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The inhomogeneous concentration distribution of erythrocytes and platelets in mi-
crochannel flows particularly in directions normal to the mean flow plays a significant
role in hemostasis, drug delivery, and microfluidic applications. In this paper, we develop a
coarse-grained theory to predict these distributions in pressure-driven channel flow at zero
Reynolds number and compare them to experiments and simulations. We demonstrate that
the balance between the deformability-induced lift force and the shear-induced diffusion
created by hydrodynamic interactions in the suspension results in both a peak concentration
of red blood cells at the channel center and a cell-free or Fahraeus-Lindqvist layer
near the walls. On the other hand, the absence of a lift force and the strong red blood
cell-platelet interactions result in an excess concentration of platelets in the cell-free layer.
We demonstrate a strong role of hematocrit (i.e., erythrocyte volume fraction) in determining
the cell-free layer thickness and the degree of platelet margination. We also demonstrate that
the capillary number of the erythrocytes, based on the membrane shear modulus, plays a
relatively insignificant role in the regimes that we have studied. Our theory serves as a good
and simple alternative to large-scale computer simulations of the cross-stream transport
processes in these mixtures.
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I. INTRODUCTION

As is well known, blood is a biological fluid mixture containing, among many other entities,
red blood cells (RBCs), platelets, and white blood cells suspended in plasma. Each species not
only differs in its biological function, but also exhibits a unique inhomogeneous concentration
distribution normal to the mean flow direction in the blood circulation. These concentrations change
nonmonotonically with the distance to the walls of either a blood vessel or a microfluidic channel
and are not easily understood using simple shear-induced diffusion models. In the case of red blood
cells flowing through capillary tubes, the histogram of their distribution obtained from experiments
typically shows a concentration peak at the centerline [1], usually a number of off-center peaks,
and finally a cell-free Fahreus-Lindqvist layer at the wall [2]. A number of these characteristics
(e.g., the cell-free layer) of red blood cell flow are not observed for rigid particles in Poiseuille flow
[3], and are commonly referred to as the characteristics of red blood cell migration. Platelets, on
the other hand, are depleted from the cell-laden region and become concentrated in the cell-free
layer [1,4]. Nanoparticles and microparticles of various shapes show distributions similar to that
of platelets in blood suspensions [5–8], and we refer to this phenomenon as particle margination.
Red blood cell migration plays a direct role in reducing the effective viscosity of blood [9,10] and
controlling plasma skimming [11]. In addition, platelet margination occurs only in the presence of
red blood cells, and is apparently important in hemostasis [12] and thrombosis formation [13]. As
has been discussed by numerous researchers [14–16], there is thus a great significance in studying
cell migration, particle margination, and their relationship in order to understand the human biology
of blood.
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Red blood cell deformability plays a key role in migration by generating a lift force acting
away from the wall [17], thus distinguishing the cross-flow movement of cells from that of rigid
particles. Experiments have demonstrated that the stationary aspherical shape of red blood cells
[18] is no longer maintained under pressure-driven flow [19]. The lack of a nucleus in red blood
cells simplifies their structures, and thus they are a good model of passive deformable particles.
The factors controlling their deformation are apparent when one notes that red blood cells have an
amphiphilic bilayer membrane encapsulating an internal fluid, as well as an internal spectrin network
for additional mechanical strength [20,21]. Their resistance to deformation is therefore governed by
the interplay between the lipid bilayer and the cytoskeleton [22]. A local reduction in red blood cell
concentration and thus a cell-free layer as described above, is formed by flow near surfaces when
the lift force dominates other forces acting on the cell. Diseased cells, such as those with sickle cell
disease or malaria, are found to have weak lifting forces and thus a reduced cell-free layer thickness
[21,23,24]. Since red blood cells occupy a volume fraction between 40% and 50% in a given arterial
flow [25], they can be considered as the dominant flow species and their distribution thus has great
impact on the dynamics of other blood particles.

On the other hand, platelets occupy a volume fraction of less than 1% in flowing blood, and
therefore their distribution is largely influenced by interactions with red blood cells as opposed
to their self-interactions. Because of their relative inflexibility and nonactivated shape, freely
flowing platelets are often treated as rigid discoid-shaped particles. As the hematocrit increases,
Fitzgibbon et al. found enhanced margination of platelet-sized rigid spheres in flowing blood [15],
as characterized by a concentration peak, which both moves closer to the wall and increases in
magnitude as hematocrit is increased. Mehrabadi et al. [26] measured the effective diffusivity of
platelets in blood and showed that platelets undergo RBC-enhanced shear-induced diffusion. In
the case of a wall trauma, platelets must first travel normal to the mean flow direction, reach the
bleeding site on the wall, and begin the formation of a platelet plug near the trauma site. Therefore,
it is advantageous to have marginated platelets in the vicinity of the vessel wall to reduce the time
associated with the early stages of clot formation.

Beyond understanding the microhydrodynamics of blood flow within the blood vessels, it is
well known that the commercial value of blood-based medical devices is greatly determined by
the amount of blood used, and thus microfluidic devices because of their compact size may be
preferred. In these devices, blood flows through channels with the smallest dimension being O
(10 μm), and margination and migration phenomena are key features of the physical functioning of
the device. In this context, Fitzgibbon et al. [15] estimated that the entrance length of microparticle
margination in flowing blood was approximately 1 cm in a channel of width of 30 μm. In a variety
of applications, researchers [27–31] have utilized varying degrees of cell migration to perform cell
sorting based on size and deformability and remove unwanted components of blood. In vitro studies
of marginated platelets adhering to reactive surfaces in channel flow serve as a dynamic assay to
predict cardiovascular diseases [32]. In drug delivery applications, particles ranging from O (1 μm)
to O (10 nm) have been examined as drug carriers and their degree of margination is considered a
key factor influencing the delivery efficiency to the vicinity of target sites [5,6,33,34].

Numerous simulation studies have been completed to understand the motion of flowing red blood
cells and platelets or rigid particles using a variety of techniques including boundary integral methods
[14,35,36], immersed boundary simulations [37], and dissipative particle dynamics [38,39]. These
simulations confirm the observations made in early experiments that red blood cell migration is
a deformability-induced phenomenon and particle margination is a result of the less concentrated
and less deformable particles interacting with the dominant cell species. However, the inclusion
of all particle species in simulations of whole blood always requires large-scale computing that is
expensive and time consuming. Moreover, each change of a single design parameter, e.g., the size
of the dilute, rigid particles, requires a new set of simulations even though the dominant cell species
is essentially unaffected.

In the past decade, researchers have renewed interest in developing approximate theories for
the flow of deformable particle suspensions particularly after sufficient information was gleaned
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from both experiments and simulations. Thus, using analogous methods that have previously been
pioneered for determining the rigid particle distribution in channel flows [40,41], theories have been
developed for both droplet migration [42] as well as capsule and red blood cell migration [39,43–47]
in channel and tube flows all with the inclusion of wall-induced lift. The flow field in these theories
is usually approximated (at least locally) as simple shear flow for convenience [39,44–46], and the
resulting concentration profile of the deformable species is characterized by a peak near the wall and
a plateau at the centerline. Therefore, they fail to reproduce the concentration peak at the centerline
as observed in experiments [1] and simulations [14,48]. Despite this apparent discrepancy, most
researchers argue that their simple shear flow approximation can capture the cell-free layer thickness
correctly. For example, Katanov and coworkers [39] used a balance between particle pressure due
to shear-induced diffusion and surface pressure due to hydrodynamic lift to obtain an estimate for
the cell-free layer thickness in the limit of small capillary number. They examined the effects of
the hematocrit, the capillary number and the tube radius on the cell-free layer thickness. However,
the agreement is only qualitative in small tubes. The latest contribution to this field is a theory by
Rivera et al. [47]. They considered the scenario of a pressure-driven flow in channels and used a
simplified expression for shear-induced diffusion and hydrodynamic lift to obtain analytical solutions
for particle distributions. They argued that based on the relative magnitude of each cross-flow
contribution, different migration and margination profiles can be achieved. These idealized models
certainly help describe the fundamental physics governing margination and migration. However,
none of the existing work is able to achieve a quantitative, or even semiquantitative agreement with
experimental and simulation results.

In this paper, we propose a theory that allows the prediction of the red blood cell and platelet
distribution normal to the mean flow direction in pressure-driven flow using results from fast,
small-scale (i.e., one or two particle) simulations and a collision-based Boltzmann equation approach.
Similar to the previous work [45,47], we identify shear-induced diffusion and deformability-induced
lift as two major flux contributions governing the cross-flow transport in blood. Finally, since rigid
spheres follow a similar margination mechanism as that of platelets, we include predictions for
the margination of spheres of different sizes. The novelty of our work lies in (i) resolving issues
unique to pressure-driven flow due to shear rate gradients; (ii) modeling the membrane properties
and asphericity of red blood cells using the Skalak law [49]; (iii) explicitly calculating shear-
induced diffusional flux based on particle pair interactions; and (iv) comparing with simulation and
experimental results for quantitative verification. Our goal is to develop a lower-dimensional model
that accelerates the computation of margination and migration in these systems while maintaining
high accuracy in the results. This model can be used not only to understand the fundamental physics
in the transport of blood, but also to guide the design of microfluidic devices.

II. MODEL DESCRIPTION

A. Overview

Our work is focused on the flow of blood through rectangular channels. A schematic of the flow is
shown in Fig. 1. We denote x as the flow direction, y as the vorticity direction and z as the direction
of the velocity gradient. We consider wall effects only in the z direction and ignore variations in the
y direction. Thus our flow can be approximated as a two-dimensional channel flow. The smallest
dimension z has a height H being approximately 10 μm. This size matches human arterioles and
venules as well as a typical dimension of microfluidic devices. We consider a binary suspension of
red blood cells and platelets in plasma. Red blood cells are treated as aspherical deformable particles
while platelets are rigid discoids. A pressure gradient over the channel in the x direction is supplied
to drive the flow. Plasma is treated as a Newtonian fluid, and therefore we would expect a parabolic
flow profile on the x-z plane in the absence of red blood cells. The existence of red blood cells makes
the mean flow profile more blunt and therefore increases the actual wall shear rate at a constant
mean flow [50]. Our goal is to determine the number density of red blood cells nC and platelets nP
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FIG. 1. A schematic of red blood cells (red) and platelets (white) in wall-bound channel flow driven by a
pressure gradient.

at steady state as a function of z. nP will later be generalized to the number density of rigid spheres.
We consider nC and nP as functions of z only. In our theory, we make the following assumptions.

(i) We assume the Reynolds number is low (i.e., Re = ργ̇cH
2

μ
� 1, where γ̇c is the characteristic

shear rate. ρ and μ are the plasma density and viscosity) such that inertial effects are ignored and
we can apply Stokes flow theories.

(ii) We ignore Brownian motion in the dynamics of red blood cells and platelets (i.e., the
corresponding Peclet number Pe = 6πμγ̇Cr3

kBT
→ ∞, where r is the particle radius, kB is the Boltzmann

constant and T is the temperature). However, we do consider this effect for smaller rigid spheres.
(iii) Red blood cells are assumed to be in the dilute to semidilute concentration regime, such

that two-cell interactions dominate. Platelets and rigid spheres are much more dilute than red blood
cells, and thus three-body or more interactions can be ignored completely. Also, hydrodynamic
interactions in the nondilute regime are reduced significantly by intermediate scattering events, as
demonstrated by detailed simulations [51,52]. Therefore, we can utilize such enhanced decay of
hydrodynamic interactions to simplify our calculation.

(iv) We assume the behavior of particles in blood suspension can be approximated by their
behavior in pure plasma. Specifically, we assume the behavior of a single red blood cell lifting in
a blood suspension can be approximated by its behavior in the absence of other particles. We also
assume the dynamics of two particles interacting in a blood suspension can be approximated by their
interactions in pure plasma. We will later present the comparison between our theory and full-scale
simulations to justify this assumption.

The last assumption is the key in our theory such that we replace the simulation of hundreds
of particles with the simulation of only one or two particles in order to dramatically decrease
computation time. In general our theory can be extended to the study of general suspensions of
deformable particles (e.g., vesicles and capsules) and rigid particles as long as the assumptions
above are satisfied.

We consider three types of motion that govern the cross-flow distributions of red blood cells and
particles: (i) hydrodynamic “collisions” and fluctuations, (ii) hydrodynamic lift, and (iii) Brownian
motion. We describe the physics of each type of motion below.

(i) Hydrodynamic “collisions” and fluctuations. In channel flow under shear, hydrodynamic
interactions between two aspherical particles moving towards each other lead to changes in particle
trajectories. The result is an increase in the cross-flow distance between the pair of particles. The
rate at which two particles interact scales linearly with the velocity difference between the two and
therefore is a shear-induced phenomenon. In the case of such a collision where two particles are of
the same type, this change in distance after successive collisions has a diffusive effect, or creates
so-called shear-induced diffusion as first discovered by Leighton and Acrivos [40]. The hematocrit
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Ht for the channel sizes we have chosen ranges from 10% to 20%, and is lower than the whole blood
hematocrit, but is characteristic of the hematocrit in small blood vessels due to branching effects
[53]. While many previous studies on simple shear flow include the assumption that three-body
effects and higher are negligible for these hematocrits [35,45–47], we consider these higher-order
effects in our work by introducing an additional hydrodynamic diffusivity D (i.e., as an add on to
the explicit consideration of two-body collisions) to determine the size of these multibody effects
for suspensions of red blood cells.

(ii) Hydrodynamic lift. At zero Reynolds number, deformable particles experience a lift force
away from the wall in pressure-driven flow. This tendency to migrate creates a convective flux away
from the wall. The lift forces from opposite walls drive the cells towards the centerline of the channel.
This lift force is induced by the wall due to the interaction of the deformable particle with its image
stresslet as well as the shear rate gradient in pressure-driven flow [54–56].

(iii) Brownian motion. As mentioned in assumption (ii), we ignore Brownian motion for red
blood cells and platelets since Pe > 104. We consider Brownian motion for rigid microspheres and
nanospheres since they are much smaller than red blood cells. DB denotes Brownian diffusivity for
such particles and it contributes a diffusive flux to their distribution. We consider DB = kBT

6πμr
=

3.6 × 10−11m2/s for a nanosphere 10 nm in diameter, which corresponds to Pe = 0.001. Notice that
in the hydrodynamic collisions, we do not include Brownian motion and assume that the particle
displacements are of the same magnitude as those for bigger particles. Thus, we assume that the
shear rate is high and the Peclet number is large for the collision process.

B. Master equations

We start with the governing equations for red blood cell concentration, nC , and platelet
concentration, nP , in the form of advection-diffusion equations as follows:

∂nC

∂t
+ ∂(ulif tnC)

∂z
+ ∂FCC

∂z
− ∂

∂z

(
D

∂nC

∂z

)
= 0 (1)

∂nP

∂t
+ ∂FCP

∂z
+ ∂FPP

∂z
− ∂

∂z

(
DB

∂nP

∂z

)
= 0. (2)

ulif t is the lift velocity of red blood cells, D is the hydrodynamic diffusivity of red blood cells and
DB is the Brownian diffusivity of rigid spheres. FCC , FCP , and FCP denote the fluxes created by
cell-cell collisions, cell-platelet collisions, and platelet-platelet collisions, respectively. We ignore
the effect of platelet-cell collisions on red blood cells due to the relative paucity of platelets. Thus
the distribution of red blood cells is decoupled from that of platelets as shown in Eq. (1). At steady
state, we first determine the distribution of red blood cells by balancing lift and collisional fluxes
and thereafter we obtain the distribution of platelets using Eq. (2) by setting DB = 0. In the end,
we consider the case of rigid spheres where FPP = 0 and DB is nonzero. Over a long period of
time(t � tcoll), we assume binary collisions are memoryless and shear-induced diffusion can be
treated as a Markovian process [57]. Thus, the collisional fluxes can be written as follows:

FCC =
∫

δz

∫
δy

∫ �CC

0
nC(z − b)nC(z − b − δz)δu db dδy dδz (3a)

FPP =
∫

δz

∫
δy

∫ �PP

0
nP (z − b)nP (z − b − δz)δu db dδy dδz (3b)

FCP =
∫

δz

∫
δy

∫ �CP

0
nP (z − b)nC(z − b − δz)δu db dδy dδz. (3c)

In the above expressions, δy and δz are the initial separation distances between two particles
in the y and z directions. We will impose a cutoff distance R on these interactions as the upper
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FIG. 2. The mean velocity in the x flow direction (solid lines) and the ideal parabolic flow velocity (dashed
lines), with both normalized by the wall shear velocity. Lz = 12 (H = 33.8 μm). (a) Ht = 10%, (b) Ht = 20%.
Ca = μγ̇ca

Es
, where Es is the cell membrane shear modulus. Reprinted with permission [14].

limit on δy and δz. The value of R will be determined from simulations in the following section. In
the presence of a shear rate gradient, hydrodynamics interactions are usually asymmetric during a
collision, even for two particles of the same species, leading to different displacement values for two
particles. �CC , �PP , and �CP are the cross-flow displacement values of the second particle due to
hydrodynamic interactions or collisions. δu is the relative velocity difference between two particles
in the x direction.

In the continuum model above, we are concerned with only center-of-mass distributions. One
obvious drawback is the zero collisional flux at the centerline due to vanishing shear rate. In
addition, the lift flux decays to zero at the centerline due to symmetry. Thus, the zero net flux causes
an aphysical singularity issue that does not exist in the solution for simple shear flow. We adopt
the approach of Miller and Morris [3] of adding a nonlocal shear rate correction term κ to the
local center-of-mass shear rate γ̇0(z): γ̇ (z) = γ̇0(z) + κγ̇c/2. We examine this effect for κ = 1,ε,ε2,
where ε = 2a/H and a is the equivalent radius of red blood cells. This correction takes into account
the finite size of particles such that they sample shear rates around their volume and therefore the
particle as a whole never experiences zero net shear rate. For a fixed γ̇c, an increase in H also
reduces the value of ε due to the reduction in the range of shear rates surrounding the particle.
Thus, δu = δu0 + κγ̇cδz/2, where δu0 is the center-of-mass velocity difference. As can be seen
from Fig. 2, the actual velocity profile of red blood cells at steady state deviates from a parabolic
velocity profile. Therefore, the velocity profile depends on the distribution of red blood cells to be
determined. However, this effect diminishes as hematocrit decreases and channel size increases.
To simplify the equation to be solved, we reference the actual red blood cell velocity profile from
simulations [6,14] as seen on Fig. 2 and calculate δu0.

Three sets of inputs are required to solve the master equations (1) and (2) at steady state: the red
blood cell lift velocity ulif t , displacement values from binary collisions �CC , �PP , �CP , and the
hydrodynamic diffusivity D for red blood cells. Rivera et al. wrote down similar master equations.
However, these values are not determined explicitly. Instead, they examined the relative contribution
of lift and binary collisions over a wide range of values [47,58]. In the present work, we explicitly
calculate the magnitude of each quantity. Thus, we are taking a bottom-up approach to examine
the mechanism of migration and margination, which is an important distinction from the previous
work. The lift velocity has been determined for drops and vesicles in Poiseuille flow [59,60].
We utilize boundary integral simulations to determine ulif t vs. z for a single red blood cell. The
displacement values for drops [61], red blood cells [45], and capsules [35] in simple shear flow have
been characterized, but we are not aware of any literature on red blood cell hydrodynamic collisions
in pressure-driven flow. We determine displacement values � from two-particle simulations. The
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hydrodynamic diffusivity is a lumped parameter for many-body collisional displacements. This
diffusivity varies with z as D = D̄a2γ̇ (z) due to shear-induced diffusion. We will use D̄ as a
fitting parameter to increase the accuracy of our results in terms of cell-free layer thickness l

when comparing to whole blood simulations—thus examining the effect of higher order multibody
interactions in determining the concentration distribution.

To solve these master equations, we discretize the z direction into 2N + 1 equally spaced
intervals. Therefore, the concentrations can be expressed as: nC(z) = ∑N

j=1 aj ξj (z) and nP (z) =∑N
j=1 bj ξj (z). ξj (z) are piecewise linear shape functions with a mesh size of 1/16 cell radius. We

then take an inner product of the master equations at steady state with these shape functions:〈
ξi(z),ulif tnC + FCC − D

∂nC

∂z

〉
= 0 (4)

〈
ξi(z),FCP + FPP − DB

∂nP

∂z

〉
= 0. (5)

Our numerical approach is similar to that outlined for simple shear flow [45]. Due to symmetry,
we solve a system of N quadratic equations for each species, subject to the total volume fraction
constraint.

N∑
j=1

Uijaj +
N∑

j=1

N∑
m=1

fCC,ijmajam −
N∑

j=1

dij aj = 0 (6)

N∑
j=1

N∑
m=1

fCP,ijmbjam +
N∑

j=1

N∑
m=1

fPP,ijmbjbm −
N∑

j=1

dB,ij bj = 0 (7)

Uij = 〈ξi(z),ulif t (z)ξj (z)〉 dij =
〈
ξi(z),D(z)

ξj (z)

z

〉

fAB,ijm =
〈
ξi(z),

∫
δz

∫
δy

∫ �AB

0
ξj (z − b)ξm(z − b − δz)δu db dδy dδz

〉
.

All integral expressions above are evaluated using the midpoint rule in intervals that are 0.05 times
cell radius. Using a uniform density profile as our initial guess, the coefficients ai and bi can be
determined using Newton’s iteration.

C. Boundary integral method

As mentioned above, our theory does rely on simulation outputs, which are red blood cell lift
velocity ulif t and collisional displacements �CC , �PP , and �CP . We utilize an existing boundary
integral simulation method [14,62] that determines the dynamics of red blood cells and platelets at
zero Reynolds number. Instead of simulating the whole suspension as shown in Fig. 1, we reduce
the number of particles to one or two as necessary for the inputs to the Boltzmann theory.

As mentioned in Sec. I, red blood cell membranes are nearly incompressible phospholipids
supported by a spectrin network. This structure offers red blood cells the resistance to shear,
dilatation, and bending. We model the shear elasticity using the Skalak law [49]. The typical
volume of a red blood cell is VC = 94 μm3 [63], which corresponds to an equivalent radius of
a = 2.82 μm [14]. The shear modulus is found to range between 6–9 μN/m [64], the bending
modulus EB is typically 2–4 × 10−19 J and the dilatational modulus is 480 mN/m [65]. Therefore,
we set the dilatational modulus to be 100 μγ̇Ca, which creates less than 1% change of area in
each surface mesh element and thus ensures near incompressibility. The bending modulus is set
to EB = 3.3 × 10−3a2ES and is included primarily to suppress buckling. The reduced volume ν
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FIG. 3. Surface meshes and reference shapes used for a red blood cell, a platelet, and a rigid sphere in
boundary integral simulations.

(ν = 3
√

4πVC

S
3
2

, where S is the surface area) is kept at 0.65, corresponding to a highly aspherical shape

since ν = 1 for a perfect sphere. The membrane properties listed above create the biconcave shape
of red blood cells at rest as seen in Fig. 3. The viscosity ratio λ is the ratio of the internal to external
fluid viscosity. The physiological value of λ is about 5. At such viscosity ratio, a single red blood
cell undergoes a rigid-body-like tumbling motion in flow while red blood cells in a suspension at
finite concentration exhibit tank-treading behavior. Narsimhan [45] studied the effect of the viscosity
ratio on the cell-free layer thickness in a single cell simulation in simple shear flow by solving an
equation similar to Eq. (1). He showed that λ = 1 results agree more closely with experimental data
than λ = 5. Therefore, we choose a viscosity ratio λ = 1 in our simulations such that we can recover
the tank-treading behavior seen in blood suspensions. We model platelets as rigid oblates with a
diameter of 2.8 μm and a thickness of 0.7 μm. Similar to red blood cells, platelets and spheres have
surfaces discretized as triangular meshes as seen in Fig. 3.

Our boundary integral simulation contains three types of equations that solve for RBC membrane
velocity uC , wall friction force [[fW ]], and a double-layer density on platelet or sphere surface ψP .
The details of the simulation are identical to Zhao et al. [14] unless specified otherwise. In the case
of cell-only simulations, rigid body motions are no longer considered while cell contributions are
ignored in platelet-platelet simulations. Thus the actual equations solved are much simpler.

The full boundary integral equations on the red blood cells, platelets, and walls are

1 + λ

2
uC − u∞ = 1 − λ

8π
KCCuC − 1

8πμ
NCC[[fC]] − 1

8π
KCP ψP − 1

8πμ
NCW [[fW ]] (8a)

1

2
ψP − u∞ = −

6∑
β=1

(q
′′β,ψP )q

′′β + 1 − λ

8π
KPCuC − 1

8πμ
NPC[[fC]]

− 1

8π
KPP ψP − 1

8πμ
NPW [[fW ]] (8b)

0 = 1 − λ

8π
KWCuC − 1

8πμ
NWC[[fC]] − 1

8πμ
NWW [[fW ]] − 1

8π
KWP ψP , (8c)

where u∞ is the far-field velocity of Poiseuille flow, and q
′′β are the six independent modes of rigid

body motion. The single- and double-layer kernels N and K are defined as:

(N[[f ]])j (x0) =
∫

[[f ]]i(x)Gij (x,x0)dS(x) (9)

(Ku)j (x0) =
∫

ui(x)Tijk(x,x0)nk(x)dS(x) (10)

and G and T are the fundamental Green’s function solutions for the Stokeslet and stresslet with
periodic boundary conditions [66]. The smooth particle mesh Ewald sum technique [67] is used to
accelerate the simulation.
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FIG. 4. Snapshot of a single red blood cell lift simulation.

D. Simulation domain

We choose the equivalent radius of a red blood cell a = 2.82 μm as our characteristic length
scale. Our simulation domain is a three-dimensional rectangular box with a size of (Lx,Ly,Lz). We
set Lx = 32, Ly = 9. We consider two values for Lz: 12 and 17.73 corresponding to H = 33.84 μm
and 50 μm channels that match the sizes used in previous simulations or experiments [6,14]. We
impose periodic boundary conditions in the x and y directions and no-slip boundary conditions in
the z direction. Therefore, we consider a pressure-driven flow bound between two walls at z = 0 and
z = Lz, respectively. We specify an average far-field flow velocity 〈u〉, corresponding to a parabolic
velocity profile in the absence of particles: u∞ = 6〈u〉 z(H−z)

H 2 . We define the capillary number as
Ca = μγ̇ca

Es
, where the plasma viscosity μ is 1.2 cP and where the capillary number represents the

ratio of viscous forces to red blood cell shear elastic forces. The characteristic shear rate γ̇c = 6〈u〉
H

is
defined as the equivalent wall shear rate in parabolic flow corresponding to the average flow velocity
〈u〉. For Ca = 1 the corresponding γ̇c = 2000 s−1, comparable to arteriole wall shear rates [53]. As
mentioned previously, the presence of red blood cells make the velocity profile more blunt and thus
the actual wall shear rate γ̇w is greater than γ̇c. Zhao et al. compared γ̇w and γ̇c in a 33.84 μm channel
[14], and found the difference to be at most 20% when Ht = 20% and Ca = 0.25. This difference is
less significant for higher capillary numbers and for a 50 μm channel. We vary the flow velocity to
study the single cell hydrodynamic lift and two particle collisions over a range of Ca.

In the lift simulations, we place a red blood cell at a height z0 = h above the bottom wall
in pressure-driven flow and time step the simulation as shown in Fig. 4 until the cell reaches the
centerline of the channel. The cell’s center-of-mass position is tracked over time and we can calculate
ulif t = dz/dt from this trajectory. Due to flow curvature, the local shear rate γ̇0 is a function of
position z, which depends on t during the lift process. Therefore, instead of nondimensionalizing
t with a constant characteristic wall shear rate γ̇c, we use the nondimensionalization in Eq. (11) to
consider the history of shear rate variation and plot z vs. t∗.

t∗ =
∫ t

0
γ̇0(t ′)dt ′ (11)

In the collision simulations, we consider three types of hydrodynamic interactions independently:
(i) cell-cell collisions, (ii) cell-platelet collisions and, finally, (iii) platelet-platelet collisions. For each
type of interaction, we place the first particle at position (Lx/2,Ly/2,z0) and the second particle at
position (Lx/2 + δx,Ly/2 + δy,z0 − δz). �CC , �PP , and �PP are functions of δy , δz, and z, where
z is defined in terms of the particle’s final position. We vary δy and δz as in our previous study in
simple shear flow [45] until these initial separations are large enough that interactions are negligible.
We also vary z since the shear rate is a function of z. For type (i) and (iii) collisions, we only need to
vary z0 from 0 to Lz/2 with δx,δy,δz > 0 due to symmetry. For type (ii) collisions, z0 varies from 0
to Lz with δx,δy > 0. For 0 < z < Lz/2, δz > 0 and for Lz/2 < z < Lz, δz < 0. From now on, we
refer to the particle initially closer to the wall as the near-wall particle and the other particle as the
near-center particle. As shown in Fig. 5, we time step the simulation and record the trajectories of
both particles over time. Red blood cells experience the lift force while colliding with other particles.
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FIG. 5. Snapshot of a cell-cell collision simulation: the near-center red blood cell (red) starts at height z0

and the near-wall red blood cell (blue) starts at height z0 − δz.

Therefore we subtract the simulated lift trajectory starting from the same initial position in order
to obtain the contribution from hydrodynamic collisions only. After a sufficiently long time, two
particles reach steady-state positions in the z direction. As mentioned before, these hydrodynamic
interactions are irreversible and the particles generally will not return to their initial positions. Thus,
the first particle will end up in z = z0 + �z1 while the second particle at z = z0 − δz − �z2. The
collisional displacements �z1 and �z2 can be calculated and their magnitudes are used in the
collisional flux calculation. In our study, δy , δz, and z0 are varied in equal intervals. The resulting �z

values can thus be tabulated in terms of δy , δz and z. We can quickly access � values at any given
δy , δz, and z from interpolation in those three dimensions.

III. RESULTS: BOUNDARY INTEGRAL SIMULATIONS

A. Lift simulations

The trajectories of a single red blood cell lifting at Ca = 0.25,0.5,1,2 are presented in Figure 6.
By nondimensionalizing time as in Eq. (11), curves at different capillary numbers collapse, which
agrees with findings from vesicle experiments [60]. The slopes of such curves represent the lift
velocity scaled by the local shear rate γ̇0(z) = γ̇c

¯̇γ0(z) and are independent of the capillary number.
Therefore, the dimensionless ulif t scales linearly with ¯̇γ0. For the range of capillary numbers we are

FIG. 6. Red blood cell lift trajectories from simulations, Lz = 12 (H = 33.8 μm), Ca = 0.25 (yellow
triangle), 0.5 (red sphere), 1 (green square), 2 (blue diamond), and fitted trajectory for Ca = 1 (black line).
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TABLE I. Fitted values of lift velocity parameters from simulations.

Lz Ca ξ α

12 0.25 0.055 1.3
12 0.5 0.057 1.0
12 1 0.069 1.3
12 2 0.087 1.6
17.73 0.25 0.045 1.2
17.73 0.5 0.031 1.3
17.73 1 0.039 1.2
17.73 2 0.048 1.2
Vesicle experiments [60] 0.012 ± 0.002 1 ± 0.1

considering, red blood cells reach a saturated shape due to membrane incompressibility and undergo
tank-treading motion with some oscillation [68,69]. Deviations in shape occur mostly in the center
region due to the reduction in shear rate. Therefore, we express the dimensionless lift velocity as
follows:

ulif t = ξ ¯̇γ0(z)

zα
. (12)

The fitted line using Eq. (12) matches the lifting trend nicely. The fitted values for the coefficient ξ
and powers α are tabulated in Table I. On average, the correlation for lift velocity is ulif t = 0.067 ¯̇γ0(z)

z1.3

for Lz = 12 and ulif t = 0.041 ¯̇γ0(z)
z1.2 for Lz = 17.73. Coupier et al. noted that the fitted coefficients

depend only on reduced volume ν, and weakly on the channel height Lz and the capillary number
Ca [60], which is consistent with our findings. Our fitted α values are also close to their fitted
values for vesicles whose reduced volume 0.815 < ν < 0.990. The ξ values are not comparable
due to the different scalings used. Similar to red blood cells, vesicles are deformable particles with
incompressible membranes and were found to undergo tank-treading motion in the experiments for a
viscosity ratio λ = 1 [60]. Therefore, it is not surprising that red blood cells resemble vesicles in terms
of their lift velocity. There exists abundant literature on the lift velocity of vesicles [54,70–73] and red
blood cells [69,74] in simple shear flow. In all those studies, it is straightforward to use the argument
that the far-field velocity scales with Szz

z2 using the method of images. The two-wall contribution can
be treated as a superposition of the lift velocity in opposite directions: ulif t = K( 1

z2 − 1
(Lz−z)2 ). Thus,

we would expect a faster decay than Szz/z
2 due to the canceling effect from the opposite wall. In our

case of Poiseuille flow, however, the correlation with z is lower than quadratic order, meaning the lift
velocity decays more slowly with the wall distance z. This follows since the lift force arises from both
the wall effect as well as the curvature of flow [75,76]. The curvature is significant especially near the
centerline of the channel as compared to a simple, linear wall-induced lift, which obviously vanishes
at the centerline due to zero shear rate. A previous vesicle simulation [60] has demonstrated that
curvature-induced migration forces dominate over wall effects for 8 � z � Lz − 8 when Lz � 16.
This curvature provides a lift force even in the absence of the wall [56,76] and results from the
interplay between particle shape and shear gradient [59]. The contribution from the opposite wall is
also trivial compared to the curvature effect as shown by the α values obtained. Thus, the channel
width does not significantly affect the lift velocity, which is consistent with our simulation results.
As far as we are aware, the literature on the red blood cell lift velocity in pressure-driven flow is very
limited [76]. We demonstrate that there are noticeable differences in the lift velocity away from the
wall in pressure-driven flow. Therefore, our results are novel and valuable especially for interpreting
experiments that examine and utilize the lift of a red blood cell.
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FIG. 7. Sample trajectories from cell-cell simulation after correcting for cell lifting, Lz =
12(H = 33.8 μm), Ca = 1, the red line denotes the near-center cell and the blue line denotes the near-wall cell.

B. Collision simulations

Sample trajectories of particles in pair collisions are shown in Figs. 7 and 8. We observed
trajectories similar to those for drops [61], capsules [44], and red blood cells [45] in simple shear
flow. In unbound, free shear studies, the � values are identical for two particles due to symmetry.
In bound, pressure-driven flow, however, the collisions are always asymmetric due to wall effects
as well as the varying shear rate. Comparing cell-cell collisions to platelet-platelet collisions, �CC

are slightly bigger as a net result of the particle size and deformability. All else being equal, the
displacement value increases with particle size. More deformable particles have smaller displacement
values at small δz and δy due to the ability of two cells to change configuration and affect the flow

FIG. 8. Sample trajectories from cell-platelet collision, Lz = 12 (H = 33.8 μm), Ca = 1, gray line denotes
near-center platelet trajectory, red dashed line denotes near-wall red blood cell’s original trajectory including
lift effect, red solid line denotes corrected trajectory.
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field. For the interaction between two different types of particles, � decreases with both size and
deformability. As seen from the sample trajectory plot of cell-platelet interactions in Fig. 8, the
red blood cell undergoes a very small change in trajectory. This fact, along with the difference in
concentrations, makes the flux of red blood cells due to cell-platelet interactions negligible. Our
assumption in master equation (1) is thus confirmed that FPC does not need to be included. �CP is
the biggest among all types of collisions, and plays a key role in platelet margination. Our findings
are consistent with those from other capsule simulations [77,78].

We return to a discussion of the importance the wall effects on cell-cell collisions in wall-bound
pressure-driven flow. In order to circumvent the problem of wall-induced red blood cell lifting during
collisions, unbound free shear flow simulations have sometimes been used to estimate the � values
[44,45] and these obviously do not take into account the wall effects. Alternatively, Narsimhan et al.
simulated two red blood cells near a wall in simple shear flow and determined the � values by
subtracting the lift trajectory from the actual trajectory. They found the near-wall � values deviate
from the far-field estimation especially when δz is small. More specifically, the wall prevents cells
from getting closer to the wall after collisions by changing the force dipole in the flow. Similar
observations have been made for rigid spheres in shear flow [46,79] and are said to enhance particle
layering in polydisperse solutions. In our work for the pressure-driven flow, we also find significant
wall effects even when δz values are not small and the cells are at moderate proximity to the wall.
As shown in Fig. 7, the near-wall cell has a smaller � value although it is located more than two cell
radii away from the wall. This reduction in displacement value is as if a repulsive force prevents the
particles from penetrating through the wall. Another wall effect is observed in cell-platelet binary
collision as shown in Fig. 8. The red blood cell, as the near-wall particle, lifts up in the z direction
and is unaffected by the presence of the platelet. However, the platelet, not experiencing a lift force,
displaces over an O(a) distance. This big displacement can be explained by the fact that there exists
a velocity difference in both the x and z directions for the two approaching particles. Near the
wall, the z component of relative velocity is significant and thus makes an additional contribution to
the cross-stream displacement �. This secondary effect from wall-induced lift makes the collision
asymmetric and affects the distribution of red blood cells and platelets. In addition, the difference
in size between red blood cells and rigid particles provides a distinct minimum distance to the wall,
which is important in the examination of near-wall particle distributions.

We examine the dependence of the collisional displacements on z, δz, and δy . It makes physical
sense that the displacement values decrease with the increase in δz and δy . In simple shear flow,
it has been found that hydrodynamic interactions are negligible for δz > 5,δy = 0 [45]. Here we
report a cut-off value of δz > 3,δy = 0, which is lower due to the reduced shear rate away from
the wall. Therefore, we use R = 3 as a cutoff distance in the integral calculation for collisional
flux calculations. The δy dependence is ignored in some previous studies [46,77] in shear flow—in
other words, shear-induced diffusion is assumed to be two-dimensional only. We find significant
variation in the collisional displacement � for δy up to 2.0. Thus, a two-dimensional model would
underestimate the hydrodynamic interactions and result in a lower diffusional flux. This would affect
predictions of the cell-free layer thickness.

The dependence of � on z is important and we carefully investigate it in this work. In addition to
the wall effect mentioned above, the varying shear rate significantly affects cross-flow movements as
well. As shown in Fig. 9, there is not a monotonic correlation of � vs. z, and we discuss these results
from a qualitative physical perspective. For a near-center RBC as seen in Fig. 9(a), the minimum
distance is at least 1.5 cell size away from the wall and therefore there are no available data for �

at very small z values. � is large and constant when z < 5 where it remains a saturated ellipsoidal
shape at high shear rates. When z increases and this near-center cell changes to a slipperlike shape
at reduced shear rates [14], � decays quickly. For the near-wall cell in Fig. 9(b), � is zero at
closest distance to wall, reaches maximum between the wall and the center and drops again near
the center. As mentioned before, the collisions are asymmetric and z is defined with respect to the
final position. Thus, for small δz, � values are roughly the same for the near-wall and near-center
particles at equal z.
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FIG. 9. Cross-flow displacement � values vs. z positions from cell-cell collision simulations, (a) near-center
cell, (b) near-wall cell, Lz = 17.73 (H = 50 μm), Ca = 1, δz = 0.5, δy = 0 (spheres), δz = 1, δy = 0 (squares),
δz = 1.5, δy = 0 (diamonds), δz = 2, δy = 0 (triangles).

The effect of capillary number on � is examined in Fig. 10. We take the ratio of � at different
capillary numbers to that at Ca = 1 and then average over the whole range of z, δz and δy values
to report a general trend of � vs. Ca. Thus, we observe an increase of � with Ca, which is most
obvious between Ca = 0.25 and Ca = 0.5. Above Ca = 0.5, � values remain almost constant. As
pointed out by Zhao et al. [54], Ca = 0.5 is the onset of tank-treading behavior of red blood cells.
Therefore, the flow field is strong enough to fully deform the cell and the cross-flow movement is
no longer sensitive to the capillary number. The weak increase of � at higher Ca may arise from the
shorter interaction time.

IV. RESULTS: THEORY

A. Red blood cell migration profile

We first solve Eq. (1) with D = 0 and examine the effect of the nonlocal shear rate correction term
κ as shown in Fig. 11. A κ = 1 correction effectively imposes a simple shear flow that is of the same

FIG. 10. Average cross-flow displacement � normalized by the average value at Ca = 1 vs. Ca from
cell-cell collision simulations, Lz = 17.73 (H = 50 μm).
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FIG. 11. Nonlocal shear rate effect on red blood cell concentration distribution, κ = 1 (red solid), ε (blue
dashed), ε2 (black dotted), D = 0, Lz = 12 (H = 33.8 μm), Ht = 20%, Ca = 1.

order of magnitude as the actual pressure-driven flow. Therefore, the correction term dominates in
the bulk region except near the wall, and the red blood cell concentration profile no longer has a
peak concentration at the centerline, characteristic of shear-induced diffusion in a pressure-driven
flow. The profile thus looks similar to that obtained for the wall-bound, simple shear flow case [45].
When κ = ε2, the correction term is so small that the volume fraction of red blood cells exceeds
the maximum packing of 1 at the center. Therefore, the singularity is not eliminated. We conclude
that κ = ε gives the best correction, which effectively brings down the concentration peak while
not affecting the bulk region. Our choice of κ is consistent with previous work on spheres in a
pressure-driven flow [3]. This effect can be interpreted as RBCs experiencing the volume average of
the positive shear rate over a red blood cell at the centerline and is a nontrivial correction only near
the center as compared to the effect of the center-of-mass shear rate γ̇0.

The term D corresponding to higher-order (multiparticle) collisions acts as an additional shear-
induced diffusive effect, and tends to smooth the concentration distribution of red blood cells. We
compare our theoretical results to those from large-scale simulations as in Fig. 12. As mentioned
before, the dimensional diffusivity D scales linearly with γ̇ , and thus is greatest at the wall and can
affect the cell-free layer thickness. We quantify the cell-free layer thickness by identifying the first
concentration peak from the wall and subtracting half the z dimension of the cell as shown in Fig. 13.
After fitting, we have matched cell-free layer thicknesses l with those from large-scale simulation at
Ca = 1 within 1% error. The fitted dimensionless diffusivity D̄ increases from 0.006 at Ht = 10% to
0.014 at Ht = 20%, and reaches 0.02 at Ht = 30%. This trend agrees with the fact that higher-order
collisions occur more frequently at higher concentrations. The exact correlation between D̄ and Ht
is not clear from three data points. We have calculated the relative error in cell-free layer calculation
associated with the effect of D in Fig. 14. Even in the case of D = 0, our theoretical results are
very close to the simulation results. This good agreement proves our assumption (iii) that binary
interactions dominate shear-induced diffusion for the hematocrits that we are investigating. The
best-fit D values, however do reduce the relative error to be within the tolerance of discretization.
Therefore, we consider D as an optional parameter to fine-tune our results for better agreement.

The effect of hematocrit on red blood cell concentration distribution is shown in Fig. 12 and 13.
When the hematocrit doubles from 10% to 20%, the volume fraction of red blood cells does not
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FIG. 12. Comparison of red blood cell concentration distribution between large-scale simulation (solid)
and theoretical results at various D̄ values, at Ht = 20% (blue) and Ht = 10% (red), Lz = 12 (H = 33.8 μm),
Ca = 1. At Ht = 20%, D̄ = 0 (circles), 0.007 (crosses), 0.014 (dashed line). At Ht = 10%, D̄ = 0 (circles),
0.006 (dashed line).

increase consistently at each location. In fact, the cell-free layer thickness l decreases as hematocrit
changes from 10% to 20%, and thus the center peak concentration does not double. We can make a
simple scaling argument regarding the hematocrit effect: the lift flux scales linearly with φC , but the
collisional flux scales quadratically with φC . Therefore, the hydrodynamic lift becomes relatively
weak at higher hematocrit, and it follows that the cell-free layer thickness is smaller. Katanov et al.
provided an alternative explanation using the balance of surface pressure and arrived at the same

FIG. 13. Cell-free layer thickness l at various hematocrits, using D = 0 (blue squares), D at best fit (red
triangles) and simulations (black spheres), Lz = 12 (H = 33.8 μm), Ca = 1.
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FIG. 14. Relative error in cell-free layer thickness at various hematocrits, using D = 0 (blue squares), D

at best fit (red triangles), and the discretization error (black dashed line), Lz = 12(H = 33.8 μm), Ca = 1.

conclusion for the effect of hematocrit in tubes whose radius is smaller than those considered in our
study [39]. Narsimhan et al. found that l ∼ φ

−1/2
C for simple shear flow [45]. Our results follow a

similar trend in pressure-driven flow because the near-wall region resembles that of simple shear
flow. Notice that the effect of the hematocrit on the cell-free layer thickness is expected to saturate
at higher hematocrits, e.g., 40%.

A comparison of the RBC concentration distribution in pressure-driven flow and shear flow [45]
at equal capillary number is shown in Fig. 15. As mentioned previously, the peak concentration in
pressure-driven flow occurs at the centerline due to the zero shear rate while the peak is close to the

FIG. 15. Red blood cell concentration distribution at Ht = 20% (blue) and Ht = 10% (red) for simple
shear flow [(i), solid] and pressure-driven flow [(ii), dashed], cell-free layer thicknesses l are labeled, Lz =
12 (H = 33.8 μm), Ca = 1.
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FIG. 16. Red blood cell concentration profile at Ht = 20% (blue) and Ht = 10% (red), cell-free layer
thicknesses l are labeled, Lz = 17.73 (H = 50 μm), Ca = 1.

cell-free layer in simple shear flow due to the balance between near-wall lift and collisions. We find
the cell-free layer thickness to be 20% smaller (all else being equal) in simple shear flow. While
the lift flux and collisional fluxes are roughly the same in both cases for the near-wall region at
matching shear rate, their differences become significant away from the wall. Both the collisional
frequency and the displacement values in pressure-driven flow are lower due to the reduced shear rate.
Therefore, shear-induced diffusion is weaker, and red blood cells are more likely to be concentrated
near the centerline.

We consider channel width of both 30 μm and 50 μm in our theory. The good agreement between
our theory in the 30 μm channel with large-scale simulation gives us confidence in the accuracy of
our 50 μm channel theory. As seen in Fig. 16, the distribution of red blood cells in a 50 μm channel
in general resembles the profile of 30 μm being stretched to 50 μm, with a slight increase in the
cell-free layer thickness. This effect is as expected because both lift flux and collisional flux depend
weakly on the channel width.

Finally, we examine the variation of the cell-free layer thickness with the capillary number. Using
diffusivity values D̄ fitted for Ca = 1 at different capillary numbers as seen in Fig. 17, we find that
the cell-free layer thickness does not change significantly with the capillary number, which is similar
to our previous findings in simple shear flow [45]. This result can be easily explained by the fact that
the lift flux and velocity scale linearly with the shear rate. The collisional displacement � does not
change significantly with the shear rate, but the collision frequency is proportional to the shear rate.
Thus, collisional flux also scales nearly linearly with the shear rate. The balance between lift flux and
collisional flux is therefore independent of the shear rate. The importance of red blood cell migration
lies in generating a cell-free layer where platelets accumulate. From the above discussion, we can
see that the cell-free layer thickness is more influenced by hematocrit than the capillary number, and
therefore we would expect hematocrit to play a key role in platelet margination as well. We note
that, at small capillary numbers, the flow strength will still play an important role in determining
the cell-free layer thickness, as can be seen from the work by Katanov and coworkers [39]. They
observed an increase of the cell-free layer thickness with capillary number at small Ca, i.e., values
much smaller than those investigated herein.

B. Platelet margination profile

Using the red blood cell concentration profile we have calculated, we obtain the platelet
concentration profile as shown in Figs. 18, 19, and 20 along with experimental results in which
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FIG. 17. Cell-free layer thickness l at Ht = 20% (blue) and Ht = 10% (red), Lz = 12 (H = 33.8 μm).

platelet-sized spheres were employed at matching nP [6,15]. We find good agreement between
theory and experiments. The slight discrepancies can be attributed to experimental errors and the
difference in particle shapes [37]. We demonstrate that platelets marginate to the near-wall region
where a cell-free layer is formed. Considering the fact that the volume fractions of both the spheres
used in the experiments and the platelets in whole blood are at least an order of magnitude lower
than that of red blood cells, we ignore the higher-order collisional effects as we did for red blood
cells and thus there are no fitting parameters in obtaining the platelet margination profile. Zhao et al.
calculated the diffusivity of platelets from pressure-driven flow simulations [14]. They characterized
platelet margination as caused by shear-induced diffusion in the cell-laden region as well as an

FIG. 18. Platelet concentration profile using experiments [6] (red histogram) at Ht = 10%, and theo-
ries(lines) at Ht = 10% (black solid) and Ht = 20% (blue dashed), Lz = 17.73 (H = 50 μm), Ca = 0.5.
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FIG. 19. Platelet concentration profile using experiments [15] (dark blue) at Ht = 10%, and theories (light
blue) at Ht = 10%, Lz = 10.63 (H = 30 μm), Ca = 0.41.

irreversible drift towards the cell-free layer. This drift is caused by asymmetric collisions with red
blood cells close to the wall. Vahidkhah et al. [80] reported similar types of behavior in simple shear
flow simulations and characterized platelets’ movement in the cell-laden region as a slow process
while the movement towards the cell-free layer as a fast process. In our Boltzmann-like formulation
of the cell-platelet collisional flux, the drift effect can be seen due to the decoupled red blood cell

FIG. 20. Platelet concentration profile using experiments [15] (dark blue) at Ht = 20%, and theories (light
blue) at Ht = 20%, Lz = 10.63 (H = 30 μm), Ca = 0.36.
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concentration profile. At the edge of the cell-free layer, a steep change in cell concentration causes
a gradient in collisional frequency. Therefore, a platelet is pushed towards the wall. On the other
hand, the increase in platelet collisional displacement due to red blood cell lifting, as seen in Fig. 8,
serves as a barrier when a platelet in the bulk region approaches the edge of the cell-free layer
and slows down shear-induced diffusion. Thus, our model successfully captures the mechanism by
which platelets aggregate in the cell-free layer without using large-scale simulation.

The effect of hematocrit on particle margination is shown in Fig. 18. At a higher hematocrit, the
platelet concentration peak is closer to the wall with a higher peak value, meaning that platelets
are more aggregated in the cell-free layer. From 10% to 20% hematocrit, the platelet concentration
peak is shifted by 2.3 μm. There are two reasons for this trend. The higher hematocrit increases
the cell-platelet collisional frequency, and thus the stronger shear-induced diffusion and drift drive
more particles into the cell-free layer. Furthermore, the higher hematocrit leads to a smaller cell-free
layer thickness. Thus, the location of this peak is shifted. As mentioned previously, the near-wall
concentration of platelets is closely related to the time for starting a clot. Within a reactive distance
of 200 nm [32,81], we estimate that the platelet concentration doubles from 10% to 20% hematocrit.
Thus, we have shown the role of hematocrit on platelet margination, and in future studies, we plan to
introduce platelet adhesion to our model as an additional flux term and relate hematocrit to bleeding
as shown by Valeri’s experiment [12].

Previous literature on particle margination usually ignores platelet-platelet collisions by arguing
that the low concentration of platelets makes their interactions trivial. Mehrabadi et al. considers
platelet concentration in the cell-free layer as a flux from the bulk region exiting a free-escape
boundary [26]. Rivera et al. included only cell-platelet interactions and predicted a step function
of platelet concentration with a constant value in the cell-free layer and zero concentration in the
cell-laden region [47,58]. While these results are qualitatively correct, we include the effect of FPP

to achieve good quantitative results in the cell-free layer. This effort is important especially since
hemostasis requires a close examination of the near-wall region. As mentioned before, the difference
in size between red blood cells and rigid particles creates a region in which the particles can exist
but red blood cells do not. Thus, the cell-platelet collisional flux in this region is always zero,
leading to singular concentrations in the absence of other physics. It is necessary that we consider
platelet-platelet collisions so that we obtain a well-defined platelet concentration profile, even though
this flux term is, in general, negligible in the presence of red blood cells.

C. Rigid sphere margination profile

We show the theoretically predicted margination profile for spheres of diameter 10 nm, 100 nm,
and 1 μm in Fig. 21. The results of 100 nm and 1 μm spheres do not significantly differ, indicating
that Brownian motion does not play a significant role in the particle distribution. For 10 nm spheres,
the concentration peak inside the cell-free layer is reduced by half, indicating that Brownian motion
contributes a flux that is comparable to the other two flux terms. However, the concentration peak
is still evident, indicating the existence of margination for such sized nanoparticles. Rivera et al.
also considered Brownian effects in their theory for rigid trace particles in capsule suspensions [58].
Similar to our findings, the addition of Brownian diffusivity weakens the particle margination in
terms of the cumulative concentration of these particles inside the cell-free layer. In both theories,
Brownian motion was not accounted for in hydrodynamic collisions because the displacements were
of the same size as that for bigger spheres. Notice that we did not include Brownian motion in a
collision in this theory: we assumed the displacements were of the same size as those for bigger
particles. This is a significant assumption, essentially it assumes that the shear rate is high during a
collision and the associated Peclet number is large. Our results are also consistent with the findings
that microspheres are more marginated than nanoparticles, which may be related to drug delivery
efficiency [82]. Müller et al. [5] points out that this concentration peak may eventually decrease to
a saturated value for strong Brownian motion where particles will distribute evenly in the cell-free
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FIG. 21. Concentration profile for spheres of diameter 1 μm (red solid), 100 nm (blue dashed), and 10 nm
(black dotted), Ht = 10%, Lz = 17.73 (H = 50 μm), Ca = 1.

layer and the cell-excluded volume in the bulk region. In this limit, Brownian motion dominates
shear-induced diffusion and red blood cells may exert only a volume-exclusion effect.

From the above discussion, we note another advantage of using coarse-grained theory: since red
blood cell migration is decoupled from particle margination, we can quickly predict margination
behavior for any given red blood cell concentration profile without running multiple sets of large-scale
simulations.

V. CONCLUSIONS

In this paper, we study red blood cell migration as well as rigid particle margination in pressure-
driven flow through rectangular capillaries at zero Reynolds number. We develop a coarse-grained
theory to predict the concentration distribution of the deformable cells and rigid particles, which can
be solved via flux balances in the cross-flow direction. Three types of fluxes govern the cross-flow
distributions of red blood cells and rigid particles: hydrodynamic lift, hydrodynamic collisions
and fluctuations, and Brownian motion. Red blood cells, occupying the largest volume and having
deformable and aspherical shapes, are governed by the balance between hydrodynamic lift and
cell-cell interactions. Rigid- oblate-shaped platelets occupy a very small volume fraction and are
influenced by both cell-platelet interactions and platelet-platelet interactions. Finally, for rigid μm-
sized or nanosized spheres, Brownian motion is considered in addition to hydrodynamic interactions.

We calculate flux terms using inputs from simulations of one or two particles, and thus save
a significant amount of computation as compared to whole blood simulation. We characterize the
lift velocity of a red blood cell in pressure-driven flow, which results from both a wall effect as
well the flow curvature. This lift velocity creates a convective flux, which is the fundamental cause
of the Fahraeus-Lindqvist effect. The binary collisions, along with higher-order collisions, have
a diffusive effect commonly known as shear-induced diffusion. We obtain the increase in relative
distance between two particles due to hydrodynamic interactions. These displacement values depend
on the type of particles as well as the absolute and relative positions of particles. We also introduce
a nonlocal shear rate correction term to the continuum model in order to resolve concentration
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at the centerline of the channel, which would be undefined due to zero local shear rate in simple
shear-induced diffusion models.

Our theory successfully predicts the peak concentration of red blood cells at the centerline and a
cell-free layer near the wall. A comparison to whole blood simulation shows good qualitative and
near-quantitative agreement, which is a significant improvement over existing simplified models.
We also estimate the peak concentration of rigid particles in the cell-free layer in comparison to
experimental data. We examine the effect of particle size on particle margination in flowing blood,
and demonstrate that the margination is still evident for 10 nm particles, despite the effects of
Brownian motion.

We choose parameters in the physiological range to present our results and estimates. Thus, our
theory builds a practical model for understanding blood suspensions and designing microfluidic
devices. Red blood cells are the dominant species in blood and their migration can, under certain
circumstances, be decoupled from the motion of more rigid, smaller particles. Therefore, we can
study the effects of various sizes and shapes of particles at a fixed hematocrit independently without
revisiting the red blood cell migration. Our model can serve as a blueprint for solving transport
problems in cellular suspensions and is a good alternative to large-scale computer simulation.
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