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The flow in a rapidly rotating cylinder is studied numerically. The cylinder is split in
half, and the rapid rotation in the two halves is modulated harmonically with a small
amplitude. We consider modulation frequencies ranging from zero to twice the background
rotation frequency, so that the system supports inertial waves. The split in the cylinder at
midheight provides a localized perturbation from which inertial wave beams emanate, but
so too do the corners where the endwalls and the sidewall meet. There is no discontinuity
in the boundary condition at these corners, but the thin modulated endwall and sidewall
boundary layers meet at the corners, and this leads to a localized perturbation to the
rapid background rotation. This interaction produces inertial wave beams that over wide
parameter regimes are more intense than those from the split at the cylinder midheight. Due
to finite viscosity and nonlinear flow conditions, the wave beams produce intricate patterns
formed by constructive and destructive interference as they self-intersect and reflect off
cylinder boundaries and the axis. These patterns are very sensitive to the modulation
frequency. Additionally, a phase difference between the modulations of the two cylinder
halves was imposed. The phase difference impacts the symmetries of the system and
its response to the modulations. In particular, some low-order Kelvin modes are driven
resonantly, and their selection depends not only on the frequency but also on the phase of
the differential modulation.
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I. INTRODUCTION

Rapidly rotating confined flow subjected to small-amplitude periodic forcing can have large-
amplitude responses. This has been linked to catastrophic failures in spin-stabilized spacecrafts
[1,2], as well as dynamo action and various instabilities in liquid-core planets [3–6]. The study of
small perturbations to rapidly rotating flows has a long history, going back at least to Lord Kelvin
[7], who idealized the problem by neglecting the viscous terms, and linearized about the state of
solid-body rotation. In the cylinder, he used separation of variables to solve the resulting eigenvalue
problem, and these eigenmodes are now called Kelvin modes. Much fundamental insight has been
gleaned by studying the linear inviscid limit; see the texts by Greenspan [8], and more recently by
Davidson [9], for overviews. The linear inviscid problem is hyperbolic and supports waves known as
inertial waves. These have peculiar properties, such as the group velocity at which energy propagates
away from a disturbance in the form of wave-packets being perpendicular to the phase velocity. Thus,
a wave-packet propagates at right angles to the apparent direction of propagation of the wave crest.
The inertial waves travel in the direction of the characteristics; the so-called rays travel on cones
of angle β = arccos (ωp/2�) with respect to a plane normal to the rotation axis, where ωp is the
perturbation frequency and � is the solid-body rotation frequency.

Often [10–14] the question is raised whether a periodically forced confined rapidly rotating system
resonantly excites Kelvin modes. The cylinder is one of a handful of geometries which are separable,
yet even for the cylinder the completeness of the cylinder Kelvin modes remains an open question
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[15]. For finite viscosity, the eigenmodes corresponding to infinitesimal perturbations of confined
solid-body rotation are the eigenmodes of the Navier-Stokes equations linearized about solid-body
rotation. These “viscous modes” are often very similar to Kelvin modes. In geometries such as the
cylinder, the viscous modes and the Kelvin modes differ primarily in the boundary layer structures
that are present in the viscous modes that accommodate the no-slip boundary condition [16–18].
What happens when there is periodic forcing? From the perspective of an initial-value problem, if the
Kelvin modes were complete the initial condition could be described as a combination of these. For
the viscous problem, the viscous modes can be combined to describe the initial condition; these are
viscously damped, and one is left with the forced response (often referred to as the “steady-state”).
How is the forced response related to the imposed forcing and to the eigenmodes (viscous or
inviscid) of the container? Further complicating the issue is the fact that for finite viscosity there
are also internal shear layers that, for example, in periodically forced cylinder flows, emerge from
the corners where endwalls and the sidewall meet. Wood [19,20] first suggested their occurrence
analytically, and they have been subsequently observed experimentally [21] and numerically [22,23],
and in combined experimental and numerical studies [24]. When the forcing is axisymmetric, these
internal shear layers are conical with cone angle in accord with the dispersion relation derived
from the linear inviscid theory. When the forcing or the geometry are not axisymmetric, the shear
layers do not form axisymmetric cones (e.g., see Refs. [18] for precessional forcing of a cylinder
and [25] for librational forcing of a cube). These internal shear layers have been associated with
the characteristics of the corresponding linear inviscid idealized flow, and interpreted as being
viscous regularizations of singular surfaces [19,20]. Baines [26] raises some concerns about such an
interpretation; the analysis of Wood involves the singular perturbation of neglecting viscous effects,
leading to an ill-posed hyperbolic boundary value problem (BVP). The idealization of ignoring
viscous and nonlinear terms in the governing equations is ostensibly made for the purpose of making
the problem analytically tractable, and this comes at the expense of not being able to account for
the physical no-slip boundary conditions, introducing ill-posedness and subsequent pathologies that
may not have physical significance. Greenspan [27] discusses this, noting that the spectrum being
dense results from the failure of the asymptotic method to locate the eigenvalues properly. This
stems from the fact that the viscous problem in the limit of small viscosity has boundary layers,
and when the wavelength of the inviscid eigenmodes is comparable to the boundary layer thickness,
the concept of an inviscid interior flow with a viscous boundary layer correction breaks down.
McEwan [21] also notes that “there arise from the linearized inviscid solutions for cylindrically
bounded motions features of questionable physical validity.” A problem with the hyperbolic BVP is
that infinitesimal changes in the system parameters change the distribution of characteristic surfaces
within the container from retracing to nonretracing. For real (viscous) fluids, these difficulties might
be regarded as artificial since the system is then elliptic and well-posed. Nevertheless, some aspects of
the results from the hyperbolic BVP are found to be useful (the dispersion relation and eigenmodes),
but it remains unclear to what extent the response to external forcing can be predicted without
consideration of the Navier-Stokes equations with no-slip boundary conditions.

A further issue that has been recently raised is how is the symmetry of the response related to
the symmetry of the forcing? Often it is claimed that the response can only consist of Kelvin modes
whose frequencies are sufficiently close to the forcing frequency and whose spatial structure has the
same symmetry as the forcing [24,25,28]. These observations are made based on considerations of
forcing with symmetry. A corollary question is what is the response when the forcing does not have
symmetry?

The Kelvin modes of the cylinder have azimuthal symmetries, characterized by m, the azimuthal
wave number. If the forcing is axisymmetric and sufficiently small so that the response is also small,
then the response will also be axisymmetric. With librational forcing, symmetry breaking in the
sidewall boundary layer is found both experimentally and numerically when the Rossby number (the
ratio of forcing amplitude to background rotation) is greater than about 0.3. The sidewall boundary
layer loses stability to Taylor-Görtler-type instability during the retrograde phase of the libration, and
the bulk flow is far from solid-body rotation [28,29]. With other axisymmetric periodic forcings, such
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as the axial oscillations of the sidewall, symmetry breaking also does not occur if the corresponding
Rossby number is sufficiently small (of order 1 or less) [23]. In the axial direction, the Kelvin modes
have either odd or even parity, depending on whether the number of axial half-wavelengths is even
or odd. In this study, we investigate the response to periodic forcing that is axisymmetric and is
parameterized by a phase in the forcing such that in general it has no axial parity symmetry, but for
some values of the phase parameter the forcing has either odd or even axial symmetry.

We select a simple geometry, a circular cylinder, and a class of perturbations that allows us to
explore the role of symmetry. In order to keep the flow relatively simple, the chosen perturbations
do not alter the direction of the mean rotation vector, keeping it aligned with the cylinder axis.
This, together with restricting the forced perturbations to be of small amplitude, keeps the flow
axisymmetric. Specifically, we consider the split-cylinder arrangement, where the cylinder is split at
midheight and the two halves rotate differentially. Both halves rotate very fast so that their rotation
period is very short compared to the viscous diffusion time scale, and the periodic modulations of
their mean rotation rates are of very small magnitude. We impose the same period of modulation
on the two halves, so that the system is periodically forced, but consider variations in the phases.
This phase variation allows us to consider forcings that are either symmetric or nonsymmetric about
the cylinder midheight. In particular, when the two cylinder halves are modulated in phase, the
modulation is the well-studied libration case [28–33]. In this case, the system is equivariant to a
reflection about the midheight. In contrast, when the two halves are modulated exactly out of phase,
the system is equivariant to a spatio-temporal symmetry corresponding to the reflection composed
with a half-period translation in time, and for any other phase difference there is no spatial or
spatio-temporal symmetry in the axial direction. In the following sections, we report on numerical
simulations detailing how the various forced modulations lead to different responses in the flow that
depend not only on the frequency (as has been previously studied), but also on the phase difference,
and how the dependence on the phase difference is intrinsically tied to the symmetry of the system.

II. GOVERNING EQUATIONS AND NUMERICAL METHODS

Consider a circular cylinder of radius a and height h, filled with a fluid of kinematic viscosity ν,
rotating with a mean angular speed �. The cylinder is split in two at its midheight. The rotations
of the two halves are subjected to modulations with the same amplitude and frequency, but with
a relative phase difference between the two. The flow is governed by the Navier-Stokes equations,
which are nondimensionalized by using a as the length scale and 1/� as the time scale to give

(∂t + u · ∇)u = −∇p + 1

Re
∇2u, ∇ · u = 0, (1)

where Re = �a2/ν is the Reynolds number, p is the pressure, and u = (u,v,w) is the velocity field in
cylindrical coordinates (r,θ,z) ∈ [0,1] × [0,2π ] × [−γ /2,γ /2], where γ = h/a is the aspect ratio,
and the corresponding vorticity field is ∇ × u = (ξ,η,ζ ). In rotating flows, the Ekman number is
often used instead of the Reynolds number, where Ek = ν/(2�h2) = 1/(2Re γ 2).

The boundary conditions are no-slip; on all walls the radial and axial velocity components are
zero, u = w = 0, and only the azimuthal component is nontrivial:

top endwall, z = γ /2: v = r[1 + α sin(ωt + φ)],

bottom endwall, z = −γ /2: v = r[1 + α sin(ωt)],

top half of sidewall, r = 1, z ∈ (0,γ /2]: v = 1 + α sin(ωt + φ),

bottom half of sidewall, r = 1, z ∈ [−γ /2,0): v = 1 + α sin(ωt),

(2)

where α, ω, and φ are the amplitude, frequency and phase of the modulation. The forcing amplitude
α can be thought of as Rossby number Ro measuring the differential rotation with respect to the
background rotation. A schematic of the flow system is shown in Fig. 1.
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FIG. 1. Schematic of the flow system. The inset shows azimuthal vorticity η for Re = 106, γ = 1, α = 10−4,
ω = 0.88, and φ = π .

Since we are interested in the response to small-amplitude periodic perturbations to solid-body
rotation, we shall fixed α = 10−4. For such weak forcing, the flow is expected to remain
axisymmetric [23,28,29], and so we only consider here the axisymmetric Navier-Stokes equations.
The axisymmetric Navier-Stokes equations (1) together with the boundary conditions (2) are solved
numerically using a second-order time-splitting method, with space discretized using Chebyshev
collocation points in r and z:

u(r,z,t) =
2nr+1∑

n=0

nz∑

m=0

ûmn(t)�n(r)�m(2z/γ ), (3)

where �n is the nth Chebyshev polynomial. The spectral solver is based on that described in
Ref. [34], and it has been used extensively in a wide variety of enclosed cylinder flows. Since
the system is harmonically forced, it is convenient to have an integer number of time steps nt per
modulation period τ = 2π/ω, such that the time step is δt = τ/nt . For the cases presented here,
the required time resolution was nt = 10000 and the spatial resolution was nr = 150 and nz = 151.
This resolution provides at least seven collocation points in the boundary layers ensuring that they
are well resolved (see Sec. III A for details regarding the boundary layers).

The discontinuous sidewall boundary condition can lead to Gibb’s phenomenon when using a
spectral solver. To avoid this, the discontinuity was regularized over a small distance. Specifically,
the boundary condition for v at the sidewall is replaced by

v(r = 1,θ,z) = 1 + α tanh(εz) sin(ωt + φ), for z ∈ (0,γ /2],

v(r = 1,θ,z) = 1 + α tanh(εz) sin(ωt), for z ∈ [−γ /2,0),
(4)

where ε governs the distance over which the discontinuity is smoothed out. Based on studies of this
type of regularization for the same cylindrical geometry [35–37], ε = 50 was selected. When the
phase difference φ = 0 (corresponding to libration), the boundary conditions are not discontinuous
and no regularization is used. Note also that no regularization is needed at the corners; the boundary
conditions are not discontinuous there.
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The axisymmetric Navier-Stokes equations are invariant to arbitrary translations in time and to a
reflection in z; the action of these symmetries on the velocity u and the vorticity ∇ × u = (ξ,η,ζ )
are

Tρ(u,v,w,ξ,η,ζ )(r,z,t) = (u,v,w,ξ,η,ζ,)(r,z,t + ρ), for any real ρ,

K(u,v,w,ξ,η,ζ )(r,z,t) = (u,v,−w,−ξ,−η,ζ )(r,−z,t). (5)

However, the boundary conditions (2) are not invariant to either of these symmetries in general. The
system (equations and boundary conditions) is equivariant to a specific temporal symmetry Tτ due
to the harmonic forcing, for any phase difference φ. Also, for any value of φ, the flow for −φ is
obtained from the flow for φ by applying T−φ/ω K to it, so that only φ ∈ [0,π ] need be considered.
The system is invariant to the reflection K only for φ = 0 (libration). For φ = π , where the two
cylinder halves are half a period out of phase, the system is invariant to the spatio-temporal reflection
Tτ/2K = H, whose action is

H(u,v,w,ξ,η,ζ )(r,z,t) = (u,v,−w,−ξ,−η,ζ )(r,−z,t + τ/2). (6)

For other values of φ, there are no spatial or spatio-temporal symmetries.
The aim of this study is to investigate the response to harmonic forcing in a regime that is close

to the linear inviscid regime. This regime is asymptotically reached with Re → ∞ and α → 0.
Numerically, we approximate this regime by taking Re large and α small. Specifically, in this study
we fix Re = 106 and α = 10−4, and consider variations in the forcing frequency, ω ∈ (0,2], and
phase, φ ∈ [0,π ]. Note that Re = 106 corresponds to Ekman number Ek ∼ 5 × 10−7 (depending
on γ ), which is one to two orders of magnitude smaller than what is typically accessible in laboratory
experiments involving measurements of inertial waves and beams.

III. RESULTS

A. Response with φ = π

We begin by considering the response when the modulations of the two cylinder halves are out
of phase by exactly half a period, i.e., φ = π . The consequences of changing the forcing frequency
are illustrated in Fig. 2, which shows snapshots of the azimuthal vorticity η in a meridional plane,
(r,z) ∈ [0,1] × [−γ /2,γ /2], for several different ω. These and all subsequent contour plots of η in
this paper are shown at the same phase of the modulation, corresponding to when t = (k + 1/2)τ ,
with k an arbitrary integer and τ = 2π/ω is the modulation period. Also, all the contour plots of
η use the same contour levels and color map (detailed in the caption of Fig. 2), so that they can
all be directly compared for the different values of ω, γ , and φ used. As ω varies, the beam angle
changes in accord with the dispersion relation. The beams emerging from the corners are more
intense than those emerging from the sidewall split, irrespective of the value of ω. This is due
to the secondary flow in the endwall boundary layers being periodically pumped into the corner
region, resulting in a large-amplitude perturbation there, whereas the boundary layer flow in the
region of the sidewall split is relatively weak. Furthermore, the finite viscosity and nonlinearity lead
to constructive and destructive interactions between the beams as they intersect, producing large
variations in the intensity of η with small changes in ω. The online movie [38] shows an animation of
η contours, with each frame corresponding to ω = 0.01i for i ∈ [2,200], illustrating how the beams
behave as they cross and reflect off walls and the axis.

In order to quantify the intensity of the response in the bulk to the harmonic forcing, we use the
maximum of |η| (which is zero for solid-body rotation) over the forcing period τ and the cylindrical
domain D, ηf = maxτ

D |η|. Figure 3 shows how ηf varies with ω; the figure includes results for
ω = 0.01i with i ∈ [2,200]. For ω ∈ (0.5,1.8) there is very little variation in ηf , which is in sharp
contrast to what one would expect from viewing the η contours in Fig. 2 and the online movie [38],
which give the impression of very intense η for particular values of ω. On closer inspection, the lack
of peak responses in Fig. 3 is attributable to having used the whole cylindrical domain to determine
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FIG. 2. Azimuthal vorticity contours in the meridional plane (r,z) ∈ [0,1] × [−γ /2,γ /2], with φ = π at
various ω as indicated (the corresponding beam angle β according to the dispersion relation is also indicated). An
animation is available online [38]. There are 10 contour levels in the range η ∈ [−0.0005,0.0005], quadratically
spaced, with positive being red and negative being yellow. Note that all isocontour plots in this paper use the
same contour levels and color map.

ηf ; the maximum in η occurs in the very thin boundary layers on the top and bottom endwalls.
Hence, in order to quantify the response to the modulation in the bulk flow, the contributions from
the boundary layers should be excluded [23,28,39].

We now estimate the boundary layer thickness in order to exclude their contribution. The thickness
of the endwall boundary layers varies with ω, as is to be expected for an oscillating Ekman boundary
layer. This type of boundary layer was previously studied for a librating cylinder [30], and the
same analysis is applicable to the split cylinder with arbitrary φ. In terms of the nondimensional
parameters used here, the boundary layer analysis of Wang [30] gives the endwall boundary layer
thickness, for ω < 2, to be δ = c/

√|ω − 2|Re, where δ is the boundary layer thickness divided by
the height of the cylinder and c is a constant of proportionality. In order to compare the boundary
layer thickness obtained from our simulations (DNSs) with the estimates of Ref. [30], we have
measured the thickness of the boundary layer using the azimuthal vorticity, taking the edge of the
boundary layer to be where the fluid is rotating almost as solid body rotation, with η ≈ 0. Although
the endwall boundary layer is not of uniform thickness, the variations are negligible, and so we report
the thickness at r = 0.8. Furthermore, even though the boundary layer is oscillatory, its thickness

0 0.5 1 1.5 2
ω

0.085

0.090

0.095

0.100

0.105

ηf

FIG. 3. Variation of ηf with forcing frequency ω for γ = 1 and φ = π .
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FIG. 4. Endwall boundary layer thickness δ obtained from simulations (DNSs) and estimated using Wang’s
theory [30] with c = 8.14.

is time invariant. This was already noted for the libration case, with φ = 0, [29], and here we have
also found this to be the case for φ 	= 0.

Figure 4 shows a comparison between δ obtained from simulations (DNSs) and the theoretical
prediction from Wang [30], with c = 8.14. The agreement is generally very good, with some
discrepancies at the extreme values of ω. For ω ≈ 2, Wang’s estimate becomes unbounded.
Determining δ from the simulations for ω ≈ 2 is also troublesome as the beams at these frequencies
are nearly horizontal, and it becomes difficult to distinguish between the edge of the boundary layer
and the beams.

With an estimate of the boundary layer thickness δ in hand, we now consider the maximum of |η|
over a period and over the cylindrical domain excluding the boundary layer regions, ηb = maxτ

D/B |η|.
The thickness of the endwall boundary layers is calculated using Wang’s scaling, with a modification
to avoid the unrealistic effect of δ becoming unbounded for ω ∼ 2. The modification is to fix the
maximum thickness for the exclusion zone at the endwalls to be no larger than 4% of the cylinder
height. In contrast, the sidewall boundary layer thickness does not vary with ω, and a fixed value of
0.66% of the cylinder radius is excluded for all cases. The robustness of the results to variations in
the excluded boundary layer regions was checked by using slightly different multiples of δ to define
the exclusion zone. Figure 5 shows ηb determined using various multiples near one of δ to define
the boundary layer exclusion zones. It is evident that if all of the boundary layer is not removed
when computing ηb, much of the response is swamped by boundary layer vorticity contributions.
The difference in ηb between using 1.16δ and 0.92δ is very small, whereas ηb is noticeably larger
for 0.70δ, especially for ω ∈ (0.5,1.8), this being due to residual contributions from the parts of the
boundary layers that were not excluded. Hence all the results we will present for ηb will use 1.16δ

to ensure that the boundary layer is entirely excluded. Furthermore, the value of ηb at the peaks is

0 0.5 1 1.5 2
ω

0

0.01

0.02

0.03

0.04

ηb

1.16δ
0.92δ
0.70δ

FIG. 5. Variation of ηb with ω, for γ = 1 and φ = π , with the excluded portions of the boundary layers
indicated.
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FIG. 6. Retracing rays (a) R41 at ω = 1.94, (c) R45 at ω = 1.25 and (b, d) η contours at the corresponding
frequencies with φ = π .

invariant to how much of the boundary layer is excluded, indicating that the peaks are due to a bulk
flow response to the modulations. It is also interesting to note that for ω ∈ (0.5,1.8), ηb/ηf ∼ 0.1.

B. Nonlinear waves beams, inviscid Kelvin modes, and retracing rays

In order to determine how the bulk flow responds to the modulations, particularly for frequencies
corresponding to peak values in ηb, we check to see if those frequencies correspond to either
low-order retracing rays or low-order Kelvin modes. The retracing rays are characteristics of the
linear inviscid problem that retrace themselves after a certain number of reflections at the walls
(and the axis). For the cases in which the beams only emerge from the corners, such as the φ = 0
libration case, the corresponding retracing rays can be described by the number of reflections in the
axial direction, (n − 1), and in the radial direction, (k − 1) [23]. Using n, k, and the aspect ratio
of the cylinder, the beam angle is β = arccos(ω/2) = arccos(2n/

√
n2 + k2γ 2). With φ = π , since

the cylinder is split exactly in half, the retracing rays associated with beams starting at a corner and
ending at the split, or starting and ending at the split, are equivalent to the retracing rays associated
only with corner sources but for a cylinder of aspect ratio γ /2. These cases are equivalent to the
retracing rays with k an even integer, associated only to corner beams in the cylinder of aspect ratio
γ . Therefore, no extra cases have to be considered to account for the split cylinder geometry. Two
examples of such retracing rays, R41 and R45, are shown in Figs. 6(a) and 6(c), together with the
contours of η at the corresponding values of ω for φ = π in Figs. 6(b) and 6(d).

The peaks in ηb could also correspond to resonant forcing at the frequency of a low-order
Kelvin mode. Kevin modes are the eigenfunctions of the inviscid Euler equations linearized about
solid-body rotation. The azimuthal vorticity of the axisymmetric Kelvin eigenmodes Knk are given
by ηnk(r,z) = J1(σkr) sin(nπ [z/γ + 1/2]), where n and k are positive integers and the frequency
associated with Knk is ω = 2 cos[arctan(γ σk/nπ )]; see Ref. [23] for details.

The frequencies associated with the low-order retracing rays Rnk and the low-order Kelvin modes
Knk , with n � 5 and k � 5, for three different γ , are listed in Table I. Note that in general, the
frequencies associated with Rnk and Knk do not coincide. Figure 7 shows the bulk flow response ηb

to the modulation for three different aspect ratios; included are red squares corresponding to the
frequencies associated with the low-order retracing rays and black triangles corresponding
to the low-order Kelvin modes that are listed in Table I. What becomes clear from the figure is
that the predominant peaks in ηb(ω) do not correspond to retracing rays, but that they in fact coincide
with the frequencies corresponding to K1k with k ∈ [1,4]. This feature of the bulk flow response is
independent of γ .

The first row of Fig. 8 shows azimuthal vorticity contours of the Kelvin modes K1k with k ∈ [1,4],
and the subsequent rows show the azimuthal vorticity contours from the simulations at the same
frequencies, with different rows corresponding to the three aspect ratios shown in Fig. 7. Although
the beams emanating from the corners and the sidewall split are striking, it is also striking that
the bulk flow η has the same spatial distribution as in the Kelvin modes (compare red and yellow
regions). Also evident from Fig. 8 is that for all the considered γ , the beams are very close to being
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TABLE I. Frequencies ω associated with retracing rays Rnk and Kelvin modes Knk , for n ∈ [1,5] and
k ∈ [1,5], and γ as indicated.

γ = 1 γ = 0.8 γ = 0.6 γ = 1 γ = 0.8 γ = 0.6

R11 1.4142 1.5617 1.7150 K11 1.2681 1.4315 1.6140
R12 0.8944 1.0600 1.2804 K12 0.8174 0.9769 1.1962
R13 0.6325 0.7692 0.9713 K13 0.5901 0.7202 0.9152
R14 0.4851 0.5965 0.7692 K14 0.4590 0.5654 0.7315
R15 0.3922 0.4851 0.6325 K15 0.3747 0.4638 0.6059
R21 1.7889 1.8570 1.9157 K21 1.7075 1.7975 1.8782
R22 1.4142 1.5617 1.7150 K22 1.3343 1.4916 1.6616
R23 1.1094 1.2804 1.4866 K23 1.0509 1.2222 1.4345
R24 0.8944 1.0600 1.2804 K24 0.8531 1.0156 1.2359
R25 0.7428 0.8944 1.1094 K25 0.7128 0.8608 1.0731
R31 1.8974 1.9325 1.9612 K31 1.8527 1.9019 1.9430
R32 1.6641 1.7647 1.8570 K32 1.6043 1.7184 1.8261
R33 1.4142 1.5617 1.7150 K33 1.3592 1.5137 1.6787
R34 1.2000 1.3679 1.5617 K34 1.1550 1.3248 1.5252
R35 1.0290 1.2000 1.4142 K35 0.9933 1.1635 1.3803
R41 1.9403 1.9612 1.9779 K41 1.9130 1.9430 1.9673
R42 1.7889 1.8570 1.9157 K42 1.7463 1.8261 1.8964
R43 1.6000 1.7150 1.8238 K43 1.5544 1.6787 1.7990
R44 1.4142 1.5617 1.7150 K44 1.3723 1.5252 1.6875
R45 1.2494 1.4142 1.6000 K45 1.2131 1.3803 1.5721
R51 1.9612 1.9749 1.9858 K51 1.9430 1.9630 1.9789
R52 1.8570 1.9048 1.9448 K52 1.8261 1.8834 1.9318
R53 1.7150 1.8030 1.8818 K53 1.6787 1.7758 1.8642
R54 1.5617 1.6845 1.8030 K54 1.5252 1.6550 1.7824
R55 1.4142 1.5617 1.7150 K55 1.3803 1.5323 1.6928

retracing; this is a consequence of the frequency associated with K11 being close to the frequency
associated with R45 (they differ by about 1%–2%; however, this is not necessarily a small difference).
The beams for the other frequencies in the figure are also close to higher-order retracing rays (the
corresponding frequencies are not listed in the Table I). The point, however, is not that there are
retracing rays arbitrary close to the simulated peaks, but rather that the low-order retracing rays do
not result in peaks. Notice also that for φ = π the flow is H-symmetric, and so are the odd axial
Kelvin modes, which are associated with the bigger peaks in Fig. 7.

C. Influence of the phase difference

We now consider the impact of the phase difference between the harmonic forcing of the two
cylinder halves. Figure 9 shows the variation of ηb with ω for five different values of φ. For φ = π

[Fig. 9(a), which essentially is the same as Fig. 6(a) and included here for ease of comparison with
the rest of the cases], the peaks in ηb occur at frequencies ω corresponding to the frequencies of
the leading odd axial Kelvin modes, K1j with j ∈ [1,4], as discussed in the previous section. For
φ = 3π/4 [Fig. 9(b)], the larger peaks still correspond to the same Kelvin modes. Further decreasing
φ [Figs. 9(c) and 9(d)], these same peaks are still present, but their intensity is lower and some other
peaks are evident. Finally, for φ = 0 [the libration case, Fig. 9(e)], the peaks corresponding to the
odd axial Kelvin modes disappear, and instead, the peaks that are present correspond to frequencies
of even axial Kelvin modes, K2j with j ∈ [1,3]; some of these are the additional peaks that were
found in Figs. 9(c) and 9(d) and are absent in Fig. 9(a).
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FIG. 7. Variation with forcing frequency of the maximum value of azimuthal vorticity over the forcing
period in the bulk flow (excluding the endwall and sidewall boundary layers to the level 1.16δ) for φ = π and
γ as indicated. The red squares are the responses at frequencies corresponding to low-order retracing rays and
the black triangle are the responses at frequencies corresponding to low-order Kelvin mode frequencies.

Figure 10 shows snapshots of η at the frequencies corresponding to the odd Kelvin modes, which
correspond to the frequencies of the stronger peaks in ηb for φ = π . The odd Kelvin modes are
shown in the first row of the figure, and the other rows correspond to simulations at different φ.
The flow structure is akin to the superposition of odd axial Kelvin modes and wave beams. With
decreasing φ, the flow is slightly different, it loses the features associated with the odd axial Kelvin
mode, but the beam structure persists. When φ = 0, the flow no longer has features related to an odd
axial Kelvin mode, but instead it is similar to an even axial Kelvin mode. This behavior with variable
φ is consistent with the flow for φ = 0 being H invariant, as are the odd Kelvin modes, whereas for
φ = π the flow is K invariant, as are the even Kelvin modes. These results are congruent with the
stronger peaks found for each case in Fig. 9.

In Fig. 11 we consider the leading even axial Kelvin modes in the first row, and the other rows
show simulations at the corresponding frequencies for different φ. The similarities between the
simulations for φ = 0 and the even Kelvin modes is quite striking. With increasing φ, the flow still
has features in common with the corresponding even Kelvin mode until φ = π , in which case the
flow characteristics are more similar to an odd Kelvin mode. The results illustrated in Figs. 10 and 11
indicate that the phase difference φ is crucial in the selection of which Kelvin mode is resonantly
excited, and this selection is predicated by the symmetry of the system.

The influence of φ on the behavior of the bulk of the flow is remarkable even for ω not associated
with peaks in ηb(ω). Figure 12 shows snapshots of η for φ = π,3π/4,π/2,π/4, and 0 for various ω.
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FIG. 8. Comparison between the Kelvin eigenmodes (first row) and azimuthal vorticity contours at the
resonant frequency, for φ = π and γ as indicated.

The φ = π states are similar to even Kelvin modes and the φ = 0 states are similar to odd Kelvin
modes (similar in the sense that they have the same symmetry, K or H). However, for the other φ

values, for which the system is neither K or H symmetric, the flows (which are not symmetric) can
have similarities with one or the other case, or with neither of the odd or even Kelvin modes.

IV. DISCUSSION AND CONCLUSION

We have studied the response to small-amplitude harmonic forcing in a simple rapidly rotating
system whose configuration can be tuned continuously between having a spatial reflection symmetry
(K) and a spatio-temporal reflection symmetry (H). The rapid rotation regime corresponds to Ekman
numbers Ek ∼ 10−6, which is typically the lower limit achieved in laboratory experiments, and the
considered forcing amplitude corresponds to a differential rotation Rossby number Ro ∼ 10−4. The
low Ek puts us in the low-viscosity regime, while Ro/

√
Ek 
 1 is needed for negligible nonlinear

effects. We have Ro/
√

Ek ∼ 0.1, so while the forcing amplitude is small, the response may still
be too large to simply neglect nonlinear effects. Nevertheless, typical laboratory experiments have
larger Ro/

√
Ek due to signal-to-noise ratio constraints of their measurement techniques. We find

that when the forcing has either K or H symmetry, the flow responds with peaks at frequencies
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FIG. 9. Variation of ηb with ω, for γ = 1 and φ as indicated. The black triangles are the responses at
frequencies corresponding to K1k with k ∈ [1,4] and the green circles corresponding to K2k with k ∈ [1,3].

corresponding to low-order Kelvin modes with the same symmetry. This is consistent with the
experimental observation of Ref. [25], but their system, a librating cube, had but a single symmetry
group (K). They concluded that it is of interest to consider other forcings that result in a system
with what they call antisymmetric modes (essentially this would correspond to a system with H
symmetry, such as the φ = π case in our problem) to see if the odd axial Kelvin modes would be
excited, and indeed we find that they are. They also suggested that it is of interest to examine what
happens in systems with broken symmetry, and that corresponds to the cases with φ 	= 0 and φ 	= π .
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FIG. 10. Comparison between the Kelvin modes and azimuthal vorticity contours at the given frequencies
ω, corresponding to peaks in ηb, for γ = 1 and φ as indicated.
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FIG. 11. Comparison between the Kelvin modes and azimuthal vorticity contours at the given frequencies
ω, corresponding to peaks in ηb, for γ = 1 and φ as indicated.

We find in these cases that both odd and even Kelvin modes can be excited, and the degree to which
one or other is excited depends on the degree to which the symmetries are broken.

Weak perturbations to rapidly rotating flows have responses which are not straight forward to
predict. The very rapid rotation limit suggests that viscous effects may be small enough to neglect, and
if the imposed perturbation levels are sufficiently small, then nonlinearities may also be negligible.
In the classical approach to the problem, viscous terms in the governing equations are neglected,
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FIG. 12. Azimuthal vorticity contours for γ = 1 at ω and φ as indicated.

and the system is linearized by considering infinitesimal perturbations to solid-body rotation. For
perturbation frequencies less than twice the rotation frequency, the resulting linear equation is of
hyperbolic form. This oscillator system results from the restoring nature of the Coriolis force. The
eigenmodes, Kelvin modes, are neutral, i.e., the real parts of the eigenvalues are zero. However,
solid-body rotation is stable (viscous eigenmodes are damped), and the higher order eigenmodes
are more rapidly damped. So to observe the eigenmodes in a physical setting, the perturbations
need to be continuously applied. The details of this forcing will impact what is observed. For a
damped oscillator system, the response is composed of both the eigenmodes of the unforced system
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(which are damped and take care of the initial condition) and the forced response which is all that
survives after some time. The expectation is that if the harmonic forcing has the spatio-temporal
structure of one of the eigenmodes of the unforced system, then it can be resonantly excited with
a very small-amplitude forcing. Of course, in practice, one does not have complete control of the
spatio-temporal structure of the forcing, but typically only controls boundary forcing at a selected
frequency. Nevertheless, in practice, responses that have much in common with the target eigenmode
result.

A complication, however, is that the harmonic forcing in the physical system often leads to
the formation of boundary layers. In the singularly perturbed problem (neglecting viscous effects)
these do not exist. In rapidly rotating flows, a fundamental issue is whether there is a one-to-one
correspondence between solutions of the singularly perturbed problem (Ek = 0) and the full problem
(0 < Ek 
 1) [8]. Various asymptotic analyses have tried to address this issue, typically employing
expansions based on Ek1/2, but have not been able to show one-to-one correspondence [40]. Then
there is the further issue of whether the nonlinear terms are negligible [41]. The problem here is
subtle. On the one hand, one relies on resonance in the very low viscosity limit using a very low
amplitude forcing to excite an eigenmode to an observable level, but if it is observable it is because
the flow deviation away from solid-body rotation is not small, and so nonlinear effects may not
be negligible. This issue is addressed in Zhang et al. [14] by an asymptotic analysis based on the
velocity-pressure formulation that allows the no-slip boundary condition to be explicitly enforced.
Their asymptotic results suggest that libration in the small Ek and small Ro limits does not result in
any resonances with the linear inviscid modes of axisymmetric containers (they specifically studied
the sphere and suggested that their results also applied to the cylinder). In contrast, our simulations
with finite but small Ek and Ro do show resonances with low-order Kelvin modes. As indicated
above, this may be due to non-negligable nonlinear effects as our Ro/

√
Ek ∼ 0.1 may not be small

enough to be in the asymptotic regime.
The harmonic forcing may excite a low-order eigenmode, but temporally periodic viscous

boundary layers are also formed. These tend to drive wave beams into the interior from corners
along the characteristics of the linear inviscid system. These beams are omnipresent and become
narrower and more intense for smaller Ek. Note that they do not exist in the singularly perturbed
system. So now we have that the solutions for Ek = 0 and 0 < Ek 
 1 differ not only in the boundary
layer regions, but also throughout the entire flow because of the presence of the beams.

At the end of the day, the details of how a rapidly rotating flow responds to small-amplitude
harmonic forcing requires the consideration of the full system of governing equations.
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