tial to their characterization and analysis and for making new predictions of macroscale behaviors [2].

Continuum descriptions of active suspensions of self-propelled particles, such as bacteria, have
been based on a variety of approaches [14–20]. In all, coarse-grained variables, such as particle
concentration, concentration-dependent steric interactions, order parameters, and solvent stresses
and velocity, are used to capture salient features of the macroscopic dynamics. In our own work,
we and our collaborators have developed Doi-Onsager kinetic models to describe the evolution of
suspensions of active rodlike particles [17,21–25]. In this approach, a Smoluchowski equation
describes the evolution of a particle distribution function, coupled to a coarse-grained Stokes
equation driven by the extra stresses created by particle activity and interactions. The fluxes and
stresses of the model are derived from modeling how such particles interact with mean-field flows
and other coarse-grained variables. For suspensions of self-propelled rods which interact only
hydrodynamically [17,21], this approach identifies characteristic aspects of the dynamics: either
uniform isotropic or globally aligned suspensions have hydrodynamic instabilities that depend upon
the self-propulsion mechanism, particle concentration, and system size [20–22], leading to the
emergence of complex, turbulent-like dynamics. When such particles also interact sterically through
concentration-dependent alignment torques, this generates a polar “active-nematic” model with an
isotropic-to-nematic ordering transition. The new nematically aligned steady states can again be
unstable to hydrodynamic instabilities, again leading to complex dynamics but modulated by an
effective liquid crystal elasticity [23]. Similar but more elaborate kinetic models have been derived
for bioactive suspensions [7] composed of microtubules (MTs) whose relative motions are driven
by processive cross-linking molecular motors such as kinesin-1 [24,25]. There, microtubule motion
and motor activity create polarity-dependent fluxes and stresses that drive hydrodynamic instability,
and a complex dynamics characterized by nematic director fields with motile disclination defects
that are continuously nucleated and annihilated.

While having the advantage of being founded upon microscopic modeling, such kinetic theories
can carry the price of complexity. For Doi-Onsager theories as above, the distribution function
depends upon both particle position x and orientation vector p (|p| = 1) and so, in three dimensions,
has five independent variables plus time t . This makes their simulation challenging. Hence,
simplifications have been sought, often following from moment-closure schemes that eliminate the p
variable, yielding more approximate models that describe the evolution of lower-order p moments of
the distribution function, such as the concentration φ(x,t) (zeroth moment), the polarity vector q(x,t)
(vector of first moments), and the unnormalized tensor order parameter D(x,t) (tensor of second mo-
ments) [2,26–28]. Tensorial moment-closure models can resemble, with important differences, tensor
models based upon phenomenological Landau–deGennes Q-tensor liquid crystal theories [29–31].

In this paper, we use Doi-Onsager theory to study what is perhaps the simplest active suspension:
a collection of nonmotile, yet mobile, rodlike particles that exert active dipolar stresses on the solvent
and interact with each other through hydrodynamic coupling and steric alignment torques. When
the stresses are extensile, we call these particles “extensors.” While this is a special case of the
systems above, it is well worth studying in its own right. First, it presents all the basic transitions
and instabilities associated with motile suspensions but in a more revealing and simplified form.
Second, there are several types of active suspensions described at least qualitatively by this theory,
including particles that elongate through stretching or growth, creating the extensile flows associated
with destabilizing dipolar stresses. Such particle dynamics occurs in some instances of bacterial cell
division [32], as well as in intriguing liquid-crystal phase transitions [33,34]. Such stretching is
also thought to occur for bundles of microtubules (formed by a depletion interaction) as they
are polarity sorted by kinesin-1 motor proteins [7,35]. A very different system is composed of
tripartite Au-Pt-Au nanomotors [36,37] for which catalytic surface reactions with a surrounding
aqueous hydrogen peroxide solution [38] create extensile surface flows. The self-assembly of motile
aggregates by small numbers of such nonmotile particles has been studied experimentally by Jewell
et al. [37] and Wykes et al. [36] and numerically by Pandey et al. [39].
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Third, we use this simple kinetic theory as a testing ground for constructing coarse-grained
macro models for active suspensions using the Bingham moment closure [40], a closure scheme
used successfully in the study of passive rod suspensions [41,42]. The Bingham closure expresses
fourth-moment tensors arising in the kinetic theory in terms of D(x,t) using the so-called Bingham
distribution, which is a quasiequilibrium ansatz. The Doi-Onsager system is then expressed solely
in terms of D. We call this BQ-tensor theory as D is an unnormalized form of the tensor order
parameter Q, itself the central evolved quantity in the Landau–deGennes theory of liquid crystal
dynamics, which has been applied extensively to so-called active nematics [24,25,29–31]. We
show that the BQ-tensor theory closely or exactly reproduces the instabilities of the kinetic theory
near homogeneous isotropic or nematic steady states. We then show through simulations that the
BQ-tensor theory gives an excellent statistical accounting of the complex dynamics resolved by
the kinetic theory model, both with and without steric interactions, of an active nematic suspension
driven by extensile stresses.

Finally, having established the fidelity of the BQ-tensor theory, we use it to examine the dynamics
of active suspensions under confinement. This is inspired by several recent experiments showing that
confined collective suspensions of self-propelled particles can organize into autocirculating states
[43–45] and develop emergent ordering and density shocks [6]. The dynamics of active suspensions
has been studied previously using both discrete particle simulations and continuum models in
straight channels [27,46], circular disks [26,47], annuli, and racetracks [28]. For suspensions in a
circular chamber, we find perfect agreement with the previous results for suspensions that interact
only hydrodynamically [26] and focus instead on the active nematic case where steric interactions
are strong. We observe a plethora of dynamical states as the activity is increased. In all, defects
are produced in the bulk, propagate, and annihilate, both with each other and at the boundaries.
In biconcave geometries, which are essentially two disks smoothly connected by a bridge, we find
evidence for a Friedricks transition in which the elasticity of the ordered fluid prevents flows between
the two sides. When the neck is wide enough, activity overcomes the elasticity, and material (and
defects) move between the two sides.

The paper is organized as follows. In Sec. II, we develop the kinetic theory for microscopic rods
that produce extensile surface flows. Except for the sign of the active dipolar stress, this theory
is nearly identical to the classical Doi-Onsager models for passive liquid crystal polymers where
the suspended molecules have fore-aft symmetry [42,48]. We discuss its analytical and stability
properties, as well as introduce simplified models, particularly coarse graining through the Bingham
closure. In Sec. III, we study numerically the dynamics of extensor suspensions. In periodic open
domains, we implement a pseudospectral method to solve both the kinetic theory and the BQ-tensor
theory and compare the two descriptions in terms of emergent coherent structures, flow patterns,
and statistical structure. We then simulate the dynamics of the BQ-tensor model in both circular and
biconcave domains using a finite element method. Following a discussion in Sec. IV, we present
some additional results in Appendixes.

II. DOI-ONSAGER THEORY FOR A SIMPLE ACTIVE SUSPENSION

A. A micromechanical model

Consider a suspension of N rigid rodlike active particles in a volume V , each of length l

and diameter b. The rods are considered to be slender so that the aspect ratio r = b/l � 1. For
definiteness, we assume a simple form of activity: Each rod produces a symmetric surface flow
v(s) = sgn(s)u0p with −l/2 � s � l/2 being the signed arc length along the rod center line, p being
its unit orientation vector, and u0 being the signed surface flow speed; see the schematic in Fig. 1.
Because of surface flow symmetry, such active rods are not motile. If u0 > 0 there is an extensional
straining flow along the rod, and a compressive one if u0 < 0. These flows are associated with dipolar
extra stresses. Directly following the derivation for Pusher suspensions [49], assuming that active
particles are small relative to the large-scale suspension flows they create in ensemble, and using
slender body theory for the Stokes equations, one can calculate the rod center-of-mass velocity, its
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FIG. 1. (a) A schematic of an extensor particle that produces extensile surface flows which yield extensile
dipolar stresses. Here x and p represent the center-of-mass position and the particle orientation, respectively.
Related examples: (b) bacterial filamentation, (c) Au-Pt-Au nanomotor, and (d) bundle of MTs mixed with
motile crosslinking motors.

rate of rotation, and the force and/or length exerted by the rod upon the fluid which, consequently,
gives the rod’s contributions to the added stress. The single-particle contribution from the active
surface flow is σapp, where σa = −ηl2u0/8 has units of force times length (i.e., a “stresslet”), and
η = 8πμ/| ln(er2)| with μ the fluid viscosity [23–25,49]. Note that σa < 0 for extensional surface
flows, and σa > 0 for compressive ones. Overall, when σa < 0 the system can exhibit activity-driven
hydrodynamic instabilities [14,17].

B. Doi-Onsager kinetic theory

As an expression of the conservation of particle number, one can derive a Smoluchowski
equation for the (dimensional) distribution function ψ(x,p,t) for number density of particles at
position x with orientation p:

∂ψ

∂t
+ ∇ · (ẋψ) + ∇p · (ṗψ) = 0. (1)

The distribution function is chosen so that
∫
V

dV
∫
S
dSψ = N , where V is the spatial domain

occupied by active fluid and S is the surface of the unit p sphere [17]. Here and for the remainder of this
paper, derivative operators without subscripts (e.g., ∇) denote spatial derivatives. The orientational
gradient operator on the unit sphere is ∇p = (I − pp) · ∂/∂p. Moments of ψ with respect to p arise
naturally in the theory: The particle concentration φ, (unnormalized) polarity field q, second-moment
tensor D (unnormalized tensor-order parameter), and fourth-moment tensor S are given by

φ(x,t) =
∫

S

dS ψ(x,p,t), (2)

q(x,t) =
∫

S

dS p ψ(x,p,t), (3)

D(x,t) =
∫

S

dS pp ψ(x,p,t), (4)

S(x,t) =
∫

S

dS pppp ψ(x,p,t). (5)
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The trace-free (normalized) tensor order parameter, the so-called Q tensor, is defined by
Q(x,t) = φ(x,t)−1D − I/d, with d = 2,3 the spatial dimension. The tensor Q has a maximal
nonnegative eigenvalue λmax satisfying 0 � λmax � (d − 1)/d. Assuming that λmax is isolated, then
we call its associated unit eigenvector the director m, and 0 � s = λmaxd/(d − 1) � 1 is the scalar
order parameter.

As described in previous work [17,21,23–25], the conformational fluxes ẋ and ṗ arise from the
dynamics of the particle’s center-of-mass position x and orientation p, calculated using slender-body
theory for the Stokes equations [50] and Maier-Saupe theory for steric alignment [51] of rodlike
particles. This yields

ẋ = u − DT ∇ ln ψ, (6)

ṗ = (I − pp) · (∇u + 2ζ0D) · p − DR∇p ln ψ, (7)

where u is the background fluid velocity field. Equation (6) states that the rod’s positions move with
the background fluid flow and undergo translational diffusion (with coefficient DT ), while Eq. (7)
extends Jeffrey’s equation for the rotation of rods by the fluid velocity gradient to include a local
alignment torque arising from a rod-rod interaction potential with strength ζ0. The last term of Eq. (7)
models rotational diffusion with coefficient DR .

The equations are closed by relating the incompressible background velocity u and pressure 
 to
the extra stress tensor σ produced by the particles’ presence [52], through a forced Stokes equation:

∇
 − μ�u = ∇ · σ , (8)

∇ · u = 0. (9)

The stress tensor σ has three contributions: σ = σ a + σ c + σ s . The dipolar active stress tensor
σ a = σaD arises from the active surface flows generated by particles. For extensor particles, σa

is negative, and for “contractors” it is positive (see Fig. 1). The so-called constraint stress tensor
σ c = σcS : E, where E = 1/2(∇u + ∇uT ) is the symmetric rate-of-strain tensor and σc = ηl3/24
arises from particle rigidity [23,48]. The stress tensor generated by steric interactions is σ s =
−σs(D · D − S : D) with σs = πηl3ζ0/3 [23,48].

Following Ref. [23], we introduce an effective volume fraction ν = nbl2, where n = N/V is
the mean number density [23,48]. To nondimensionalize, we choose a characteristic length scale
lc = b/ν, velocity scale |u0|, and stress scale μ|u0|/lc. The distribution function is normalized
such that (1/V )

∫
V

dV
∫
S
dS
(x,p,t) = 1. Equation (1) retains its form, where the translational and

rotational fluxes are now

ẋ = u − dT ∇ ln 
, (10)

ṗ = (I − pp) · (∇u + 2ζD) · p − dR∇p ln 
. (11)

The Stokes equation becomes

∇
 − �u = ∇ · σ , (12)

∇ · u = 0, (13)

where the dimensionless stress tensor is given by

σ = αD + βS : E − 2ζβ(D · D − S : D). (14)
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The dimensionless control parameters are

α = σa

μ|u0|l2
, ζ = ζ0

|u0|l2
, β = πrν

6 ln(2r)
, dT = ν

b|u0|DT , dR = b

ν|u0|DR. (15)

Given the normalization of 
, the average density is φ̄ = 1, and the state of uniform isotropy
is given by 
 ≡ 
0 = 1/4π in three dimensions (3D) and 1/2π in two dimensions (2D). In the
case of spatially uniform density, D = Q + I/d. Note that α inherits the sign of σa and that the
nondimensional translational and rotational diffusion coefficients are proportional and inversely
proportional, respectively, to the effective volume fraction ν. We will sometimes refer to α as the
activity and treat it as a free parameter though, in fact, it is a geometric parameter associated with
particle shape and the relative placement of active and passive stresses upon it [17,22,24]. For the
specific case of the tripartite rods considered by Wykes et al. [36], it is estimated that α ≈ −1.
Alternatively, if u0 is interpreted as the velocity scale for a base level of activity, then increases in
α (either positively or negatively) can be interpreted directly as multiplicative increases in surface
velocity over this base level.

Rotational thermal fluctuations of rodlike particles also give rise to an extra stress of form KD
with K > 0 [48]. Our assumption and expectation is that the deterministic active stress, with α of
either sign, is a much larger contribution.

A very similar model describes suspensions of stretching filaments where the distribution function
now depends upon particle length l(t). Assuming that particle length growth, l̇ = f (l), is independent
of particle position and orientation, one can derive a closed evolution equation for the marginal
distribution by integrating out l. The main differences are that u0 is replaced by f (l), and l

dependencies are replaced by distributional averages. As expected, l̇ > 0 yields extensile stresses.
Here we discuss some analytical properties of the kinetic model:
(1) Concentration fluctuations: Unlike suspensions of pusher swimmers, which also produce

extensile flows and where fluctuations can grow through nonlinear effects [21,49], concentration
fluctuations in the nonmotile case decay to zero. Again denote the fluid domain as V , and assume
either (i) V is a cubic domain [−L/2,L/2]3 over which 
 is periodic or (ii) there is neither mass nor
particle flux across the boundary ∂V . Integrating Eq. (1) over the unit p sphere, and using Eq. (6)
and velocity incompressibility, then gives

∂φ

∂t
+ u · ∇φ = dT �φ. (16)

Integrating Eq. (16) over V , integrating by parts, and applying boundary conditions (periodic or zero
flux) yield

d

dt

∫
V

dV

(
1

2
φ2

)
= −dT

∫
V

dV |∇φ|2. (17)

Hence, concentration fluctuations from equilibrium will decay to zero, regardless of particle type.
(2) An energy identity: Like the motile case [21], the kinetic theory has an energy identity

governing the evolution of a total energy composed of the configurational entropy and the steric-
interaction energy [53]. Let

E = S + κP =
∫

V

dV

∫
S

dS

(




0
ln





0

)
− κ

∫
V

dV ζ (D : D), (18)

where κ = dβ/α. The conformational entropy S is non-negative, and zero if and only if 
 ≡ 
0

(the state of uniform isotropy). The contribution P arises from the Maier-Saupe approximation to
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the classical Onsager potential [54]. We can show that E satisfies the identity

Ė = −d

α

(
2
∫

V

dV E : E + β

∫
V

dV E : S : E
)

− 4dζ 2β

α

∫
V

dV D : (D · D − S : D)

+ 2dζ

(
1 + 2βdR

α

)∫
V

dV D : D + dζβdT

α

∫
V

dV |∇D|2

−
∫

V

dV

∫
S

dS(dT |∇ ln 
|2 + dR|∇p ln 
|2), (19)

where every integral density is non-negative (in particular, D : (D · D − S : D) � 0). The first term
in braces is a generalized rate of viscous dissipation, the next three terms are generated by steric
interactions (and hence are multiplied by ζ ), and the last term is a negative-definite dissipation term
arising from thermal fluctuations.

Apparently, the above identity reveals that the nature of the active stress, i.e., contractile or
extensile, is a central determinant of system behavior. For a contractile active stress (α > 0) in the
absence of steric interactions (ζ = 0), the energy E is driven to zero, corresponding to a uniform
isotropic state. The same result holds for the motile case [21] and is consistent with the simulations
of semidilute active particle suspensions [11]. When steric interactions are more dominant, ordering
effects can drive active contractile systems into complex dynamics [23]. When α < 0 (i.e., extensor
particles), the particle activity increases the energy in the system through the first term, while its
effect upon the steric terms is somewhat complex.

(3) The stability of uniform isotropic suspensions: The linear theory of extensor suspensions has
a simple and evocative structure that is obscured in the motile case. We give below the results of
a stability calculation using the stream function � (i.e., u = ∇ × �), and the details are given in
Appendix A.

For an isotropic steady state, we have 
0 = 1/4π, D0 = I/3, u0 = 0, and S0
ijkl =

1
15 (δikδjl + δilδjk + δij δkl). Perturbing this steady state as 
 = 
0 + ε
 ′, D = D0 + εD′, S =
S0 + εS′, u = εu′, where ε � 1, we find the 3D Smoluchowski equation (1) can be linearized
at O(ε) as [17,22,23]

∂
 ′

∂t
− 3

4π
pp : E′ = 3ζ

2π
pp : D′ + dT �
 ′ + dR∇2

p
 ′, (20)

where E′ = 1/2(∇u′ + ∇u′T ) is a perturbed strain-rate tensor. The momentum-balance equation in
(12) and (13), together with Eq. (14), can be linearized as

∇
 −
(

1 + β

15

)
�u′ =

(
α − 2

5
βζ

)
∇ · D′, (21)

∇ · u′ = 0. (22)

Rewriting Eq. (21) in terms of � allows significant simplification. After some calculation (see
derivations in Appendix A), and defining g = ∇4�, the linearized equations reduce to

∂g
∂t

= [−C1(β)α + C2(β)ζ − 6dR]g + dT �g, (23)

where C1(z) = (3/5)/(1 + z/15) and C2(z) = (4/5) + (6z/25)/(1 + z/15). Thus, growth or decay
rates of the plane-wave solutions are given by

σ = −C1(β)α + C2(β)ζ − 6dR − dT k2, (24)

where k is the wave number. The revealing aspect of this linear analysis is that the effect of activity,
steric interactions, and rotational diffusion all compete at the level of scale-independent dissipation
and growth. Steric interactions associated with ordering drive the system away from isotropy, which
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is abetted by activity if α < 0 (i.e., for extensor particles). Further, as is generic for active suspension
theories in the absence of an external scale [2,17,24,25], we find the fastest growing mode occurs as
k → 0+:

σ (k = 0+) = −
(

3

β + 15

)
α + 2

(
β + 6

β + 15

)
ζ − 6dR. (25)

Hence, for periodic boundary conditions imposed on sufficiently large domains, the fastest growing
scale is directly associated with the domain’s first periodic mode (which agrees well with our
simulation results in Sec. III.)

As discussed below, another accessible steady state when steric interactions are strong is the
nematic state. We will turn to a numerical treatment to study its stability except in the case of sharply
aligned suspensions.

C. Reduced models

In this section, we will discuss two useful reductions of the kinetic theory. In the first, we
investigate a special case of suspensions where the active particles are strictly aligned at each point in
space. This is an exact reduction of the kinetic theory and is useful for constructing phenomenological
models illustrating the instabilities of aligned suspensions. Since dynamical simulation of the kinetic
theory is demanding given the number of independent variables (e.g., three in space, two on the unit
sphere, plus time in 3D), we investigate the Bingham closure, which has been successfully applied
to passive rod suspensions. This is a coarse graining that expresses the fourth-order S tensor in terms
of the second-order D tensor, leading to a so-called Q-tensor dynamics, which we term BQ-tensor
theory. We find that it gives an excellent accounting of the complex dynamics we observe in the kinetic
theory, and at a far lower computational cost by removing the orientational degrees of freedom.

1. Sharply aligned suspensions

One analytically useful approximation is to assume negligible translational and rotational
diffusion and that the suspension is sharply aligned [21]. That is, we write 
(x,p,t) = φ̄δ[p −
q(x,t)], where δ is the Dirac δ function on the unit sphere, and further assume that the concentration
is uniform, i.e., φ ≡ φ̄ = 1. Integrating the Smoluchowski equation (1) against p and making use of
∇ · u = 0 and the identity

∫
S
dS p∇p · (ṗ
) = − ∫

S
dS ṗ
 [17] yield

∂q
∂t

= −u · ∇q + (I − qq) · ∇u · q. (26)

The extra stress in Eq. (14) simplifies to σ = αqq + βqqqq : E, and u is solved by

∇
 − �u = ∇ · (αqq + βqqqq : E), (27)

∇ · u = 0. (28)

Equations (26)–(28) are apolar and also invariant under the transformation q ↔ −q.
Here we have a few comments:
(1) Equations (26)–(28) provide a useful comparison with the Bingham closure discussed below.

On this point, we can derive an equation for the evolution of the dipolar tensor D = qq, using that

∂

∂t
(qq) = −(u · ∇)(qq) + ∇u · (qq) + (qq) · ∇uT − 2(qq : E)qq. (29)

This evolution equation is

D∇ + 2(D : E)D = 0, (30)
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where D∇ = ∂D
∂t

+ u · ∇D − (∇u · D + D · ∇uT ) is the upper-convected time derivative. Therefore,
it becomes a closed evolution equation when taken together with the momentum balance equation
and incompressible constraint:

∇
 − �u = ∇ · [αD + βD(D : E)], (31)

∇ · u = 0. (32)

(2) The sharply aligned dynamics are interesting to consider in the Lagrangian frame of the
background flow. As a reminder, this is defined by the flow map X(α,t) from the initial position α

(i.e., the Lagrangian variable) to the current position X through

∂X
∂t

(α,t) = u(X(α,t),t), (33)

where X(α,0) = α. The associated deformation tensor is then defined as F = ∂X/∂α (Fij =
∂Xi/∂αj ). When defining the field of unit vectors r(α,t) = F·q0

|F·q0| , and using the identity ∂|F·q0|
∂t

=
|F · q0|(∇u : rr), it is then straightforward to show that r satisfies Jeffery’s equation:

∂r
∂t

= (I − rr) · ∇u · r. (34)

Noting that F(α,0) ≡ I and setting q(α,0) = q0(α), then the uniqueness of solutions to initial value
problems gives immediately that, in the Lagrangian frame, the solution to Eq. (26) is

q(α,t) = F · q0

|F · q0| . (35)

Equation (35) is simply a normalized version of the result of Cauchy that ω = F · ω0 with ω being
the vorticity field (ω0 is its initial value) evolved by the 3D incompressible Euler equations [55].
Naturally, this also yields a Lagrangian expression for the tensor D = qq:

D = (F · q0)(F · q0)

|F · q0|2 = F · D0 · FT

tr(F · D0 · FT )
. (36)

To be consistent with its origins, D0 must be initialized by the dyadic product of a unit vector with
itself. These expressions can be used to derive an integrodifferential version in the Lagrangian frame
akin to the vorticity-based Lagrangian formulation of the incompressible Euler equations [55].

(3) The sharply aligned dynamics, described either by Eqs. (26)–(28) or Eqs. (30)–(32), is
particularly useful for analyzing the stability of aligned suspensions. A globally aligned steady state
is given by q ≡ ẑ (or D = ẑẑ, where ẑ is a unit vector in z direction) and u ≡ 0. Following [21] by
linearizing about this state and seeking plane-wave solutions with wave vector k (k = |k|) yield two
growth rates:

σ1,2 = −αH1,2(χ ), (37)

where H1(χ ) = cos2 χ and H2(χ ) = cos2 χ (2 cos2 χ − 1), with χ ∈ [0,π ) the angle between the
normalized wave vector k̂ and ẑ (i.e., cos χ = k̂ · ẑ). For α < 0, there is exponential growth at all
plane-wave angles, independently of k, with the exception of χ = π/2, which is neutrally stable.
On both branches, the direction of maximal growth is χ = 0 for which the wave vector is aligned
with the suspension. This is in agreement with the more complex expression for motile suspensions,
and also seems to be a generic result for active matter theories [2,21,24,56]. Maximal growth rates
for any plane-wave vector k are again, like the isotropic case, obtained as k tends to zero.

Spatial diffusion can be incorporated in the model phenomenologically by including the term
dT (I − qq) · �q on the right-hand side of Eq. (26) [57]. This simply yields the modified growth rates

σ̃1,2 = −αH1,2(χ ) − dT k2. (38)
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2. Coarse graining via the Bingham closure

The kinetic theory is high dimensional, having three spatial dimensions and two angles on the
unit sphere (in 3D), and thus is expensive to simulate. Alternatively, we can consider approximations
based on moment-closure schemes to find approximate evolution equations for low-order p-averaged
quantities. Many such schemes have been proposed [19,42,48,58–60] but we consider here the
Bingham closure which is based on a quasiequilibrium ansatz and has been previously applied and
compared to kinetic theories of passive rod suspensions in simple rheological flows [42] (essentially
the same as ours but with α > 0 and externally forced). The zeroth moment with respect to p of
the Smoluchowski equation yields the concentration equation (16), while integrating the tensor pp
against the Smoluchowski equation yields a dynamical equation for D:

D∇ + 2E : S = 4ζ (D · D − S : D) + dT �D − 2ddR

(
D − φ

d
I
)

. (39)

The left-hand side of Eq. (39) is a tensor transport operator with its last term being generated by
Jeffery’s equation [61]. This evolution equation for D will be closed if the fourth-moment tensor S
is expressed in terms of lower order moments, in particular if S = S[D]. Here we use the Bingham
closure [40,41], which constructs an approximate local orientation distribution function 
B given
the second-moment tensor D. The Bingham distribution takes the axisymmetric form:


B[T] = exp(T : pp)

Z[T]
, (40)

where T is a traceless symmetric tensor and Z[T] = ∫
S
dS exp (T : pp) is a normalization constant.

For given D, the tensor T is determined by solving the relation

D =
∫

S

dSpp
B [T] (41)

at each point in space. Computationally, one can take advantage of the fact that the eigenvectors
of T and D are coaligned and so both can be rotated into diagonal forms in a common frame.
Consequently, only the eigenvalues of T need to be determined [41]. Given T, and hence 
B , the
fourth-moment tensor S is then approximated by SB[D] = ∫

S
dS
Bpppp. The final equations take

the following forms:

D∇ + 2E : SB[D] = 4ζ (D · D − SB[D] : D) + dT �D − 2ddR

(
D − φ

d
I
)

, (42)

together with

∇
 − �u = ∇ · σB[D], (43)

∇ · u = 0. (44)

And the extra stress is expressed as

σB[D] = αD + βSB [D] : E − 2ζβ(D · D − SB[D] : D). (45)

We refer to Eqs. (42)–(45) as the BQ-tensor model. We can also show that both Eq. (39) and Eq. (42)
conserve tr(D).

For the above BQ-tensor model, we have several comments:
(1) Previous work [41,42] has shown that in potential flows and in the weak flow limit (i.e., the

equilibrium state), the Bingham distribution function yields the exact solution of the Smoluchowski
equation (with the rotational flux only). The Bingham distribution also arises naturally as describing
spatially uniform, nematically ordered steady states. Such steady states can be obtained by setting
ṗ = 0 in Eq. (11), leading to a balance between the rotational diffusion and the Maier-Saupe
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alignment torque (see, for example, Ezhilan et al. [23] and Gao et al. [25]),

∇p ln 
 = ξ (I − pp) · D · p, (46)

where ξ = 2ζ/dR . Consider the unit sphere with angle coordinates (θ,χ ) and polar axis along ẑ, so
that p = sin χ cos θ x̂ + sin χ sin θ ŷ + cos χ ẑ with θ ∈ [0,2π ) and χ ∈ [0,π ), where x̂ and ŷ are the
unit vectors in the x and y directions, respectively. In seeking a solution 
(χ ), we find D has the form

D[
] = A[
]ẑẑ + B[
]I, (47)

where A[
] = π
∫ π

0 dχ
(3 cos2 χ − 1) sin χ , and B[
] = −A[
]/3 (see Ref. [23]). Then
Eq. (46) can be integrated to


(χ ) = exp[δ(ξ ) cos 2χ ]

2π
∫ π

0 exp[δ(ξ ) cos 2χ ] sin χdχ
= exp(T : ppT )

Z[T]
, (48)

where T = δ(ξ )diag(−2/3,−2/3,4/3). In the above, δ(ξ ) is the solution of the equation:

δ = ξ

8

∫ π

0 dχ sin χ (3 cos2 χ − 1) exp(δ cos 2χ )∫ π

0 dχ sin χ exp(δ cos 2χ )
, (49)

which captures a bifurcation, with increasing ξ , from an isotropic [δ(ξ ) = 0, 
 ≡ 1/4π , and
A[
] = 0] to a nematically aligned state (δ(ξ ) 
= 0 and A 
= 0).

Thus the Bingham distribution has a microscopic origin with respect to the kinetic theory and
captures the the isotropic-to-nematic transition. However, to our knowledge there is no asymptotic
analysis, rigorous or formal, that establishes error estimates between the Bingham closure and the
original kinetic theory. We suspect that such a connection could be established in the particular limit
of strong alignment torques at large ξ .

(2) The BQ-tensor system is a direct closure of the kinetic theory for an active or passive
liquid-crystal polymer suspension, and each of its parameters has a clear origin (though admittedly,
the kinetic theory itself is derived under several modeling and separation-of-scale assumptions).
While structurally similar to the active and passive nematic Q-tensor theories that follow the
phenomenological Landau–deGennes (LdG) approach for liquid-crystalline fluids (see, for example,
Ref. [31]), there are significant differences. In the LdG approach, the ordering and relaxation
dynamics, and elastic stresses, follow from the LdG free energy. The BQ-tensor theory has different
nonlinearities governing the steric ordering, in both the D dynamics and the associated stress,
especially due to the presence of SB . While in the LdG theory the spatial diffusion coefficient of
Q is a Frank elastic coefficient, in the BQ-tensor theory for D it is the spatial diffusion coefficient,
dT , of the active particles. In the LdG theory, the transport operator for Q is a Jaumann derivative
[i.e., ∂Q

∂t
+ u · ∇Q − W · Q + Q · W, where W = 1/2(∇u − ∇uT )], while in the BQ-tensor theory

it is, in part, an upper-convected derivative arising from the microscopic modeling. Finally, in the
BQ-tensor theory there are additional terms, in both dynamics and stresses, that arise from the
constraint of particle rigidity.

(3) Note that while the original kinetic theory has an energy law [i.e., Eqs. (18) and (19)], the BQ-
tensor theory apparently does not. However, Li et al. [62] have recently developed more complicated
Bingham closure models for passive rod suspensions that preserve the energetic structure. In their
theory, the configurational entropy is approximated using the Bingham distribution, leading to a
theory where the T tensor appears directly in the dynamics, rather than only indirectly in the
calculation of SB . This approach leads to a closer concordance of the BQ-tensor and LdG Q-tensor
theories, though we have not pursued that here in the context of active suspensions.

(4) In the absence of spatial diffusion, Eq. (42) evolves D using only local information. Hence,
like the sharply aligned case, this equation could be reformulated naturally to describe the dynamics
in the Lagrangian frame.
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(5) One simple and direct comparison of the kinetic and BQ theories is their linear behavior near
steady state. We examine this in order, first for the uniform isotropic steady state and second for a
nematically aligned steady state.

(i) Stability near uniform isotropy. We will show that the kinetic and BQ theories give identical
results. This is easily seen by considering the evolution of the perturbation D′. Multiplying the
linearized Smoluchowski equation (20) by pp and integrating over the unit p sphere give the
evolution equation for D′:

∂D′

∂t
− 2

5
E′ = 4ζ

5
D′ + dT �D′ − 6dRD′. (50)

The above equation is closed since E′ is a linear functional of D′ through the linearized Stokes
equations (21). We take Fourier transform of all disturbance variables, i.e., f′(x) = f̃′(k) exp(ik · x)
in Eq. (50) (here f′ is either D′ or E′). In particular, transformation of the perturbed strain-rate
tensor Ẽ′(k) is constructed by inverting Eq. (21) to obtain ũ(k)′. After some algebra, the transformed
equation reads

∂D̃
∂t

= −γ [(I − k̂k̂) · D̃′ · k̂k̂ + k̂k̂ · D̃′ · (I − k̂k̂)] − ωkD̃′, (51)

where

γ = 1

5

(
α − 2

5ζβ

1 + β

15

)
and ωk = −

(
k2dT − 4ζ

5
+ 6dR

)
, (52)

and k̂ = k/k is the normalized wave vector.
Linearizing the BQ theory, Eqs. (42)–(44), gives an identical result, which is mainly because the

term D · D − S : D appears commonly in both the D transport and momentum-balance equations
(here we suppress the B subscript in the Bingham case). Also linearization of S : D produces
S0 : D′ + S′ : D0, and in both models we have S0 : D′ = 2D′/15 and S′ : D0 = D′/3.

To finish the analysis, we employ R as a rotation matrix such that k̂ = R · ẑ, and define D̂′ =
RT · D̃′ · R. Then Eq. (51) can be rewritten as

∂D̂′

∂t
= −γ [(I − ẑẑ) · D̂′ · ẑẑ + ẑẑ · D̂′ · (I − ẑẑ)] − ωkD̂′. (53)

In the rotated frame, the off-diagonal shear components D̂′
13 and D̂′

23 evolve as

∂D̂′

∂t
= −(γ + ωk)D̂′, (54)

which yields the growth rate, σ = −(γ + ωk), identical to that in Eq. (24). The remaining components
of D̂′ instead satisfy

∂D̂′

∂t
= −ωkD̂

′. (55)

In short, only D̂′
13 and D̂′

23 reflect the contributions of fluid flows, which can be stabilizing or
destabilizing. The remainder are decoupled from flow and show decay or growth only due to thermal
fluctuations and steric interactions, respectively.

(ii) Stability near a nematically aligned homogeneous state. As discussed above, with the
inclusion of steric interactions via the Maier-Saupe potential there are additional homogeneous
solutions that arise as a balance between the steric alignment torque and the rotational diffusion.
These solutions are parametrized by ξ = 2ζ/dR , and only the isotropic solutions exist when ξ is
below a certain critical value ξc. In 3D, there is a transcritical bifurcation at ξ = ξc ≈ 13.46 beyond
which the isotropic state becomes energetically unstable (in terms of the Maier-Saupe interaction
energy). The system will be driven toward a nematic state where particles become increasingly
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FIG. 2. growth rates as a function of wave-number k as alignment torques are increased (i.e., increasing
ζ/dR). The black dotted curve is the growth rate predicted from the sharply-aligned case. Here α = −1.0, β =
0.874, and dT = dR = 0.05.

aligned as ξ → ∞ [23]. In 2D, the bifurcation is instead a supercritical pitchfork bifurcation
occurring at ξc = 8 [25]. As discussed in comment (1), the form of distribution function for the
nematically aligned states is of Bingham type and hence yields steady states for the BQ-tensor theory.

The plane-wave stability of nematically aligned states has been examined in kinetic theories for
pusher and extensor suspensions [23] and for microtubule and/or motor-protein suspensions [24,25].
These show that activity can drive a bending instability where the wave vector of maximal growth is
aligned with the base orientation of the nematic state, as already suggested by the sharp-alignment
analysis [see Eq. (38)]. Here we examine the bending instability for extensor suspensions in 2D for
both the kinetic and BQ-tensor theories. Solving Eq. (49) for δ(ξ ) gives the Bingham distribution

0, the base-state tensors T0, D0, and S0, and the base-state normalization factor Z0. Perturbations
of these base quantities are introduced as (ε � 1)

T = T0 + εT′, Z = Z0 + εZ′, D = D0 + εD′, S = S0 + εS′. (56)

The perturbations can be further expressed in terms of T′ as

Z′ = Z0D0 : T′, D′ = (S0 − D0D0) : T′, S′ = (R0 − S0D0) : T′, (57)

with R0 = 1
Z0

∫
S
dSpppppp exp (T0 : ppT ) being the sixth-order p-moment tensor. These relations

allow us to express the high-order moments in terms of D′ through the intermediate variable T′.
The linearized equations are then transformed to Fourier space where we solve for the plane-wave
growth rates σ numerically.

Figure 2 shows the growth rates σ , for both the kinetic and BQ-tensor theories, of a plane-wave
perturbation to the homogeneous nematic state. Here the plane-wave vector is in the direction of
nematic alignment, which has the greatest growth rates. Similar to the isotropic case, the fastest
growth rate is obtained as k → 0+. These features are in agreement with the sharply aligned analysis
and for motile and microtubule suspensions. We show the effect of increasing alignment torque
while also comparing the results of the kinetic theory with those of the BQ-tensor theory. As ζ is
increased for fixed α, we see an increase in the maximal growth rate and the band of unstable modes.
We also see an increasingly good correspondence between the full kinetic theory and the BQ theory.
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In addition, when examining the prediction from the sharply aligned analysis (black-dotted curve),
we find while it gives an excellent accounting for the overall scale and features of the growth rate
curves, it is apparently not the asymptotic limit of the BQ-tensor model as ζ tends to infinity.

III. NUMERICAL STUDIES AND COMPARISONS

In this section, we study numerically the dynamics of extensor suspensions in both periodic and
closed geometries. We use simulations in 2D periodic geometries to compare the kinetic model with
its coarse-grained BQ-tensor model at different levels of activity (i.e., varying α). Here we consider
two versions of the model (both kinetic and its BQ-tensor closure): the full model, termed model
II, and model I, where we omit both steric interactions and constraint stresses (i.e., set ζ = β = 0).
Model I makes a connection with our earlier studies of active suspensions [17,21] and emphasizes
the fundamental differences arising from steric interactions and nematic ordering. In either case, we
find that the BQ-tensor theory gives an excellent statistical accounting of the complex dynamics,
particularly for model II. We then use the BQ-tensor theory to study the dynamics of active
suspensions under confinement. Flows in a disk have been studied previously using other closures
of model I to show bifurcations, with increasing activity, from isotropic to autocirculating flows, and
thence to more complex dynamics. We recapitulate this using a BQ-tensor version of model I and
find excellent agreement (see Appendix B for details). We then focus on the full model (i.e., model
II) to study confined suspensions when steric interactions are strong. These steric interactions make
a nematically ordered suspension the natural state against which activity competes, and we find both
new bifurcations and dynamical phenomena.

A. Numerical comparison of the kinetic and B Q-tensor theories

In 2D, we evolve 
(x,θ ), where θ ∈ [0,2π ) is the particle orientation in the xy plane (i.e.,
p = (cos θ, sin θ )). For the kinetic theory, we use Eqs. (1), (10), and (11) to evolve the distribution
function 
, with the requisite background velocity field obtained by solving Eq. (8). The numerical
method is pseudospectral with 256–512 Fourier modes in each spatial direction and 64 modes in the
orientation θ . Equation (8) is inverted via Fourier transform as [again, all physical variables f(x) are
transformed through f(x) = f̃(k) exp(ik · x)]:

ũ(k) = i

k2
(I − k̂k̂) · σ̃ · k. (58)

We use pseudospectral collocation to evaluate the nonlinear advection terms. For time stepping,
we use a second-order Adams-Bashforth scheme of the Fourier-transformed distribution function,
combined with an integrating factor method for handling the diffusion terms accurately and stably
[24,63]. The nondimensional diffusion coefficients, dT and dR , are chosen between 0.01 and 0.05.
We evolve the BQ-tensor system in a similar fashion, again using 256–512 Fourier modes in each
spatial direction.

As a first comparison, Fig. 3 shows the late-time evolution of model I for both the kinetic theory
and its BQ-tensor closure (again, setting β = ζ = 0). These simulations are performed from initial
data near uniform isotropy. In particular, the initial condition for 
 has the form


(x,θ,0) = 1

2π

[
1 + �

i
εi cos(ki · x + ϕi)Pi(θ )

]
. (59)

In the above, we choose the 2D wave-vector ki = (ki,x,ki,y) = ki k̂, where ki =
√

k2
i,x + k2

i,y is
the wavelength, and the two components (ki,x,ki,y) = 2π

L
(ni,x,ni,y) with the integers ni,x and ni,y

representing different orders of spatial modes in the x and y directions. The subscript i denotes the ith
wave vector that is selected from the first 10–15 modes with the longest wavelengths. Also in Eq. (59)
the amplitudes are defined as εi ∈ [−0.01,0.01], and phases ϕi ∈ [0,2π ) are sampled from uniform
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FIG. 3. Collective motion of extensor suspensions at late times (t = 100) when using model I, starting
from an initial condition of a small perturbation about the uniform state by kinetic theory [(a), (b)] and
BQ-tensor theory [(c), (d)]. Panels (a) and (c) show the nematic director field, superimposed on the color
map of the scalar order parameter s; right panels (b) and (d) show the background fluid velocity vector
field superposed upon the color map of the associated vorticity. The simulation parameters are chosen as
L = 15, α = −1.0, dT = dR = 0.02.

distributions with Pi , a low-order trigonometric polynomial which satisfies 
(θ + π ) = 
(θ ) [e.g.,
Pi = (cos 2θ )i]. The initial data for the BQ system is simply found by forming D from 
(x,θ,0).

In agreement with analytical prediction, we find that the initial concentration fluctuations decay
and the concentration becomes uniform. Figures 3(a) and 3(c) show the nematic director field
m(x,t) overlaying the scalar order parameter s(x,t). The system evolves quickly away from the
initially isotropic state to a temporally fluctuating state with high local order. Panels (b) and (d)
show the fluid velocity field u = (u,v) overlaying the planar (scalar) vorticity (ω = vx − uy). The
temporal and spatial dynamics for both models are complex and seemingly chaotic, and qualitatively
similar to those seen in models of bacterial Pusher suspensions [15,21] and of biofilament and/or
molecular-motor assemblies [24,25,29,30].

While both the kinetic and BQ-tensor models start with the same data for D, the system dynamics
being chaotic means that the two descriptions diverge in their details. However, both descriptions
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FIG. 4. The mean (i.e., spatially averaged) nematic order S as a function of time. Inset: Cor[u,u]. Solid
lines and open circles represent the results of the kinetic theory and the BQ-tensor model, respectively.

do evolve toward a similar statistical structure, as shown by the time evolution in the mean nematic
order S(t) = 1/V

∫
V

s(x,t)dV , from near zero to a temporally fluctuating state with mean near 0.6
(note the BQ theory slightly overestimates the order). The linear theory in Sec. III A predicts that
the kinetic and BQ-tensor models have identical linear growth rates from a uniform isotropic base
state. Exponential growth to saturation is seen in S(t) following a short equilibration period where
high-wave-number modes rapidly decay. Fitting S(t) during the growth period yields a growth rate
σ ≈ 0.16 for both models. This is close to the growth rate of the first fundamental mode in the
simulation box, σ ≈ 0.167, predicted by the linear theory. This figure also suggests that the growth
rate of the first mode sets the time scale to saturation.

That the kinetic and BQ-tensor theories produce the same magnitude of flow is seen in the very
similar scales of their vorticity dynamics. To quantify the flows’ length scales, the inset to Fig. 4
plots the normalized space- and time-averaged velocity-velocity spatial autocorrelation function
Cor[u,u](R) = 〈u(x) · u(x + R)/|u(x)|2〉, where R = |R|. We see a close match in this measure
between the two models, as well as a slight negative minimum (indicating oppositely directed flow
at R ≈ 13, which is near the box size). This is consistent with the first fundamental spatial mode in
the box growing the most rapidly.

In comparing Figs. 3(a) and 3(c), we find in both models large regions of high nematic order (light
to dark red) and director alignment. In the corresponding velocity fields [Figs. 3(b) and 3(d)], these
regions are associated with likewise oriented extensional straining flows (which are necessarily of
small vorticity). As found in simulations of active nematics [24,25], both models show ±1/2-order
disclination defects in the m field, inhabiting regions of small nematic order, and colocated with
fluid jets between oppositely signed vortical regions.

In Fig. 5, we show a late-time comparison for model II using the kinetic theory and its BQ-tensor
closure. Figures 4(a) and 4(c) show clearly that, in both models, the nematic field contains motile
disclination defect pairs of order ±1/2. The induced active flows in Figs. 4(b) and 4(d) look similar
to those of model I, but with stronger vorticity. The defects shown here exist in regions of small
nematic order (dark blue), and are born as opposing pairs in elongated incipient crack regions [24,25].
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FIG. 5. Active nematic states of extensor suspensions at late times (t = 100) when using model II, starting
from near-uniform state by kinetic theory [(a), (b)] and BQ-tensor theory [(c), (d)]. Panels (a) and (c) show the
nematic director field, superimposed on the color map of the scalar order parameter s; right panels (b) and (d)
show the background fluid velocity vector field superposed upon the color map of the associated vorticity. In
panel (a), typical disclination defects are marked by open circles (+1/2) and squares (−1/2). The simulation
parameters are chosen as L = 15, α = −1.0, ζ = 1.0, β = 0.874, and dT = dR = 0.05.

These crack structures locally decrease nematic order and increase curvature of director field lines.
Characteristically, we find that the +1/2 defects propagate approximately along their central axis
and have a much higher velocity than those of −1/2 order. The relatively higher flow velocity in
the neighborhood of a +1/2 defect appears as a well-localized jet, in the direction of defect motion,
between two oppositely signed vortices. These dynamics are similar to those observed previously
in studies of polar kinetic models of microtuble and/or motor-protein suspensions [24,25] and other
active nematic models [29–31].

Again, as shown by the evolution of the mean nematic order parameter in Fig. 4, the kinetic and
BQ-tensor models, evolving from the same D data, show statistically similar long-time dynamics and
nearly identical growth from isotropy. As expected, we observe a more rapid growth in model II away
from isotropy due to the Maier-Saupe alignment torques; see Eq. (24). The kinetic and BQ-tensor
models again show nearly the same exponential growth to saturation of S, with a fit yielding σ ≈ 1.2,
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FIG. 6. Evolution of an extensor suspension from near isotropy, for small but negative α (α = −0.3), when
confined to a disk of radius R = 2.0. The upper row shows the nematic field m overlaying the scalar order
parameter s (color field), while the lower row shows the velocity vector field u overlaying its scalar vorticity
(color field).

close to the linear growth rate of the first fundamental mode in the box σ ≈ 1.08 (which gives a time
scale for growth to saturation). Finally, the velocity-velocity autocorrelation function shows excellent
agreement between the kinetic model and its BQ-tensor closure (and improved over model I).

B. Active flows in confined geometries

Having established an excellent correspondence between the kinetic and BQ-tensor theories, we
now study the dynamical behavior of an active suspension confined to an enclosure, using the BQ-
tensor version of model II only. Experiments have used motile suspensions of bacteria [47], Quincke
rollers [6], and MT/motor-protein assemblies [7] to study the effects of confinement. Previous work
[26,27] has studied bacterial suspensions using models closely related to the BQ-tensor model of
model I. To establish correspondence with these works, in Appendix B we compare the dynamics
of model I in a circular chamber to previous analytical and numerical results by Goldstein and
Woodhouse [26]. Overall, we find excellent agreement, showing a bifurcation with decreasing
α < 0 from isotropy to an axisymmetric swirling state, further to a symmetry breaking associated
with +1/2-order disclination singularities, and thence to complex aperiodic dynamics. Here, within
the context of model II, we focus on the interaction of active extensile stresses and steric ordering
with the geometry of the confining chamber.

Boundary conditions. To solve the confined equations, we must supplement Eqs. (42)–(45)
with appropriate boundary conditions. We choose the simplest that conserve total particle number.
Consider a bounded 2D fluid domain V with boundary ∂V ; for example, see the disk in Fig. 6. Here
we assume the no-slip condition u|∂V = 0 for the velocity field when solving the Stokes equation.
For the D advection-diffusion equation we return to the kinetic description in Eqs. (1), (10), and
(11) and find that conservation of total particle number is enforced by the boundary condition
(u
 − dT ∇
)|∂V · n = 0, which reduces to dT ∇
|∂V · n = 0. Taking the second moment with
respect to p then gives the zero-flux boundary condition (n · ∇)D = 0 on ∂V . Note that this condition
does not enforce any particular alignment direction at the boundary.

Numerical method. We solve this finite-domain problem using a finite-element method with an
unstructured triangular grid. The governing equations are discretized using the standard 2D Galerkin

093302-18



ACTIVE FLUID MODELS . . .

formulation in terms of velocity u, pressure p, stress σ , and second-moment tensor D:∫
V

(
Re

∂u
∂t

+ ∇p − ∇ · σ [D]

)
· ut dV = 0, (60)∫

V

(∇ · u)ptdV = 0, (61)∫
V

[
D∇ + 2∇u : S − 4ζ (D · D − D : S) − dT ∇2D + 4dR

(
D − I

2

)]
: Dt dV = 0, (62)

where ut , pt , and Dt are test functions. Here we are solving an unsteady Stokes equation with a
partial derivative term Re( ∂u

∂t ) with an estimated Reynolds number of Re = 10−3. In the finite-element
solver, we choose different interpolation functions for different unknown variables in order to satisfy
the Ladyženskaja-Babuška-Brezzi (LBB) condition [64,65]. The fluid velocity is approximated
by piecewise quadratic functions which are continuous over V (P2). The pressure and stress are
approximated by piecewise linear functions (P1). For this type of mixed finite elements, it is known
that when Re is small, the numerical solution of the flow field can achieve third-order accuracy
in space [66]. For this study, the temporal discretization is a second-order difference scheme. The
governing equations are reduced to a nonlinear system of algebraic equations which is solved by
a modified Newton-Raphson algorithm [64,65]. Specifically, in each iteration of the algorithm, the
discretized linear system is solved by the generalized minimal residual (GMRES) method [67]. An
incomplete LU preconditioner [68] is used to accelerate convergence. In the following, we mainly
vary parameters α and R but fix ζ = 0.5, β = 0.874, and dT = dR = 0.05.

1. Active flows in a circular chamber

To start, in Fig. 6 we consider an extensor suspension with weak activity, α = −0.3. From
a nearly isotropic state, the orientation field rapidly orders (note the increase in the scalar order
parameter as compared to the cases in Appendix B where ζ = β = 0 are used in model I) and two
+1/2-order disclination defects appear [Figs. 6(a) and 6(e)], moving about the center [as seen in

0.1 0.9(a) 0.1 0.9(b) 0.1 0.9(c) 0.1 0.9(d)

-0.2 0.4(e)

t = 100

-0.15 0.2(f)

t = 110

-0.15 0.15(g)

t = 120

-0.25 0.25(h)

t = 130

FIG. 7. Evolution of an extensor suspension from near isotropy with α = −0.7, confined to a disk of radius
R = 2.0. The upper row shows the nematic field m overlaying the scalar order parameter s (color field), while
the lower row shows the velocity vector field u overlaying its scalar vorticity (color field); see Supplementary
Video S1 [69].
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Fig. 16(b)], while a vortical field appears concomitantly. However, these two defects spiral outward
to the disk boundary where they are absorbed [Figs. 6(b) and 6(f)]. No new defects are thereafter
created and the vortical flow weakens [Figs. 6(c) and 6(g)] as the nematic orientation field relaxes
to a homogeneously aligned state [Figs. 6(d) and 6(h)], which is allowed by the zero-flux boundary
condition for D.

Increasing activity (i.e., decreasing α) leads to persistent dynamics, as shown in the accompanying
supplementary videos. In Fig. 7, α has been decreased to −0.7; see video S1 in the Supplemental
Material [69]. Initially it follows the course of the previous case: The system moves quickly away
from isotropy with the appearance of two +1/2-order disclination defects and a vortical flow. The
defects spiral outward and are absorbed by the walls, and the system relaxes into a state of nearly
homogeneous nematic alignment. However, this state is unstable to hydrodynamic instabilities driven
by activity [24]. As seen in video S1, two cracks of low nematic order appear, with each birthing a pair
of disclination defects of opposing sign [order ±1/2; Figs. 7(a) and 7(e)]. The −1/2-order defects
are now absorbed by the wall [Figs. 7(b) and 7(f)], followed shortly thereafter by the +1/2-order
defects [Figs. 7(c) and 7(g)]. The process begins anew with the bending of nematic field lines and
the formation of two low nematic order cracks [Figs. 7(d) and 7(h)]. Accompanying the nematic
structure variation, we observe the persistence of background rotational flows which strengthen and
weaken through the various stages of this periodic dynamics (lower row of panels).

The dynamics becomes quasiperiodic or chaotic at yet higher activity. For α = −2, Fig. 8 shows a
short period in time that illustrates the complex system dynamics (see also supplementary video S2).
In Figs. 8(a) and 8(d), we see that as α further decreases, there is still a basic dynamics of two rotating
+1/2-order defects. The rotational flow is more finely scaled as there is now a secondary vortex

0.1 0.9

(a)

0.1 0.9

(b)

0.1 0.9

(c)

-0.4 0.8

(d)

t = 170 -0.4 0.8

(e)

t = 172 -0.4 0.8

(f)

t = 176

FIG. 8. Evolution of an extensor suspension from near isotropy with α = −2.0, confined to a disk of radius
R = 2.0. The upper row shows the nematic field m overlaying the scalar order parameter s (color field), while
the lower row shows the velocity vector field u overlaying its scalar vorticity (color field); see supplementary
video S2 [69].
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of the opposite sign to the primary (red) counterclockwise vortex. The dipolar form of the vortical
distribution is associated with a strong fluid jet, marked as the white arrow in Fig. 8(a). The primary
vortex is more compact, leading to a somewhat smaller circulatory flow. Shortly thereafter [Figs. 8(b)
and 8(e)], a low-order crack appears near one of the defects and births a defect pair. The newly formed
−1/2-order defect merges with and annihilates the older +1/2-order defect nearby (or sometimes
both defects are absorbed into the wall), and the process begins anew; see Figs. 8(c) and 8(f).

Finally, we refer the reader to the supplementary video S3 for α = −5 [69], which shows the
yet more complex interplays among defects, cracks, and the defect pairs thereby produced. The
associated vortical flows are no longer dominated by a single-signed vortex but are much more
dipolar, with a fluctuating predominance of one signed vortex over the other. While complicated
both spatially and temporally, the dynamics nonetheless maintains a quasiperiodicity.

Figure 9 shows the evolution of the mean nematic order parameter S(t) for these various
simulations. In all cases, the rapid growth of S(t) away from zero reflects the transition from isotropy
to a state of higher nematic order. For the simulation with the lowest activity, α = −0.3 (black
curve), this initial rise yields a transitory plateau slightly above S = 0.7 during which the dynamics
is characterized by formation and outward spiraling of two +1/2-order defects. Their absorption by
the chamber walls, when 40 < t < 60 (see Fig. 6), leads to relaxation to a homogeneously ordered
state with S slightly less than 0.9. The emergence of persistent and complex defect dynamics in the
other cases is reflected in the saturated behaviors of S(t) following growth from isotropy. In all cases,
the initial growth from zero can be well fitted by an exponential in time. The calculated growth rates
are plotted in the inset and show a linear increase with increasing activity α.

We have also examined the dynamics in circular chambers of different radii and found generally
similar behaviors. That being said, in a smaller confinement we have also discovered a fascinating
periodic coherent structure. Figure 10 shows the dynamics of the system for α = −2 (cf. Fig. 8) but
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FIG. 9. Evolution of the mean nematic order S(t) at different levels of activity with R = 2, corresponding
to the cases shown in Figs. 6–8, and supplementary videos S1–S3 [69]. The initial growth of S is found to be
exponential in time, and the inset shows a fit to the growth rates σ (open squares) as a function of −α. The
dashed linear fit suggests that the growth rate scales approximately with |α|.
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FIG. 10. Evolution of an extensor suspension from near isotropy with α = −2.0, when confined to a smaller
disk of radius R = 1.25. The upper row shows the nematic field m overlaying the scalar order parameter s

(color field), while the lower row shows the velocity vector field u overlaying its scalar vorticity (color field);
see supplementary video S4 [69].

with confinement radius R = 1.25, as it enters into a periodic dynamics. The defect dynamics starts
from the apparent splitting of a +1-order defect into two +1/2 defects [Fig. 10(a); see supplementary
video S4 [69]) corotating with the associated nearly axisymmetric vortical field [Fig. 10(d)]. The two
defects then destabilize from a common rotation centered about the origin [Figs. 10(b) and 10(e)], and
begin to, apparently, move into and out of the wall (i.e., the wall both absorbs and produces defects).
The apparent production of defects at confinement boundaries has been observed in experiments
involving microtubule and/or motor-protein assemblies [70]. Eventually, the system relaxes to having
one defect seemingly trapped outside of the physical flow domain, leaving only a vestigial low-order
crack which moves clockwise around the boundary in the direction opposite to the counterclockwise
circulation of the flow [Figs. 10(c) and 10(f)].

2. Active flows in a biconcave chamber

The coarse-grained BQ-tensor model and its finite-element discretization greatly facilitates the
exploration of active nematic flows in more complex geometries. In Fig. 11, we study the dynamics
of an extensor suspension confined to a biconcave chamber where two circular chambers, each of
radius R = 2, are connected smoothly by a bridge of width d. Here we fix α = −2. Supplementary
videos S5–S8 [69] show the dynamics as d is successively increased (d = 0.2, 0.8, 1.2, and 2). We
find that when the neck is thin, the dynamics in the two chambers are very similar to the case shown
in Fig. 7 for α = −2 and appear to be evolving independently of each other; see supplementary
video S5 [69]. This lack of interchamber communication is consistent with the velocity stagnation
zone in the bridge [Fig. 11(b)]. While a thin neck would be sufficient to prevent interplay between
the two chambers, this effect is likely reinforced by the alignment of the nematic field lines across
the neck which lends elastic rigidity to the material contained therein.
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d

FIG. 11. For two circular chambers connected by a narrow neck of width d = 0.2 and filled with an extensor
suspension with α = −2, (a) the nematic vector field m overlaying the scalar order parameter s (color field),
and (b) the fluid velocity field u overlaying its scalar vorticity ω. See supplementary video S5 [69].

The essentially independent dynamics of the two chambers persists to quite wide necks, e.g.,
d = 0.8. As seen in supplementary video S6 [69], the nematic field lines still span the neck,
apparently blocking any substantial breaching flows. As d is further increased, beyond dcrit ≈ 1.0,
the dynamics in the two chambers begins to couple. Figure 12(a) and supplementary video S7 for
d = 1.2 show significant bending and shearing of the nematic field lines, with Fig. 12(a) showing
that these deformations are associated with a vortex bounded above and below by two fluid jets
that penetrate from one side to the other. For the largest neck width, d = 2.0, Figure 12(b) and
supplementary video S8 [69] show that flows now move freely between the two chambers. This
transition is reminiscent of a Fredricks transition where an electric or magnetic field needs to exceed a
critical intensity to deform a uniformly aligned nematic liquid crystal material spanning between two
plates. Fredericks transitions have been studied in other contexts in the field of active matter [71,72].

IV. DISCUSSION

We explored a multiscale model, and its simplifications, for suspensions of rodlike particles that
exert active dipolar extensile stresses on the immersing solvent. This model is relevant to suspensions
or bundles of microtubules that undergo polarity sorting driven by crosslinking motor proteins
[73–76] and directly models suspensions of chemically active particles whose consumption of a
chemical fuel creates extensile flows along the particle [36,37,39]. Aside from analysis of the model,
a central goal here was to investigate the Bingham closure [40–42] as applied to active suspensions.
We found that the resultant BQ-tensor theory gave an excellent accounting of the chaotic self-driven
flows of active suspensions (both with and without strong alignment interactions) and allowed us to
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FIG. 12. Two circular chambers connected by a neck of width d and filled with an extensor suspension
with α = −2. (a) For d = 1.2, the nematic vector field m overlaying the scalar order parameter s (color field).
The arrows show the direction of shearing of the nematic field lines. The inset shows the fluid velocity field u
overlaying its scalar vorticity ω in the neck region. The arrows also correspond to the location and direction of
fluid jets between the two chambers. See supplementary video S7 [69]. (b) The nematic vector field and scalar
order parameter for d = 2.0. See supplementary video S8 [69].

investigate with relative ease the behavior of an active-nematic fluid under confinement. We found
several fascinating behaviors, such as defects being absorbed at (and perhaps birthed by) boundaries,
complex rotational flows, and an apparent Fredericks transition associated with nematic elasticity.

We remark that the BQ-tensor theory has no unfixed constants with respect to the full kinetic
theory and is far cheaper to simulate (essentially by a factor inversely proportional to the number
of points of the sphere (3D) or circle (2D) used to resolve the distribution function in orientation).
This also establishes a connection between Doi-Onsager kinetic theories and Q-tensor theories such
as those based on the Landau–de Gennes approach (e.g. [30,31,62]). We are currently working
on improving such closure approaches, from a variational perspective, and extending them to
polar kinetic theories such as for motile suspensions [17,20] and microtubule and/or motor-protein
suspensions [24,25].

A. Length scale determination

We close with a short digression into the determination of length scales of instability in active
suspensions, as a suspension of extensors is a particularly simple case to discuss. As previously
discussed, it seems generic that bulk models of active suspensions lack an intrinsic length scale
determined by a most unstable mode [14,17,24]. This is seen most directly in Eq. (24) for the growth
rates of plane-wave perturbations from isotropy and in our stability analyses of aligned states. It is
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also consistent with our simulations in periodic domains where observed growth rates from isotropy
are well described by that for the first fundamental mode with k = 2π/L of the periodic domain.
Nonetheless, some studies have sought to identify an intrinsic length scale of instability [77]. Such a
scale is present when the system is subject to an external drag or damping, as when an active material
is confined to a thin layer between two fluids (e.g., Gao et al. [24] in modeling the experiments of
Sanchez et al. [7], as well as Leoni and Liverpool [78]) or sits atop a substrate [79].

To be specific, consider a thin active layer evolving in the xy plane at z = 0, across which
layer activity gives a tangential stress jump between two outer 3D Stokesian fluids. By taking a 2D
xy Fourier transform of the 3D Stokes equations, the two half-space problems for the 3D Stokes
flows can be solved analytically under the conditions of zero velocity as |z| → ∞ and continuity
of velocity at z = 0. This determines the interfacial velocity field u(x,y) as a function of the active
layer extra stress σ [24,25,80]:

ũ(k) = i

2k
(I − k̂k̂) · σ̃ · k, (63)

where k̂ = k/|k| is the 2D unit wave vector. While not strictly necessary, we have assumed that the
interfacial flow is incompressible (as seems consistent with the experiments of Sanchez et al. [7],
private communication with Z. Dogic [70]). Thus, activity at the interface drives flows in the two
outer fluids, which in turn provides a drag on the active surface. Simulating this situation amounts
to replacing the inversion of the 2D Stokes operator in Eq. (58) with Eq. (63).

The inversion formula in Eq. (63) differs by a factor of k/2 from that in Eq. (58), where the Stokes
equation is forced by a bulk stress. The propagation of that difference through the stability analysis
is found by examining the coefficients γ and ωk [Eq. (52)] that govern the growth and decay rate
σk = −(γ + ωk) [Eq. (54)]. For the 2D (or 3D) bulk fluid case, γ has the form γ = α̃/(1 + β̃), while
for the immersed interface case considered here, it is modified to γk = (α̃k/2)/[1 + (β̃k/2)], which
rises monotonically in k from zero to α̃/β̃. For α̃ < 0, competition of activity with translational
diffusion in ωk yields a unique critical wave number kc > 0 at which σk is maximized.

This same effect manifests itself in the instability of a homogenous nematically aligned state
and yields an intrinsic scale that is observed in nonlinear simulations (see Gao et al. [24] for the
more complicated case of microtubule and/or motor-protein suspensions). For a simple extensor
suspension, Fig. 13 shows the numerically calculated growth rates σk (red curve) of a plane-wave
perturbation to the homogeneous nematic state, with wave vector taken in the direction of maximal
growth, θ = 0. This being the direction of maximal growth is in agreement with the sharply aligned
analysis of Sec. II C 1 and has been found in other studies of active suspensions [17,21,23–25]. The
computed curve also shows an intrinsic wave number of maximal growth, as was found analytically
for the isotropic state. As ζ is increased for fixed α, we see an increase in maximal growth rate and
decrease in its associated length scale. In that limit, we find an increasing correspondence between
the full kinetic theory and the BQ theory.

The parabolic-like structure of the growth rate curve is in qualitative agreement with our
phenomenological sharply aligned model when modified to the immersed interface case. This
modification alters the plane-wave growth rates σ̃1,2 in Eqs. (38)(where β = 0) to the form

σ̂1,2 = −αH1,2(�)k/2 − dT k2. (64)

For α < 0, this expression yields at each � (with H maximal at � = 0) a maximal growth rate
σmax = α2H 2(�)/16dT , occurring at kc = −αH (�)/4dT . We emphasize an important point: The
quadratic increase in maximal growth rate with activity follows from kc increasing linearly with
activity (i.e., decreasing negative α). For the bulk case, where the system size sets the most unstable
scale, maximal growth rates should scale linearly with activity [as in Eqs. (24) and (38) and the inset
to Fig. 9].
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FIG. 13. Linear stability analysis for a thin layer of homogenous nematically aligned extensor suspension
confined between two fluids. Growth rates are plotted as a function of wave number k at various ζ/dR using both
the BQ-tensor theory (dashed lines) and the kinetic theory (solid lines). The black dotted curve is the growth
rate predicted from the sharply aligned case. Computation parameters are chosen as α = −1.0, β = 0.874, and
dT = dR = 0.05.
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APPENDIX A: STABILITY OF 3D UNIFORM ISOTROPIC SUSPENSION

While the linear theory of the extensor suspension is a special case of that for a motile one, it does
have an especially simple and evocative structure that is obscured in the motile case. For an isotropic
steady state, we have 
0 = 1/4π, D0 = I/3, u0 = 0, and S0

ijkl = 1
15 (δikδjl + δilδjk + δij δkl). By

perturbing this steady state as 
 = 
0 + ε
 ′, D = D0 + εD′, S = S0 + εS′, u = εu′, the 3D
linearized Smoluchowski equation (1) becomes [17,22,23]

∂
 ′

∂t
− 3

4π
pp : E′ = 3ζ

2π
pp : D′ + dT �
 ′ + dR∇2

p
 ′. (A1)

This result uses that, for any p-independent tensor A, ∇p · [(I − pp) · A · p] = tr(A) − 3pp : A, and
that tr(D′) = 0 for a constant density flow. Multiplying Eq. (A1) by pp and integrating over the unit
p-sphere gives the evolution equation for D′:

∂D′

∂t
− 2

5
E′ = 4ζ

5
D′ + dT �D′ − 6dRD′. (A2)

This result uses that S0 : A = 2A/15 for any symmetric trace-free tensor A. An identical result is
obtained through linearization of Eq. (39). The momentum balance equation and incompressible
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condition, Eqs. (12)–(14), linearize to

∇
 −
(

1 + β

15

)
�u′ =

(
α − 2

5
βζ

)
∇ · D′, (A3)

∇ · u′ = 0. (A4)

Rewriting Eq. (A3) in terms of the stream function allows significant simplification. By assuming
that the fluid domain is simply connected, we can define the vector stream function � such that
u = ∇×� and �� = −∇×∇×� = −ω. Taking the curl of Eq. (A3) then yields

∇4� = α̃∇ × ∇ · D′, (A5)

where α̃ = (α − 2
5βζ )/(1 + β/15). Through the definition of D′ we can express the right-hand side

of this equation, component-wise, in terms of 
 ′:

(∇ × ∇ · D′)i =
∫

S

dS εijk

∂

∂xj

∂

∂xl

(pkpl)

′ =

∫
S

dS Li

′. (A6)

This defines the vector operator L, given component-wise by Li = εijkpkpl∂
2/∂xj∂xl . Equation

(A3) then becomes

∇4� = α̃

∫
S

dS L
 ′. (A7)

Now we turn to the evolution equation (A1). The contracted term pp : ∇u can be rewritten as
pp : ∇u = −L · � (this uses that pp : E = pp : ∇u, and that εijk = −εkji , followed by an index
relabeling). Then, Eq. (A1) can be rewritten as

∂
 ′

∂t
= − 3

4π
L · � + 3ζ

2π
pp : D′ + dT �
 ′ + dR∇2

p
 ′. (A8)

Now we take a time derivative of Eq. (A7) (i.e., ∇4�t = α̃
∫
S
dS L
 ′

t ), and use Eqs. (A8) and (A7)
to find

∂∇4�

∂t
= − 3α̃

4π

∫
S

dS L(L · �) + 3ζ α̃

2π

∫
S

dS L(pp : D′) + dT ∇6� + α̃dR

∫
S

dS L ∇2
p
 ′. (A9)

The terms on the right-hand-side of Eq. (A9) can be calculated as

∫
S

dS L(L · �) = −∇ ×
{
∇ ·

∫
S

dS [pp(∇u : pp)]

}
= 4π

15
∇4�, (A10)

∫
S

dS L(ppT : D′) = 8π

15

∫
S

dS L
 ′, (A11)

∫
S

dS L ∇2
p
 ′ = −6

∫
S

dS L
 ′. (A12)

Finally, by defining g = ∇4� and using the definition for α̃ the linearized dynamics reduces to

∂g
∂t

= [−C1(β)α + C2(β)ζ − 6dR]g + dT �g, (A13)

where C1(z) = (3/5)/(1 + z/15) and C2(z) = (4/5) + (6z/25)/(1 + z/15). Thus, growth or decay
rates of plane-wave solutions are given by

σ = C1(β)α + C2(β)ζ − 6dR − dT k2. (A14)
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FIG. 14. Panels (a) and (b) show the fluid velocity vector field u and its scalar vorticity ω (color field)
for two extensor suspensions confined to a circular chamber of radius R = 2 using model I. Panel (a) uses
α = −0.6, while panel (b) uses α = −0.7, which spans the critical value α ≈ −0.63 calculated by Woodhouse
and Goldstein [26]. Panel (a) shows the result of relaxation to a quiescent flow, while panel (b) shows the
emergence of an autocirculating flow. Panel (c) shows a comparison of the analytical calculation for the
azimuthal velocity in panel (b), with the numerically determined value taken along the white line in panel (b).

APPENDIX B: THE DYNAMICS OF MODEL I IN A CIRCULAR DOMAIN

We confine an extensor suspension to a circular chamber of radius R, starting the simulation near
uniform isotropy in the weakly aligned limit with ζ = β = 0, which corresponds to neglecting steric
interactions between filaments. This limit corresponds to the model previously studied by Woodhouse
and Goldstein [26], who discovered a symmetry-breaking bifurcation at which the stationary state
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FIG. 15. Corresponding to the simulations shown in Fig. 16, the evolution of the mean nematic order S(t)
at various values of α. Again, the initial growth of S is found to be exponential in time, and the inset shows a
fit to the growth rate σ (open squares) as a function of −α. The solid line is the growth rate predicted by the
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FIG. 16. Snapshots of the characteristic nematic and flow structures of extensor suspensions of increasing
activity (i.e., decreasing α), when confined to a circular chamber of radius R = 2. The upper row shows the
nematic field m overlaying the scalar order parameter s (color field), while the lower row shows the velocity
vector field u overlaying its scalar vorticity (color field).

transitions to a stable circulating state. For higher activity, another bifurcation produces an oscillatory
state with a pair of mobile defects.

We expected that our Bingham closure would reproduce the Woodhouse and Goldstein results
that used the Hinch and Leal closure [58] when neglecting steric interactions. Indeed, we recover an
identical system of linearized equations for perturbation about an isotropic state. Numerically, we
capture the bifurcation to a circulatory state (Fig. 14), and the growth rates agree quantitatively with
linear stability analysis (Fig. 15). The shape of the flow profile matches that determined analytically
[26] (Fig. 14).

For increasing activity (i.e., decreasing α), in Fig. 16 we reproduce the oscillatory two-defect
state found by Woodhouse and Goldstein [26]. For sufficiently high activity, this oscillatory state is
unstable to the production of cracks and defects in the nematic field, and multiple vortices.
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