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Large-scale turbulence in fluid layers and other quasi-two-dimensional compressible
systems consists of planar vortices and waves. Separately, wave turbulence usually produces
a direct energy cascade, while solenoidal planar turbulence transports energy to large
scales by an inverse cascade. Here, we consider turbulence at finite Mach numbers when
the interaction between acoustic waves and vortices is substantial. We employ solenoidal
pumping at intermediate scales and show how both direct and inverse energy cascades are
formed starting from the pumping scale. We show that there is an inverse cascade of kinetic
energy up to a scale �, where a typical velocity reaches the speed of sound; this creates
shock waves, which provide for a compensating direct cascade. When the system size is
less than �, the steady state contains a system-size pair of long-living condensate vortices
connected by a system of shocks. Thus turbulence in fluid layers processes energy via a
loop: Most energy first goes to large scales via vortices and is then transported by waves to
small-scale dissipation.

DOI: 10.1103/PhysRevFluids.2.092603

Inverse cascade is a counterintuitive process of self-organization of turbulence. Predicted almost
simultaneously for two-dimensional (2D) incompressible flows [1] and sea wave turbulence [2] and
established in many cases of turbulence in plasma, optics, etc. [3–8], it is predicated on the existence
of two quadratic conserved quantities having different wave-number dependencies. Excitation at
some intermediate wave number then leads to two cascades: a direct one to small scales and an
inverse one to large scales. There is always a strong dissipation at small scales which acts as a sink
for the direct cascade. On the contrary, large-scale motions are usually less dissipative, so that an
inverse cascade can proceed unimpeded, either producing larger and larger scales or reaching the
box size and creating a coherent mode of growing amplitude. That process is now actively studied
in 2D incompressible turbulence [3,4,9–13], including in a curved space, where vortex rings rather
than vortices are created [14]. The energy of an incompressible flow in an unbounded domain grows
unlimited when the friction factors go to zero at a finite energy input rate. The same happens to the
action of wave turbulence [15], if long waves of large amplitude are stable. For example, optical
turbulence in media with defocusing nonlinearity produces a growing condensate [7,8,16]. On the
contrary, in the focusing case, condensate instability results in wave collapses which provide for
a loop of inverse cascade to the small-scale dissipation so that there is a steady state with only
small-scale dissipation [8].

Here, we consider compressible two-dimensional turbulence which is of significant importance
for numerous geophysical, astrophysical, and industrial applications. We show that it realizes a
third possibility of a steady state with only small-scale dissipation: On the one hand, an inverse
cascade is able to produce long-living stable vortices, and on the other hand, the system reaches
a steady state as the vortices produce waves that break and dissipate the energy. Two-dimensional
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compressible hydrodynamics describes motions in fluid layers on scales exceeding the fluid depth
when vortices are planar while waves are acoustic, the thickness playing the role of density. We
consider an ideal-gas equation of state with the ratio of specific heats γ = cp/cv → 1 (that is near
isothermal) which is relevant to astrophysical systems (where radiation provides for temperature
equilibration [17–24]) and for soap film flows with a large Reynolds number, a nonvanishing Mach
number, and negligible solubility [25,26].

Our results may also relate to the shallow water model, which is basically described by the
same set of equations, but with γ = 2. In this context, some of the potential applications include
dissipation in geostrophic turbulence and its impact on the stability of mesoscale oceanic eddies [27].
A weak direct energy cascade was predicted in Ref. [28], using statistical mechanical arguments,
which seemed in contradiction to the numerical results of Ref. [29]. A flux loop of a similar nature
to the one discussed here perhaps might solve that paradox.

A flux loop was also observed in a relatively simpler case of weakly stratified 2D turbulence
[30], where there is only one conserved quantity, so that an inverse cascade can exist only in a
restricted interval of scales until the kinetic energy converts into the potential energy which cascades
to small scales. Our case is more complicated and rich: first, because the energy, E = K + W =∫

[ρu2/2 + c2ρ ln(ρ/ρ0)]dx, written here for an isothermal case (ρ is the density, ρ0 the mean
density, u the velocity, and c the sound speed), is both potential and kinetic, and also because the
kinetic energy has two components, solenoidal and potential (dilatational). Second, smooth flows in
ideal 2D compressible hydrodynamics conserve not only the energy integral but also the potential
vorticity ω/ρ of any streamline, where ω = ∇ × u. We characterize compressibility by the rms
Mach number M =

√
〈u2〉/c. When compressibility is small, two cascades exist, much as in the

incompressible case [31]. Indeed, the two relevant conserved quantities are close to quadratic: (i)
The density times the squared potential vorticity, H = ∫

ω2/ρ dx, goes into the direct cascade, and
(ii) the (mostly kinetic) energy goes into the inverse cascade. As the vortices get larger and faster in
the inverse cascade, they start to create density perturbations, thus increasing the potential energy
along with the kinetic energy. Even when external pumping is weak, as the inverse cascade proceeds
to larger scales, typical velocities increase and eventually become comparable to the speed of sound,
while density perturbations become substantial. That allows for an effective interaction of vortices
and waves and energy transfer from the former to the latter. Waves can then transfer energy back
from large to small scales due to wave breaking and shock creation. We show that kinetic energy has
an upscale flux above the force scale λf . Since we observe a steady state, then the return downscale
flux must be of potential energy. What is remarkable is that the fluxes are independent of wave
number k at k < kf ≡ 2π/λf , thus representing cascades.

The description of numerical simulations [implicit large-eddy simulations (ILES) [32–35]] can
be found in Ref. [17]. Before analyzing the steady state, let us describe the energy growth, saturation,
and fluctuations. At small t , while M < 0.2, the kinetic part strongly dominates the energy balance.
On average, the contribution of potential energy reaches W ≈ 0.1E at M = 0.5–0.7, as the total
energy growth saturates. Remarkably, this 10% saturation level does not depend on the pumping rate
εf . Simulations show that K(t) and W (t) are strongly coupled and oscillate with opposite phases. The
oscillation amplitude grows with M and eventually saturates, reaching W ≈ 0.15E during dissipation
bursts and decreasing to 0.07E during periods of more quiet evolution. The main characteristic
frequency of such oscillations is determined by the sound speed c, rotation velocity profile of
large-scale vortices U (r), and mean intervortical separation L/

√
2 (L is the domain size). These

large-scale acoustic oscillations represent a compressible component of the total condensate energy.
Figure 1 presents the evolution of energy and Mach number for the cases of weak (A, B, C),

intermediate (D), and strong (E) pumping εf . In all cases, the energy evolution starts with a
linear growth E(t) = εf t , which soon saturates due to a strong peak of small-scale compressible
dissipation. After that, the inverse cascade is launched and linear growth resumes with a lower rate
Ė = εg ∼ 0.9εf . As soon as the rms Mach number exceeds 0.3, shock dissipation starts to play a
role and further slows down the energy growth to ∼0.4εf . Somewhat later, a domain-size vortex
dipole appears and then grows more coherent, as more energy is pumped in. The periods of slow
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FIG. 1. Time evolution of the total energy (left) and the rms Mach number (right) for cases A–E. The
time is normalized with the forcing time τf = ρ

1/3
0 λ

2/3
f ε

−1/3
f . Cases A–C form a sequence with increasing grid

resolution, where each step adds a factor of 2 to the extent of both cascades in this dual-cascade setup.

growth are interrupted by episodic bursts of shock dissipation. For instance, the emergence of a
single strong shock (pressure jump > 2), connecting the centers of large-scale vortices, can cause a
sharp drop in E(t) by several percent. As the bursts become more frequent at higher energy levels
(M > 0.5), the overall growth slows down to below 10% and eventually saturates, but one can
still see short patches of uninterrupted growth with the same characteristic rate of 0.4εf between
the bursts. Bursts of dissipation are observed to be of a different nature. Some are correlated with
the intermittent appearance of shocks across the large-scale vortex dipole that become particularly
dramatic when the two vortices approach closely. Some other cases correspond to vortices being
destroyed completely and then reappearing after a while. Deep energy minima are accompanied by
intense oscillations of relative strength of the vortices in the pair as best seen in the density movie
[17]; apparently, the large-scale acoustic mode causes strong dissipation [17,36–44]. During the
time intervals when vortices stop oscillating and are comparable in magnitude, the energy continues
approximately linear growth.

The evolution is different in run E, where condensate vortices do not appear, and the Mach number
M 	 0.6 is reached at scales below the box size, leading to many midsize vortices being present at
the saturated stage, which fluctuates much less as a result. Note that the energy in the left panel is
normalized by pumping. As is clear from the right panel of Fig. 1, in all runs the typical velocities
and total energy reach approximately the same values. Incidentally, it was reported that even a stable
condensate does not appear in optical turbulence when the pumping is too strong [7]; whether there is
a general phenomenon of inverse cascade disruption due to high effective nonlinearity (for instance,
because integrals of motion cease to be quadratic) is poorly understood.

It is important that the decay or growth of total energy is determined by the shock (rather than
total) dissipation; apparently, solenoidal dissipation, however large and finite the kinematic viscosity
ν, is irrelevant to the inverse cascade.

Let us now analyze kinetic energy fluxes for states with different Mach numbers that appear at
different pumping rates and in different boxes (Fig. 2 and Ref. [17]). Consider that we use solenoidal
pumping so that at a low Mach number we have practically incompressible turbulence with most
of the energy going to the left of the forcing scale, i.e., into the inverse cascade. We see that with
increasing Mach number, the larger and larger fraction of kinetic energy goes to the right of the
forcing scale, i.e., into the direct cascade. Still, the inverse cascade is well pronounced in all cases. At
Mach numbers of order unity, approximately equal fluxes go to large and small scales (a turbulence
version of energy equipartition). Figure 3 shows the spectra of kinetic and potential energy and also
separately the spectrum of the kinetic energy of potential (dilatational) part of the velocity field. We
see that W (k) 
 K(k) for most k, yet their fluxes must be comparable to provide for a steady state.
This is an extra reminder how different (and complementary) information is brought by analyzing
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FIG. 2. Kinetic energy fluxes for the case C at M = 0.21 and 0.30 (nonstationary, no condensate) and
M = 0.49 (quasistationary with condensate); D at M = 0.52 (quasistationary with condensate); E at M =
0.62 (quasistationary, no condensate). Fluxes saturate at �K ≈ ±0.5εf as the Mach number approaches 0.6,
apparently due to a direct acoustic energy flux that matches the energy injection rate at M � 0.6, halts the total
energy growth, and forms a closed energy flux loop at k > kf .

together the spectra and fluxes. We also see that the dilatational part of the kinetic energy is small
all the way to k 	 10kf , so that the kinetic energy of vortices dominates. Only at k > 10kf do the
waves dominate and kinetic and potential energies and fluxes are getting equal, as it must be in weak
turbulence [15].

Turbulence at scales smaller than the force scale can be naturally assumed to carry the direct
energy flux provided by acoustic waves. This is supported by the spectra, which show that at k � kf

the potential energy is equal to the dilatational energy and both decay as k−2, as expected for acoustic
turbulence [15]. Of course, there is more to turbulence at k > kf than the energy cascade. It must
also carry the cascade of H which it does by the solenoidal part of the velocity field whose vorticity
spectrum behaves as k−1 ln−1/3(k/kf ), in exact correspondence to the theory of the enstrophy cascade
in incompressible turbulence [1,45]. An effective Mach number decreases towards small scales so
that vortices and waves are getting decoupled. Since the vortical contribution decays faster, waves

FIG. 3. Energy spectra for case C at M = 0.2 (left) and 0.5 (right); see Refs. [17,46–49] for definitions in
the compressible case.

092603-4



RAPID COMMUNICATIONS

ENERGY FLUX LOOP IN 2D COMPRESSIBLE TURBULENCE

dominate kinetic energy for the small-scale part of the spectra. For most wave numbers, however,
the energy of the vortices is dominant.

Let us now look at turbulence at scales above the force scale. It is likely that the acoustic direct
energy cascade originates at scales far exceeding the force scale and goes through it. This is evidenced
by the spectra of potential and dilatational kinetic energy which behave continuously through kf .
On the contrary, the solenoidal part of the kinetic energy has a narrow peak right at k = kf and the
kinetic energy flux �K jumps from �W at k > kf to −�W at k < kf , so that the total energy flux
towards large scales is zero.

It deserves attention that the low-Mach energy spectra at k < kf in the left panel are usual k−5/3,
while the spectra are close to k−2 in the right panel of Fig. 3. However tempting it is to ascribe
this to shock waves, this is not the case since the spectra are overwhelmingly dominated by the
kinetic energy of solenoidal motions, i.e., vortices. That means that even though density variations
are substantial only at large scales (where the Mach number is not small), they modify vortices and
affect spectra at all scales down to the pumping scale. Our compressible spectrum climbs towards
small k faster than the −5/3 spectrum of an inverse cascade with a large-scale sink (yet slower than
the k−3 spectrum of the large-scale coherent vortex [4]). To interpret this, recall that the mechanism
of inverse cascade is the deformation of small vortices inside a large one and the back reaction
which reinforces the large vortex [50]. In a compressible case, the fact that the spectrum is steeper
may mean that for a cascade to proceed, the ratio between energies of the larger vortex and smaller
vortices inside it must be larger than in an incompressible case.

That potential energy exceeds dilatational energy at large scales is extra evidence that density
perturbations are related not only to waves but also to vortices. Note that a similar detailed energy
equipartition across scales is seen in three dimensions (3D) at M ≈ 0.6 [51,52].

When the inverse cascade reaches the system size and creates coherent vortices, their main
dissipation is at the shocks, which go out of the vortex centers, connect them, and create spiral
structures around them. Apart from a purely fluid-mechanical interest, the spontaneous formation
of strong vortices with shocks in compressible quasi-2D flows may influence different astrophysical
phenomena, for instance, in the contexts of disk accretion [54], galactic disks [55], or planetesimal
formation in protoplanetary disks [56]. Here, we focus on analyzing the vortex structure and the
energy-momentum fluxes that support the coherent vortex. To appreciate better the peculiarities
of the compressible case, let us briefly remind that in the incompressible case the inverse cascade
produces a pair of vortices with a narrow viscous core, outside of which the mean azimuthal velocity is
independent of the radius, U = √

3εf /αρ, where α is the rate of uniform (bottom) friction [10]. Each
vortex is sustained by the inward radial momentum fluxes. The (radial) flux of the radial momentum
is provided mostly by the mean pressure, ρU 2 ≈ rdP/dr . The flux of the azimuthal momentum
is provided by fluctuations, τ = ρ〈uv〉 = r

√
ρεf α/3, where u,v are respectively azimuthal and

radial fluctuating velocities in a reference frame comoving with the vortex center. For the flat
profile, the turbulence-vortex energy exchange rate per unit area, F1 = r−1∂rrUτ = 2εf , is also
independent of the radius and equal to twice the input rate; the turbulence flux divergence F2 =
r−1∂rr〈v(ρu2 + ρv2 + 2p)〉/2 is negligible [10]. All the energy input from the external pumping
and turbulence inverse cascade is dissipated inside the vortex by linear friction, αρU 2 = 3εf .

For the compressible case which we consider, there is no bottom friction and, consequently,
no momentum loss from the system. Averaging the continuity equation for the density of angular
momentum and taking into account that the mass flux 〈ρv〉 must be zero, we get inside the vortex
the condition for total zero momentum flux,

〈ρvu〉 = ν�r
∂

∂r

U

r
+

〈
νρ

r

∂v

∂φ

〉
+ r

〈
νρ

∂

∂r

u

r

〉
. (1)

Since the mean density and velocity profiles �(r) and U (r) are smooth, then the first term on the
right-hand side (rhs) goes to zero with ν. It is thus clear that inertial momentum flux τ = 〈ρuv〉
could be nonzero only if there is a finite inviscid limit of the last two terms on the rhs, which are
due to turbulence. That requires tangential discontinuities, apparently provided by the spiral shocks
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FIG. 4. Vorticity and density fields in model B at t = 412. (See Ref. [17] for animations and visuals
generated using the line integral convolution technique [53].)

coming out of the vortices and long shocks connecting vortex centers which we observe. Movies
[17] also show density profiles strongly corrugated along φ and fast changing along r , which is
conducive to having τ �= 0. Most likely, the mechanism of nonzero viscous momentum transfer at
the inviscid limit is the angle change of a streamline after passing through shock. For that one indeed
needs spiral-like shocks, which deflect streamlines out. If the shock deflects against the vortex flow,
then the rhs of (1) is negative, as can be expected (inertia brings momentum in, and viscous friction
takes it out). Only with nonzero inertial momentum flux into a vortex can the inertial energy flux
into vortex τr∂r (U/r) be nonzero as well. We expect the energy input rate εf to exceed the viscous
energy dissipation outside the vortices, so that the energy must flow into the vortices to be dissipated
there.

A typical snapshot of the vorticity and density fields in the energy-saturated state with a condensate
is shown in Fig. 4. To compute the averages, we save 20 flow snapshots per crossing time; with
these we can create reasonably smooth animations [17] and robustly decompose the mean flow from
the turbulence, using an algorithm similar to that of Ref. [10] with some modifications to account
for compressibility [17]. One learns from case C that the condensate vortex has a circular core with
a vorticity comparable to several other vortices present at any given time; what distinguishes the
condensate vortex is a spiral around the core so that the density is perturbed in the whole region,
core and spiral, which provides for strong dissipation. Secondary vortices, on the contrary, do not
perturb density in any substantial way. Most of the time, the vortex as a whole moves generally with
a speed much less than the flow velocity in the vortex itself, so one can neglect distortions caused
by the center motion.

As in Ref. [10], the mean vorticity profile within a coherent vortex is close to isotropic, but the
2D density distribution shows shallow diagonal minima, resembling the density depressions along
the lines connecting the vortices in individual snapshots (Fig. 4). The mean flow is characterized
by the azimuthally averaged density and velocity profiles �(r) and U (r), shown in the left panel
of Fig. 5 for case C. We see that the density decreases monotonically towards the center, while
the velocity grows and then decays. As the vortex grows, the outer velocity profile flattens. What
matters, however, is the comparison of the centrifugal force �U 2/r and the radial pressure gradient
dP/dr = c2d�/dr . It is more convenient to compare U 2 with c2d ln �/d ln r ≡ c2�′, which is
done in the inset in Fig. 5. Remarkably, the radial balance of the momentum fluxes holds with an
accuracy of a few percent already on the mean profiles, despite the quite complicated structure of
the vortex, as seen in Figs. 4 and 5. In other words, the mean pressure and velocity satisfy the steady
Euler equation, that is, the contribution of fluctuations into the radial momentum flux is negligible,
even though the fluctuations are quite strong (and Umax ≈ 0.7c).
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FIG. 5. Profiles of the mean density �(r) and velocity U (r) for the condensate in model C at M ≈ 0.5,
t ∈ [380,400] (left panel). The inset illustrates the radial force balance for the mean flow. Time-averaged
turbulent fluxes for case C at t ∈ [283,300] (center) and t ∈ [380,400] (right panel). The sum of two fluxes is
shown by the dashed line; vertical lines indicate the forcing scale λf .

Fluctuations, however, play a crucial role in feeding energy and azimuthal momentum to the
vortex, as shown in Fig. 5. We find that the fluxes here are quite different from the incompressible
case: F1,F2 are comparable but they change sign along the radius (see Fig. 5 and Ref. [17]).
Apparently, those oscillations are the signature of a spiral structure of shocks, so that the energy
fluxes converge to shocks at spiral arms rather than to the vortex center.

Note that fluxes fluctuate strongly, so that a short-time average can often give an opposite sign
of the energy fluxes, as seen from comparing the two right panels in Fig. 5. A positive (outward)
angular momentum flux, as that observed here at some radii at the vortex periphery, was previously
observed in the case of a rotating disk and ascribed to compressibility [54].
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