
PHYSICAL REVIEW FLUIDS 2, 084606 (2017)

Reynolds and Prandtl number scaling of viscous heating
in isotropic turbulence

Andrey Pushkarev,1 Guillaume Balarac,1 and Wouter J. T. Bos2

1LEGI, CNRS, Grenoble INP, 38000 Grenoble, France
2LMFA, CNRS, Ecole Centrale de Lyon, Université de Lyon, 69134 Ecully, France

(Received 14 April 2017; published 21 August 2017)

Viscous heating is investigated using high-resolution direct numerical simulations.
Scaling relations are derived and verified for different values of the Reynolds and Prandtl
numbers. The scaling of the heat fluctuations is shown to depend on Lagrangian correlation
times and on the scaling of dissipation-rate fluctuations. The convergence of the temperature
spectrum to asymptotic scaling is observed to be slow, due to the broadband character of the
temperature production spectrum and the slow convergence of the dissipation-rate spectrum
to its asymptotic form.
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I. INTRODUCTION

The equation governing the heat fluctuations θ generated by an incompressible, statistically
isotropic turbulent velocity field u is

∂tθ + u · ∇θ = D�θ + ε′/cp, (1)

where cp is the heat capacity and D the thermal diffusivity. The source term is proportional to the
dissipation-rate fluctuation ε′ = ε − 〈ε〉, where the angular brackets denote an ensemble average.
Recent studies investigated this system using spectral closures [1,2]. In Ref. [1] a spectral model
was used, derived using dimensional arguments. In Ref. [2] one of us derived the eddy-damped
quasinormal Markovian expression for the viscous heat production. Neither of these approaches
was capable of taking into account the correct spatial distribution of dissipation-rate fluctuations,
which turn out to be essential for a correct representation of the viscous heat generation. Whereas the
influence of the spatial distribution of the dissipation-rate fluctuations on the statistics of second-order
correlations such as the kinetic energy is in general small, the actual wave-number spectrum of the
dissipation-rate fluctuations can differ dramatically from closure predictions [3]; this effect should
carry over to the scaling of the temperature fluctuations [4].

In a previous investigation [4], numerical simulations were carried out to quantify the viscous
heat production for unity Prandtl number and Reynolds numbers up to Reλ = 77. It was clearly
illustrated that the large-scale correlation of the dissipation-rate fluctuations should be taken into
account to properly model the viscous heat production. What was not clear was how to choose
the Lagrangian correlation time of the heat fluctuations. Furthermore, the relatively low Reynolds
numbers did not allow determination of the exact scaling of the variance and dissipation of the heat
fluctuations.

In this paper we present results from direct numerical simulations at considerably higher Reynolds
numbers (Reλ � 370), supplemented by a variety of different Prandtl numbers in the range 0.001 �
Pr � 12. This allows us to verify the predictions of the precedent investigation, for instance, the role
and behavior of the Lagrangian correlation time associated with the heat production, and will allow
us to assess the influence of the Prandtl number on the heat production.

We will first, in the following section, discuss the scaling of dissipation-rate fluctuations. Then, in
Sec. III, we derive the expected scaling of the variance and dissipation of temperature fluctuations,
in the light of the insights obtained in Ref. [4]. In Sec. IV the numerical method and parameters are
discussed and in Sec. V the results of the simulations are reported. Section VI summarizes the paper.
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II. SCALING OF THE DISSIPATION-RATE FLUCTUATIONS

A correct representation of the spatial correlation of the dissipation-rate fluctuations will be
essential in our description of frictional heating. We therefore consider the spectrum of the
dissipation-rate fluctuations, defined such that∫

Eε(k)dk = 〈ε′2〉. (2)

This quantity can be expressed as a function of fourth-order velocity-gradient correlations. Assuming
the velocity statistics to be joint Gaussian, the dissipation-rate spectrum (2) can be expressed as a
function of the kinetic energy spectrum. Assuming Kolmogorov scaling for the kinetic energy
spectrum, one obtains the inertial range scaling [3]

Eε(k) ∼ ν2ε4/3k5/3. (3)

Since the mean dissipation will appear in a large number of expressions in the following, we
have introduced the shorthand notation ε = 〈ε〉. In the following, we will express quantities, where
possible, as a function of the Kolmogorov length scale η = ν3/4ε−1/4 and the mean dissipation ε.
For the Gaussian estimate of Eε(k) [Eq. (3)] we obtain then the expression

Eε(k) ∼ ε2η(kη)5/3. (4)

The fact that this is an increasing function of k suggests that the dissipation-rate fluctuations are
dominated by spatial correlations at small scales, around kη, the Kolmogorov scale. In reality, it is
observed in experiments and simulations [3,5–8] that the dissipation-rate fluctuations are correlated
at large scales, following a power law better described by

Eε(k) ∼ ε2L(kL)−1+μ, (5)

where the coefficient 0 � μ < 1 is either determined experimentally, or derived from empirical
models. In this expression L is the integral length scale

L = 3π

4

∫
k−1E(k)dk∫

E(k)dk
, (6)

where E(k) is the kinetic energy spectrum. No derivation of the value of μ from the Navier-Stokes
equations exists. A commonly used model to determine the quantitative influence of intermittency
is due to She and Lévêque [9], yielding the value μ = 2/9. We see that, using this value, the
dissipation-rate spectrum, instead of being an increasing function of k proportional to k5/3, is a
decreasing function, roughly proportional to k−7/9.

This enormous difference between the Gaussian estimate (3) and expression (5), irrespective of
the precise value of μ, leads to a completely erroneous prediction of the heat generated by viscous
friction.1 It was shown that for this reason spectral models underestimate, for high-Reynolds-number
flows, the heat production by several orders of magnitude [4]. Technically, the reason is that this type
of spectral closure is not able to take into account all cumulant corrections to fourth-order velocity
correlations [10,11].

In Ref. [4] we used the expression (5), which was, we thought, a precise enough description
of the dissipation-rate spectrum. According to the expression (5), the dissipation-rate fluctuations
are entirely determined by the quantities ε and L. In high-resolution direct numerical simulations
(DNSs), it was however shown that this might not be the case [12]. Indeed, in those simulations of

1The parameter μ is generally called the intermittency coefficient, so one could call the case μ = 0 the
nonintermittent case. However, even for μ = 0 the spectrum (3) is completely different from (5). We will not
try to answer the question whether this difference between the Gaussian estimate and the actual spectrum is
due to internal intermittency or to another effect.
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isotropic turbulence with Reynolds numbers up to Reλ = 732, it was shown that the dissipation-rate
spectrum scales as

Eε(k) ∼ ε2η(kη)−1+μRe1/4
λ , (7)

where μ = 1/3 and the Reynolds number is given by

Reλ =
√

15
U 2

√
εν

, (8)

with U the root-mean-square value of a velocity component. The expression (7) differs from (5) by
a Reynolds-number correction. Indeed, expressing (7) as a function of L instead of η, using that
L ∼ Re3/2

λ η, it is found that

Eε(k) ∼ ε2L(kL)−2/3Re−1/4
λ , (9)

which corresponds to (5), with μ = 1/3, multiplied by Re−1/4
λ . This will alter our estimations.

III. ANALYSIS OF THE SPECTRAL TEMPERATURE BUDGET

A. Temperature balance equation

The present investigation focuses on wave-number spectra of fluctuating quantities. In order to
better understand the scaling of these spectra, we first write Eq. (1) in Fourier space

∂tθ (k) = −iki

∫
ui( p)θ (k − p)d p − Dk2θ (k) + ε′(k)/cp, (10)

where the Fourier transformed quantities can be recognized by their dependence on the wave vector.
The spectra of the kinetic energy and temperature variance are defined such that∫

E(k)dk = 1

2
〈uiui〉,

∫
Eθ (k)dk = 1

2
〈θ2〉. (11)

The equation for the time evolution of the temperature spectrum is then

∂tEθ (k) = Tθ (k) − 2Dk2Eθ (k) + Pθ (k), (12)

where

Tθ (k) = −4iπk2ki

∫
〈θ (−k)ui( p)θ (k − p)〉d p (13)

and

Pθ (k) = 4πk2〈ε′(k)θ (−k)〉/cp. (14)

The wave-number integral of expression (12) gives the equation for the scalar variance

dt 〈θ2〉 = pθ − εθ , (15)

where pθ = ∫
Pθ (k)dk and εθ = ∫

2Dk2Eθ (k)dk. In a steady state we naturally have a balance
pθ = εθ . In the following we will evaluate the production spectrum Pθ (k). Since we consider only
statistically stationary states, its integral will directly determine the scalar dissipation.

B. Model for production

Following [4], we write the contribution of θ (k,t) as

θ (k,t) = θ (k,t |0) + c−1
p

∫ t

0
Gθ (k,t |s)ε′(k,t |s)ds, (16)
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where Gθ (k,t |s) is the scalar Green’s function and f (k,t |s) is the Fourier transform with respect to
x of a quantity f (x,t) evaluated at time s on the trajectory, passing at a time t through position x.
We find then for the production term

Pθ (k) = 1

c2
p

�(k)Eε(k), (17)

where

�(k) =
∫ t

0
Gθ (k,t |s)Rε(k,t |s)ds, (18)

with

Rε(k,t |s) = Eε(k,t |s)

Eε(k,t)
. (19)

Assuming exponential time correlations for Rε(k,t |s) and G(k,t |s), both proportional to ∼exp(−|t −
s|/τ ), we find

�(k) = 1

τθ (k)−1 + τε(k)−1
. (20)

The precise functional form (exponential, Gaussian, or alike) is not very important in the derivation
and will lead to similar expressions as long as the correlation functions decrease sufficiently rapidly
for t/τ � 1. Up to this point no important simplifications are introduced. However, the transfer is
undetermined and so are the time scales τθ and τε . The dissipation fluctuation spectrum Eε(k) was
discussed in the preceding section.

We start with the important question of how to define the time scales. In Ref. [4] it was assumed
that the correlation time of the dissipation-rate fluctuations τε was of the order of the integral time
scale. Even if this is so, there is a second time scale τθ , related to the scalar decorrelation appearing
in the expression (20), which was not taken into account in the previous investigation. The dominant
time scale is determined by the sum of their inverse values [see Eq. (20)]. It is plausible to assume
that the correlation time τθ , related to the time it takes for a temperature fluctuation to decorrelate
from its trajectory, is influenced by eddy diffusion, i.e., the diffusive influence of velocity fluctuations
encountered on its trajectory. By decorrelating we mean the loss of correlation, in time, in a statistical
sense with respect to the point x at point t , following the fluid particle back on its trajectory [13]. If
eddy diffusion is taken into account, the scalar time scale should be, in the inertial range, proportional
to the typical Lagrangian straining time

τθ (k) ∼ ε−1/3k−2/3. (21)

Such a time becomes for large k dominant over the integral time in the expression (20), which
depends on the sum of the inverse values of the time scales, and this will change the analysis with
respect to Ref. [4].

C. Temperature spectrum in the inertial-convective range (unity and large values
of the Prandtl number)

Let us consider the ideal case of a long inertial-convective range where only production and
transfer are important, ignoring the influence of the shape of the spectra for small wave numbers.
We write the scalar transfer as the derivative of a flux

Tθ (k) = −∂kθ (k). (22)

A balance between transfer and production Tθ (k) = −Pθ (k) then yields

θ (k) =
∫ k

k0

Pθ (k)dk, (23)
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where k0 marks the beginning of the inertial range. Assuming that all quantities behave as power
laws in the inertial range, the flux will tend to a constant value, independent of the wave number k if
Pθ (k) ∼ kα with α < −1. In that case θ (k) = εθ = pθ . For values of α � −1, the flux will be an
increasing function of k. In Ref. [4] this seemed to be the case. We will not confirm that observation
here.

Combining Eq. (17) for the production with the expression (9) for Eε(k), we obtain

θ (k) ∼ ε2η

c2
p

Re1/4
λ

∫ k

k0

�(k)(kη)μ−1dk. (24)

Assuming that the Lagrangian time scale in the inertial range will be dominated by the spectrally
local time scale (21), the value of the flux tends to a constant value in the inertial range

θ (k) ∼ ε5/3η2/3

c2
p

Re(5−6μ)/4
λ (25)

for k � k0 and μ < 2/3 and using that 1/k0 ∼ L ∼ Re3/2
λ η. We have therefore

pθ = εθ ≈ θ (k) ∼ ε5/3η2/3

c2
p

Re(5−6μ)/4
λ . (26)

A constant scalar flux is the prerequisite for Corrsin-Obukhov scaling [14,15],

Eθ (k) ∼ εθε
−1/3k−5/3, (27)

where εθ is given by (26). Combining the last two expressions and integrating, we find that the scalar
variance is then given by

〈θ2〉 ∼ εθε
−1/3η2/3Reλ (28)

∼ (εη)4/3

c2
p

Re(9−6μ)/4
λ . (29)

D. Temperature spectrum in the Batchelor range

In the case where the Prandtl number is very large, a correction to this expression can appear.
Indeed, for Pr � 1, a second scaling range is expected to appear, proportional to

Eθ (k) ∼ εθ

√
ν/εk−1 (30)

for k � kη, up to the Batchelor scale kB ≈ Pr1/2kη. The scalar variance contained in this range can
be estimated by

〈θ2〉B ∼ εθ

√
ν/ε

∫ kB

kη

k−1dk

∼ εθ

√
ν/ε ln(Pr1/2). (31)

Comparing the contributions in the inertial convective and Batchelor range, we find that

〈θ2〉B
〈θ2〉 ∼ Re−1

λ ln(Pr1/2). (32)

This shows that the variance contained in the Batchelor range can be safely ignored for the case we
consider, where Pr � 12 and Reλ � 1. We will therefore, if our estimations are precise enough, not
find any significant contribution to the scalar variance related to the Batchelor range.
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E. Viscous heating at very small Prandtl numbers

In the case of a very diffusive temperature, i.e., D � ν, a balance is expected between the
diffusion of temperature and the viscous heat production. This means that in Eq. (10) the last two
terms dominate over the other terms (cf. the ideas in Ref. [16]),

Dk2θ (k,t) ≈ ε′(k,t)/cp. (33)

Squaring both sides, it is immediately found that

2D2k4Eθ (k,t) ≈ Eε(k,t)/c2
p, (34)

so that, combined with the expression (7), we find

Eθ (kη) ∼ ε4/3η7/3

c2
p

(kη)μ−5Pr2Re1/4
λ . (35)

Integrating this from k0 to kη gives

〈θ2〉 ∼ (εη)4/3

c2
p

Re(25−6μ)/4
λ Pr2 (36)

and for the dissipation

εθ ∼ ε5/3η2/3

c2
p

Re(13−6μ)/4
λ Pr. (37)

F. Predictions for the scaling of integral quantities

In the following, the relations that we will check in our simulations concern the variance and
dissipation of temperature fluctuations. We have chosen to express all variables in Kolmogorov
variables ε and η. All expressions can be recast in terms of U and L, using that

ε ∼ U 3

L
, (38)

a relation that will be shown to hold in our simulations (see Fig. 1). Since this further implies

Re2
λPr ∼ UL

D
≡ Pe, (39)

where Pe is the Péclet number, we can write the expressions to be verified as

〈θ2〉
(εη)4/3c−2

p

∼

⎧⎪⎨
⎪⎩

Re7/4
λ for Pr ≈ 1

Re7/4
λ

[
1 + O

(
Re−1

λ ln(Pr1/2)
)]

for Pr � 1

Re7/4
λ Pe2 for Pr 
 1

(40)

and for the scalar dissipation

εθ

ε5/3η2/3c−2
p

∼
{

Re3/4
λ for Pr � 1

Re3/4
λ Pe for Pr 
 1.

(41)

In these expressions we have used the value μ = 1/3, observed in the simulations in Ref. [12].

IV. NUMERICAL METHOD AND PARAMETERS

We assess the proposed scaling relations for the variance and the dissipation of temperature
fluctuations using a DNS database of forced homogeneous isotropic turbulence. We carried out
standard pseudospectral simulations in a cubic domain of size 2π . A statistical steady flow is
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FIG. 1. (a) Normalized dissipation rate as a function of the Taylor-scale Reynolds number. (b) Taylor-scale
Reynolds number as a function of the integral Reynolds number.

achieved by using a random forcing scheme applied at low wave numbers, around k = kf [17].
The temperature, modeled as a passive scalar, is initialized at zero value. Its variance grows until a
statistically steady state is attained, where on average the temperature source term pθ associated with
the last term in Eq. (1) is balanced by the dissipation of temperature fluctuations εθ . The statistics
are computed during this steady state.

Reynolds numbers ranging from Reλ = 30 to 370 are considered, using a spatial resolution
varying between 643 and 20483 grid points. Prandtl numbers are considered between Pr = 0.001
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TABLE I. Parameters of the simulations.

Nxyz Nxyz

Reλ Pr (scalar field) (velocity field)

30 0.001,0.01,0.1,1 643 643

2,4,12 2563

60 0.001,0.01,0.1,1 1283 1283

2,4,12 5123

90 1,2,4,12 10243 2563

160 1,2,4,12 20483 5123

230 1 10243 10243

370 1 20483 20483

and 12. For Prandtl numbers larger than one, the Batchelor scale ηB = ηK/
√

Pr is smaller than the
Kolmogorov scale ηK . For these cases the temperature fluctuations contain scales smaller than the
smallest velocity scales and their resolution requires a finer grid than the resolution of the smallest
velocity scales. For Prandtl number larger than one, we therefore use a hybrid scheme, combining
a spectral method for the Navier-Stokes equations and a semi-Lagrangian particle method for the
evolution of the temperature fluctuations. This method takes advantage of the Lagrangian nature
of particle methods to enable a good resolution of the temperature fluctuation field at affordable
numerical cost. The code and the numerical methods are detailed by Lagaert et al. [18]. Table I sums
up the DNS database used in this work.

V. RESULTS

A. Statistics of the velocity field

We characterize the turbulent velocity field. The present simulations of a turbulent velocity field
using a pseudospectral method are relatively standard. We will assess our results by comparison
with results from the literature on similar flows. In Fig. 1(a) we show the relation of the normalized
dissipation rate Cε = Lε/U 3 as a function of the Reynolds number. It is observed that we are in the
high-Reynolds-number regime, where this quantity tends to a constant value around 0.5, comparable
to the results presented in Ref. [19]. The relation between Reλ and ReL is shown in Fig 1(b). We
find Reλ ≈ 5.5 Re1/2

L , similar to the results in Ref. [20]. Indeed, the prefactor in this expression is

Reλ

Re1/2
L

=
√

15

Cε

, (42)

which gives for Cε = 0.5 the value ≈5.5.
The energy spectra, normalized by Kolmogorov variables, are shown in Fig. 2(a). A collapse of

the spectra over approximately all scales is observed and a power-law scaling with an exponent close
to −5/3 is observed.

The spectra of the dissipation-rate fluctuations are shown in Fig. 2(b). The spectra are normalized
using Kolmogorov variables, plus a Reynolds number correction, the expression (9), as proposed in
Ref. [12]. The spectra collapse for the highest Reynolds numbers, but it seems that the convergence
to a high-Reynolds-number asymptotic shape is much slower than for the energy spectrum, for which
the different energy spectra collapsed already for the lowest Reynolds number that was considered
in the present investigation. Furthermore, the power-law dependence, proportional to k−2/3, has not
yet been attained at these Reynolds numbers.
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FIG. 2. (a) Energy spectra in Kolmogorov units for the different Reynolds numbers. (b) Dissipation rate
fluctuation spectra, normalized according to the relation (7).

Altogether, these results are in agreement with previous computations, e.g., [12,19,20]. The
question is now how the temperature fluctuations generated by this flow scale as a function of the
different flow parameters.

B. Characterization of the heat-production spectrum and the Lagrangian time scale

In Fig. 3(a) we show the temperature production spectra Pθ (k) for different Reynolds numbers and
Pr = 1. No clear inertial range is visible. If a power law k−n is to be fitted to the wave-number range
where the energy spectrum shows an inertial range (0.005 � kη � 0.1), the value of the exponent
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FIG. 3. (a) Temperature production spectra. (b) Lagrangian time scale, as estimated from the production
spectrum and the dissipation-rate fluctuation spectrum. The results are for Pr = 1.

n is closer to n = 1 than to the exponent n = 4/3, predicted by the analysis in Sec. III C. Both
power laws are indicated in the figure. The asymptotic value, if our analysis is correct, is clearly not
attained. However, the collapse of the spectra for the highest values of Reλ for the range kη > 0.1
consolidates the arguments in our derivation.

In this derivation we argued that the precise form of the Lagrangian correlation time [�(k) in the
expression (17)] will determine the scaling of the temperature fluctuations. This time scale should,
in the high-Reynolds-number limit, in the inertial range, be proportional to Pθ (k)/Eε(k). In Fig. 3(b)
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we plot therefore the ratio

c2
pPθ (k)

Eε(k)
∼ �(k), (43)

which should give an estimate of the time scale. It is shown that the time scale seems compatible
with an inertial-range scaling proportional to k−2/3.

This is therefore a result that invalidates the conjecture in Ref. [4] that it is the integral time scale
that determines the dynamics. It is clearly a spectrally local time scale τ (k) ∼ ε−1/3k−2/3 that better
fits the data.

C. Spectrum, dissipation, and variance of temperature fluctuations

The temperature spectra should, according to our assumptions, obey Kolmogorov-Obukhov
scaling

Eθ (kη) ∼ εθε
−1/3η5/3(kη)−nθ . (44)

This is checked in Fig. 4, where it is shown that the collapse of the spectra for large values of kη is
good for the highest values of the Reynolds number and Pr = 1. The spectra are thus determined,
as far as the collapse of the data is concerned, by the quantities εθ , ε, and ν. For the range of scales
kη 
 1, this expression should become independent of ν, corresponding to the Corrsin-Obukhov
value nθ = 5/3. This is not observed in our simulations. A better fit is obtained for nθ = 1. We
believe that this is a low-Reynolds-number effect. Indeed, the value nθ = 1 should be observed in
the Batchelor range Pr � 1 for kη > 1. However, in the range kη where we observe this scaling,
kη < 1, the influence of the viscosity should asymptotically vanish and the value 5/3 is expected to
emerge. It seems from our results that the Reynolds number must be very large for this to be observed.

The very slow appearance of asymptotic scaling can be related to the way the temperature fluctua-
tions are generated. First of all, the dissipation-rate spectrum has not obtained its asymptotic scaling
[Fig. 2(b)]. We are not aware of a theoretical explanation for this slow convergence. Furthermore,
even if asymptotic scaling would be obtained for Eε(k), the temperature production spectrum is
broadband and such a forcing is known to delay the emergence of asymptotic scaling regimes.

Indeed, results from high-resolution direct numerical simulations of statistically stationary
isotropic turbulence mixing a passive scalar show that the temperature forcing mechanism influences
the rate at which asymptotic scaling is approached [18,21]. Comparing in this context the forcing
of the scalar by a large-scale spectrally local injection to the injection by means of a uniform scalar
gradient, the former case, where the injection is confined to the low wave numbers, more rapidly
shows convergence to Corrsin-Obukhov scaling than the second case, where the temperature forcing
spectrum is broadband and approximately proportional to k−7/3. This can be understood as follows:
In the case of a spectrally local forcing, the range of scales where both production and dissipation can
be neglected, i.e., the inertial or inertial-convective range, is larger than in the case of a broadband
forcing. In the present case, the forcing is even more broadband than the mean-gradient case, since
it is expected, at high Reynolds numbers, to be proportional to k−4/3 (as compared to k−7/3). The
emergence of asymptotic scaling is, for this case, therefore expected to be even slower. Note that in
the present case only the temperature field contains a (natural) broadband forcing term. The velocity
forcing is a narrow-band energy injection and asymptotic scaling for the energy spectrum is indeed
obtained to a reasonable approximation [Fig. 2(a)].

In Fig. 5(a) we show the dissipation of temperature fluctuations. It is shown that the normalization
we employ reasonably well captures the Reynolds-number dependence of this quantity.

From the expression (44) we derive that

〈θ2〉 ∼ (εη)4/3

c2
p

Re(3/2)(nθ −1/2)
λ (45)
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FIG. 4. Temperature fluctuation spectra in (a) Kolmogorov units and (b) compensated form. The results are
for Pr = 1.

for nθ > 1, where we have used that L ∼ Re3/2
λ η. To obtain this expression we have thus assumed

that our spectra scale with Corrsin-Obukhov variables, but that the Reynolds number influences the
power-law exponent nθ . In Fig. 5(b) we show the normalized temperature variance following the
expression (45). For n = 5/3 the variance does not converge to a plateau. Changing the exponent to
n = 4/3 or n = 1 improves the convergence of the temperature dissipation towards an asymptotic
plateau, but the value 1 is completely arbitrary. The only thing this illustrates is that compensating for
the Reynolds-number dependence of the power-law exponent allows us to attain asymptotic scaling
for the variance of the temperature fluctuations.
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FIG. 5. (a) Reynolds-number dependence of the normalized dissipation of temperature fluctuations for
Pr = 1. (b) Variance of the temperature fluctuations, normalized assuming asymptotic scaling nθ = 5/3 or
taking into account low-Reynolds-number corrections on the power-law exponent.

D. Prandtl-number effects

The analysis in Sec. III E suggested that the temperature dissipation rate should scale as a function
of the Reynolds number and the Péclet number. We therefore test, in Fig. 6(a), the functional relation

εθ

c2
p

ε5/3η2/3
Re−3/4

λ = F (Pe). (46)

This representation should, if the scaling arguments are correct, collapse the data on two asymptotic
regimes: For small values of Pe, a linear dependence on Pe should be observed, whereas for large
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FIG. 6. (a) Scaling of the normalized dissipation of temperature fluctuations for different Prandtl and
Reynolds numbers. (b) Normalized variance of the temperature fluctuations.

values, a constant value should be observed. This is reasonably well confirmed. Similarly, in Fig. 6(b)
we test

〈θ2〉 c2
p

(εη)4/3
Re−7/4

λ = F (Pe), (47)

where now, as predicted, a quadratic dependence is observed at small values, proportional to Pe2,
and an approximate plateau is attained at large values.
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VI. CONCLUSION

We have derived expressions for the statistical description of temperature fluctuations in isotropic
turbulence and we have assessed the validity of our predictions using direct numerical simulations.
Our simulations suggest that the relevant time scale in the inertial-convective range is a spectrally
local time scale of the form τ ∼ ε−1/3k−2/3 and not the integral time scale as conjectured in Ref. [4].

The spectra of the different quantities collapse in the dissipation range using Kolmogorov
variables. For the energy spectrum this collapse is observed for low Reynolds numbers, but for the
dissipation-rate fluctuations and the temperature related quantities this collapse is only observed at
the highest Reynolds numbers considered in the simulations, for Reλ � 200. This slow convergence
to asymptotic scaling for the temperature variance spectrum is conjectured to be due to the broadband
character of the temperature production spectrum and the slow convergence to asymptotic scaling
of the dissipation-rate-fluctuation spectrum. Indeed, asymptotically, the temperature-production
spectrum should fall off in the inertial-convective range with a power law proportional to k−4/3. This
exponent is in our simulations closer to the exponent −1, where Corrsin-Obukhov phenomenology
breaks down. The Prandtl number does not influence the results significantly for Pr > 1, however, in
the highly diffusive limit, where Pr 
 1, the scaling is dominated by a diffusive time scale, leading
to a temperature dissipation and variance proportional to Pe and Pe2, respectively.

To summarize, the present results illustrate that the dissipation-rate spectrum is dominated by
intermittent large-scale excitation. The temperature fluctuations are generated by these dissipation-
rate fluctuations. The spectral distribution of the temperature fluctuations collapses in the dissipation
range using Corrsin-Obukhov scaling, but asymptotic scaling is observed only at very high Reynolds
numbers. It seems that for the present kind of heat generation, Reynolds numbers of the order of
at least Reλ ≈ 103 are needed to possibly observe a tendency of the power-law exponent of the
temperature spectrum to approach the Corrsin-Obukhov value −5/3.
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