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Conflict between formation of a cyclonic vortex and isotropization in forced homoge-
neous rotating turbulence is numerically investigated. It is well known that a large rotation
rate of the system induces columnar vortices to result in quasi-two-dimensional (Q2D) flow,
while a small rotation rate allows turbulence to be three-dimensional (3D). It is found that
the transition from the Q2D turbulent flow to the 3D turbulent flow and the reverse transition
occur at different values of the rotation rates. At intermediate rotation rates, bistability of
these two statistically steady states is observed. Such a hysteretic transition is also observed
for variations of the amplitude of an external force.
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Formation of columnar structures parallel to a rotation axis is one of the most fundamental
and distinctive phenomena in flows subject to rotation. The emergence of columnar vortices in
the rotating turbulence makes a three-dimensional (3D) flow into a quasi-two-dimensional (Q2D)
flow. The Taylor-Proudman theorem has succeeded in explaining the cylindrical flow in laboratory
experiments and field observations in terms of the Taylor column. However, the theorem cannot
describe transitions between the Q2D and 3D flows, because energy is exchanged between the
Q2D mode and the 3D mode by nonlinear mechanisms [1]. The energy transfers to the Q2D
modes were demonstrated by an instability analysis [2] and the weak-turbulence theory in the
large-rotation limit [3]. The Coriolis term breaks the parity invariance of the governing equation of the
flow, and introduces a scale-independent time scale which induces two-dimensionalization at larger
scales more effectively. Therefore, the Coriolis effect originates cyclone-anticyclone asymmetry
with enhanced stretching of cyclonic vorticity and destabilization of the anticyclonic vortex due to
centrifugal instability and vortex tilting [4].

To classify the flow properties in rotating systems, the Rossby number Ro, which is the ratio
between linear and nonlinear time scales, has been used [5]. Note that though various definitions
of Ro are used in literature, the following facts are independent of its detailed definition. When
the Coriolis force is weak relative to turbulence, i.e., Ro � 1, the 3D Kolmogorov turbulence
is obtained. When Ro ∼ 1, only cyclonic vortices appear at large scales, and the flow becomes
Q2D. When Ro � 1, both cyclonic and anticyclonic vortices appear, and the flow fields are almost
completely two-dimensionalized. The transitions between the Q2D turbulence and the 3D turbulence
by changing the system’s rotation rate � were numerically studied [6]. It was reported that the Ro
dependence of turbulent statistics is not monotonic in the range Ro ∼ 1, where the coherent vortices
and inertial waves at small wave numbers and the turbulence at large wave numbers coexist [7,8].
The two-dimensionalization and the cyclone-anticyclone asymmetry depend on the external forces
and the boundary conditions (e.g., Ref. [9]).
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Recently, Ref. [10] reported a phase diagram for statistically steady states of forced Taylor-Green
(TG) flows in a rotating frame. Four different steady states in the parameter space spanned by
the Reynolds numbers and the Rossby numbers were numerically obtained by carrying out 184
simulations. Subcritical behavior was implied by an abrupt transition between the Q2D and 3D
flows. If it were a low-dimensional system, one might expect a hysteresis in such a transition.
Because the parameter space analysis was performed with the same random initial condition for
every parameter value in Ref. [10], the hysteretic behavior cannot be directly found.

It has been experimentally found that there exists a parameter range where a high-torque state and
a low-torque state are bistable and show a hysteretic transition in a highly turbulent Taylor-Couette
flow [11]. A similar hysteretic transition was observed also in rotating spherical Couette flow [12].
Bistability and hysteresis between a stationary magnetic field and an oscillatory magnetic field
in a low-dimensional phase space were observed in a turbulent flow of liquid sodium [13]. Note
that the heteroclinic alternating transitions such as blocking in a rotating annulus [14] associated
with the Lorenz attractor, where the state goes back and forth near the two unstable fixed points,
are different from the bistability. Also note that the bistability does not necessarily indicate a
hysteresis, which requires a form of subcritical properties. The dynamical systems theory developed
in low-dimensional systems has successfully been applied to the onset of turbulence, e.g., unstable
periodic orbits in wall turbulence [15]. The bifurcation structures embedded in developed turbulence
would be a key to understanding its nature.

Hysteretic behavior in developed turbulence has mostly been observed in the flows bounded
by solid walls, and the boundary condition plays an important role in the hysteretic behavior. In
this Rapid Communication, a hysteretic behavior in developed rotating turbulence is numerically
investigated in a periodic box. As far as the authors are aware, such behavior in the system not bounded
by the solid walls has rarely been reported. While the boundary condition and the forcing scheme in
the present study are the same as those in Ref. [10], the analytical methodologies for the parameter
dependence of the flow patterns are different; a flow field in the statistically steady state for a close
parameter is employed as an initial condition in this study, whereas a random initial condition was
used in Ref. [10]. The present approach is similar to the continuation of a solution which enables us to
track a branch in multistability used in bifurcation analysis in low-dimensional dynamical systems.

We examine the dependence of flow properties on � as well as the amplitude of the external force,
focusing on the transition between the Q2D flow and the 3D flow. The micro-Rossby number defined
below as well as the Taylor-scale Reynolds number is usually employed as the nondimensional
parameter to characterize the flow field. However, it is statistically defined by the flow itself, and
cannot be a control parameter. The macro-Rossby number and the integral-scale Reynolds number
can be used as control parameters, but they do not well characterize the turbulent field. As we will
see below, the transitions are hysteretic owing to the robustness of the large-scale columnar vortex
against the turbulent fluctuation.

The governing equations for the velocity u of the incompressible fluid are the Navier-Stokes
equation with the Coriolis term and the divergence-free condition,

∂u
∂t

+ (u · ∇)u + 2� × u = −∇p + ν∇2u + f , ∇ · u = 0,

where the centrifugal force is included in the pressure p. The rotation vector � = �ez is assumed
to be constant. The kinematic viscosity is expressed by ν. Note that small-wave-number drag is not
added, because it was reported that a statistically steady state can be achieved even for the inversely
cascading two-dimensional turbulence [16]. The external force f is given by the three-dimensional
two-component force of a steady TG type f = f0(cos kfx sin kfy sin kfz,−sin kfx cos kfy sin kfz,0),
where kf = 2 is employed. The TG flow has also been used as a model of many laboratory flows
(see Ref. [10]).

In the present simulations, the periodic boundary condition with the period (2π )3 is employed.
The standard pseudospectral method with the aliasing removal by the phase shift and the spherical
truncation is adopted for the nonlinear term, and the numerical resolution is 5123. The same value of
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FIG. 1. Dependence of zz component of anisotropy tensor bzz on �. The solid curve (� ↘) and the dashed
curve (� ↗), respectively, show bzz during the decrease of � and the increase of �. The error bars represent
the standard deviation due to the time variation.

ν is used for all the series of the simulations. The Runge-Kutta-Gill method is adopted for the time
integration, while the linear terms are calculated analytically. The characteristic length and time are
selected so that the period of the computational box is 2π , and the Coriolis parameter 2� and the
amplitudes of the external force f0 are approximately 10.

Let us first consider � dependence. The rotation rate � is set between 2.5 and 7.5 by 0.5
increments or decrements, while f0 is fixed at 10. The rotation rate is increased or decreased by 0.5
when the flow field for the previous rotation rate is in the statistically steady state. The Zeman wave
numbers k� = (�3/ε)1/2, where ε is the energy dissipation rate, are evaluated approximately as 1.4
for � = 2.5 and 16 for � = 7.5. The corresponding flows are 3D and Q2D.

Since we are interested in the transitions between the Q2D turbulent flow and the 3D turbulent
flow, the dependence of the zz component of the anisotropy tensor, bzz = 1/3 − 〈u2

z〉/〈|u|2〉, on � is
drawn in Fig. 1 to evaluate the anisotropy of the flows. These values are obtained in the statistically
steady states.

At � = 2.5, bzz ≈ 0.1, where the nonzero value comes from the anisotropic external force of
the TG type. When the rotation rate is increased from � = 2.5 (� ↗), bzz decreases to almost
0, where the flow is 3D and almost isotropic. It increases abruptly to about 0.3 in the range of
5.5 < � < 6, and the flow becomes Q2D and strongly anisotropic. At � = 7.5, bzz ≈ 0.3 owing to
the strong rotation. When the rotation rate is decreased from � = 7.5 (� ↘), bzz slowly decreases.
In the range of 4 < � < 4.5, bzz drops sharply, representing the abrupt transition from the Q2D
anisotropic flow to the 3D isotropic flow. In the range of 4.5 � � � 5.5, the two turbulent regimes
are bistable and show a hysteretic transition.

To characterize the upper- and lower-branch flows shown in Fig. 1, the Fourier- and real-space
properties at � = 5 are examined. The one-dimensional energy spectra are drawn in Fig. 2(a). For
the lower-branch flow (� ↗), where k� ≈ 8.6, the Kolmogorov spectrum k−5/3 appears all over
the inertial subrange. For the upper-branch flow (� ↘), while the Kolmogorov spectrum appears in
the range k � k� ≈ 6.0, the energy spectrum at k � k� shows another turbulent state. A significant
difference between the upper- and lower-branch flows appears at the small wave numbers; while the
largest energy of the former appears at the scale of the external force,

√
3kf ≈ 3.46, that of the latter

appears at the largest scale k = 1.
In the lower-branch flow, the energy supplied by the external force is almost completely transferred

to the larger wave numbers as the 3D Kolmogorov turbulence. In the upper-branch flow, on the other
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FIG. 2. Bistability between the Q2D flow and the 3D flow at � = 5. (a) Energy spectra. The vertical
lines represent the Zeman wave numbers. (b), (c) Isosurfaces of |ω| = ±3

√
〈|ω|2〉 colored by ωz and speed

distribution on the z = 0 plane (b) for lower branch � ↗ and (c) for upper branch � ↘. (d), (e) Time evolution
of bzz (left axis) and total, perpendicular and parallel, energies (right axis) (d) for the interpolation weight
r = 0.2 and (e) for r = 0.3 between the Q2D flow and the 3D flow.

hand, a part of the supplied energy is transferred to the smaller wave numbers owing to the quasi-
two-dimensionalization, and the field reaches a statistically steady state when the accumulation at
k ≈ 1, more precisely, (kx,ky,kz) = (±1,0,0),(0,±1,0), is built up. The process of the accumulation
is known as condensation. The inverse cascade due to the quasi-two-dimensionalization and the
forward cascade from the accumulation to the large wave numbers are considered to balance each
other in the statistically steady state. Similar discussions can be found in Ref. [10].

The Q2D flow has a larger energy than the 3D flow over all the wave numbers. Therefore, the two
turbulent flows have different values of the micro-Rossby number Roωz

= ωzrms/(2�) as well as the
Taylor-scale Reynolds number Reλ = [20E2/(3νε)]1/2 under the identical values of the parameters
of the simulations: Roωz

≈ 2.5 and Reλ ≈ 490 in the Q2D flow, and Roωz
≈ 1.8 and Reλ ≈ 110

in the 3D flow. Here, the subscript rms denotes the root mean square, and E is the total energy.
Note that the Taylor microscale for the isotropic turbulence is used to obtain the values of Reλ,
because the Kolmogorov spectrum appears at the large wave numbers in both Q2D and 3D flows.
The fact that Roωz

in the Q2D flow is larger than that in the 3D flow causes the nonmonotonicity of
the Ro dependence of turbulent statistics, as reported in Ref. [7].

The isosurfaces of vorticity norm |ω| in the real space are drawn in Figs. 2(b) and 2(c). In the
lower-branch flow, Fig. 2(b), no large-scale vortex is formed, and we can observe only small-scale
3D vortices. On the other hand, in the upper-branch flow, Fig. 2(c), the isosurfaces show the cyclonic
vortex aligned along the rotation axis, which reminds us of the Taylor column. The cyclonic vortex
makes strongly sheared regions between itself and its images due to the periodic boundary condition.
In the strongly sheared regions, a cylindrical swarm composed of anticyclonic small-scale vortices
is produced, though they are weak. In fact, the cyclonic vortex makes a high-speed whirl, as drawn
on the z = 0 plane in Fig. 2(c), while the swarm does not. The cyclonic vortex accompanied by
inertial waves makes the upper-branch flow Q2D.

Even though the simulations were run for a long time, the possibility of transitions between the
Q2D flow and the 3D flow cannot be excluded. To confirm bistability at � = 5, the existence of a
basin of attraction of the Q2D flow and the 3D flow is examined by starting from interpolated initial
conditions. The initial conditions are made by the superposition of the Q2D flow and the 3D flow
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FIG. 3. f0 dependence of bzz. See also the caption of Fig. 1.

u = ruQ2D + (1 − r)u3D, where r ∈ [0,1] is the weight for the interpolation between the Q2D flow
and the 3D flow. The simulations are performed for the weights r = 0.1,0.2, . . . ,0.9 until each field
reaches a statistically steady state.

The time evolutions of bzz, E, perpendicular energy E⊥ = ∑
k |̃u⊥|2/2, and parallel energy

E‖ = ∑
k |̃uz|2/2 for r = 0.2 and 0.3 are drawn in Figs. 2(d) and 2(e). Here, ũ⊥ is the Fourier

coefficient of the velocity component perpendicular to the rotation axis u⊥ = (ux,uy,0). In
the simulation with r = 0.2, bzz decreases to around 0, while bzz increases to around 0.25 in the
simulation with r = 0.3. That is, the boundary separating the Q2D flow and the 3D flow exists in the
range 0.2 < r < 0.3, and the Q2D flow and the 3D flow are bistable at � = 5. The separatrix might
not be a thin boundary such as the one which separates laminar and turbulent flows at the onset of
turbulence [17] but a thick and blurred region.

It is of interest to note that both E‖’s for r = 0.2 and 0.3 remain small and the main difference
appears in E⊥. Since bzz = 1/3 − E‖/(E⊥ + E‖), the transitions between the Q2D flow and the 3D
flow occur mainly in u⊥, i.e., ωz. In other words, the fluctuation in the rotation direction uz is little
affected by the rotation.

At the transition from the 3D flow to the Q2D flow, the coherent cyclonic vortex is formed by
overwhelming the external force as well as turbulent fluctuation. The external force in the present
simulations tries to develop the TG vortices whose symmetries and scales are different from the
coherent cyclonic vortex. On the other hand, at the reverse transition, the coherent vortex collapses
into pieces. The formation and destruction of the large coherent vortex cannot be continuous for the
variation of �. Therefore, the transitions exhibit hysteresis.

The dependence of bzz on the amplitude of the external force f0, which is increased by increments
of 1 or decreased by decrements of 1, is drawn in Fig. 3. Following the results of the � dependence
in Fig. 1, we here investigate the cases with � = 5 as the representative cases. Similar to Fig. 1, the
Q2D flow and the 3D flow are, respectively, observed at small f0 and large f0, and the two turbulent
flows are bistable and hysteretic at intermediate f0. Obviously, this two-dimensionalization is due
to the cyclonic vortex along the rotation axis.

To analyze the properties of the above hysteretic transition at the large and small scales, the
dependences of the total energy E and the energy dissipation rate ε on � and f0 are shown in Fig. 4.
These figures show different behaviors between the � and f0 dependences even qualitatively. The
transitions of E and ε show the bistability in 4.5 � � � 5.5 and 8 � f0 � 11, as observed in Figs. 1
and 3. However, both E and ε have different values at large � where the flow is Q2D. No clear jump
in 5.5 � � � 6 can be seen in ε for increasing � in Fig. 4(a). In other words, small-scale dynamics
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FIG. 4. (a) � dependence and (b) f0 dependence of total energy (left axis) and energy dissipation rate
(right axis).

is insensitive to �, which is consistent with the fluctuation in the rotation direction E‖ observed in
Figs. 2(d) and 2(e).

The fact that the discrepancy between the two branches at large � is larger than the turbulent
fluctuation and the hysteresis loop is not closed implies the multiplicity of the statistically steady
states of the Q2D flows. The multiplicity is confirmed by finding the separatrix of the superposition
of the two flows in the same way that we demonstrated the bistability between the Q2D flow and
the 3D flow at � = 5 [Figs. 2(d) and 2(e)]. It should be noted that bzz shown in Fig. 1, which
is a nondimensionalized quantity composed of the ratio of the parallel energy to the total one, is
insensitive to the variation of the energies themselves.

It may appear to be counterintuitive that the total energy for the small external force is larger
than that for the large external force, as shown in Fig. 4(b). It can be explained by the formation
process of the large-scale cyclonic vortex. When the external force is weak, the Coriolis force is
strong relative to the turbulence intensity. Then, the large-scale columnar vortex is formed, and it
makes the large energy accumulation near kz = 0. Conversely, when the external force is strong, the
Coriolis force is relatively weak. Then, the turbulent flow is 3D, and all the energy supplied by the
external force is cascaded forward. As a result, the energy does not accumulate near kz = 0, and the
total energy is small.

Lastly, to investigate the characteristics of the multiplicity at large �’s appearing in Fig. 4(a),
the isosurfaces of |ω| for each branch at � = 7.5 are shown in Fig. 5(a). Obviously, both flows

(a () b)−4ωzrms 0 4ωzrms −4ωzrms 0 4ωzrms
ωz ωz

|u || u|
0 urms 2urms 0 urms 2urms

FIG. 5. Isosurface of |ω| = ±3
√

〈|ω|2〉 colored by ωz and speed distribution on the z = 0 plane at � = 7.5.
(a) Lower branch, and (b) upper branch.
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have the Q2D structures as indicated in Fig. 1. While the upper-branch flow has the strong slender
cyclonic vortex accompanied by a swarm of anticyclonic small vortices, the cyclonic vortex in the
lower-branch flow is relatively weak and fat, and there is no room for the anticyclonic swarm to
grow. These flow patterns as well as the total energy and the energy dissipation rate reveal the
distinctive features degenerated in the representation in terms of bzz. The Q2D flow might have more
multiplicities other than those shown here.

Comparing with the phase diagram in Ref. [10], we recognize that most of the parameter values
in the present study fall into the quasi-2D condensates, while some are located narrowly in the range
of intermittent bursts and weakly rotating flows. The quasi-2D condensates and the weakly rotating
flows in Ref. [10], respectively, correspond to the Q2D flow and the 3D flow reported here. An
abrupt change in energy due to a variation of the Rossby number between the Q2D flow and the 3D
flow was observed, and subcritical behavior was implied by the abrupt change. It should, however,
be noted that the initial conditions used in Ref. [10] were not the solutions for other parameters. In
this Rapid Communication, the Q2D and 3D branches were traced by continuing the solution to find
whether the subcritical behavior results in the hysteretic transition or the heteroclinic alternating
transitions in large turbulent fluctuations. The intermittent bursts are not observed in this study, but
intermittent growths of the total energy which are caused by energy transfers to small wave numbers
for a short time appear in the 3D flow, as recognized in Fig. 2(d). The intermittent growths in the 3D
flow are more frequent and not so strong as the intermittent bursts observed in Ref. [10].

In summary, the � dependence and the f0 dependence of turbulent flows were investigated by
numerically simulating the Navier-Stokes equation with the Coriolis term under steady forcing of the
TG type. The hysteretic transition between the Q2D flow at large �’s and the 3D flow at small �’s
was found. This hysteretic transition stems from the robustness of the large-scale cyclonic columnar
vortex. The hysteretic transition between the Q2D flow and the 3D flow exists for a finite bounded
area in (�,f0). Although the flow properties had been classified simply by using the micro-Rossby
number [7] and summarized in a phase diagram in Ref. [10], the present results demonstrate that
the selection of flow structures depends also on the initial conditions. The hysteresis brings the
complexity of Ro dependence at Ro ∼ 1.

This hysteretic transition robustly exists against the large fluctuation of the fully developed
turbulence whose energy spectra show the −5/3 power law. We also performed preliminary
simulations in which flows are excited by a white random force [18]. The hysteresis and the
bistability between the Q2D turbulent flow and the 3D turbulent flow are observed also for such
antithetical forcing, though the range of the bistable parameters is much smaller. The existence
of a universal mechanism for the emergence of multiple flow patterns in turbulence is expected.
The dependence of hysteretic behavior on forcing types, the multiplicity of the Q2D flow, and the
formation mechanism of the hysteretic behavior will be reported elsewhere.

Numerical computation in this work was carried out at the Yukawa Institute Computer Facility,
Kyoto University and Research Institute for Information Technology, Kyushu University. This work
was partially supported by JSPS KAKENHI Grants No. 15K17971 and No. 16K05490.
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