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In this paper we analyze the active and hibernating turbulence in drag-reducing plane
Couette flows using direct numerical simulations of the viscoelastic finitely extensible
nonlinear elastic model with the Peterlin approximation fluids. The polymer-turbulence
interactions are studied from an energetic standpoint for a range of Weissenberg numbers
(from 2 up to 30), fixing the Reynolds number based on the plate velocities at 4000,
the viscosity ratio at 0.9, and the maximum polymer molecule extensibility at 100. The
qualitative picture that emerges from this investigation is a cyclic mechanism of energy
exchange between the polymers and turbulence that drives the flow through an oscillatory
behavior.
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I. INTRODUCTION

The reduction of the energy dissipation in turbulent flows by polymers has been widely analyzed
over the years since the observations reported by Toms [1]. Despite the discrepancies between the
most prominent theories concerning the nature of the polymer-induced drag reduction (DR) [2,3], it
is well known that the phenomenon is bounded by two major laws: the Prandtl-Kármán law (when
DR is null) and the so-called maximum drag reduction (MDR) or Virk’s asymptote (when DR is
maximum) [4]. The existence of the MDR’s limit represents one of the most important issues in
the DR context since changing the polymer concentration, the molecular weight, or even chemical
characteristics of the additives produces no effect on this maximum drag-reduction level.

Recently, an important contribution to understanding the MDR’s limit was given by Xi and
Graham [5,6], who defined the MDR as a turbulent flow that fluctuates between two distinct states:
active and hibernating. The former is related to the basic dynamical elements of Newtonian near-wall
turbulence, exhibiting a higher drag. In contrast, during the latter state, the turbulent structures almost
vanish, which reduces the drag. Xi and Graham [5,6], who performed direct numerical simulation
(DNS) of turbulent plane Poiseuille flows of viscoelastic using the finitely extensible nonlinear
elastic model with the Peterlin approximation (FENE-P fluids), pointed out that the flow oscillations
between active and hibernating states, which also exist in the Newtonian turbulence, are accentuated
by the presence of polymers.
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In order to better understand the polymer-flow interactions in the MDR scenario, we investigate
in the present paper the active and hibernating turbulences in drag-reducing plane Couette flows.
The polymer effect on these two turbulent states are explored by taking into account a range of
Weissenberg numbers, which provides drag-reduction levels from 11% up to 54%. Our DNSs are
performed keeping the Reynolds number (based on the plate velocities), the viscosity ratio, and the
maximum polymer molecule extensibility fixed. The results that emerge from energy transfer and
spectral analyses reveal details concerning the effects of the polymers on the oscillatory behavior
of turbulent viscoelastic flows through the active and hibernating states.

The organization of the paper is as follows. The description of the physical formulation and
numerical method are presented in Sec. II. Our main results are discussed in Sec. III, where energy
transfer and spectral analyses are conducted. Finally, a summary is given and conclusions are drawn
in Sec. IV.

II. PHYSICAL FORMULATION AND NUMERICAL METHOD

Following our previous work [7], turbulent plane Couette flows of incompressible dilute polymer
solutions are considered. The flow is driven by both the top and the bottom plates, which have the
same magnitude of velocity in the streamwise direction (Uh), but opposite senses. The streamwise
direction is x1 = x, the spanwise direction is x2 = y, and the wall-normal direction is x3 = z. The
instantaneous velocity field in the respective directions is (ux,uy,uz) = (u,v,w) and it is solenoidal
(∇ · u = 0, where u denotes the velocity vector). Wall scaling is used and is based on zero-shear
rate variables with the length and time scaled by νtot/uτ and νtot/u

2
τ , where νtot = νN + νp0 is the

total (solvent plus polymer) zero-shear viscosity and uτ is the zero-shear friction velocity. Using
this scaling, the dimensionless momentum equations are
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where the plus superscript indicates the wall unit normalization, p+ is the pressure, and β0 is the ratio
of the Newtonian solvent viscosity νN to the total zero-shear viscosity νtot. The extra-stress tensor
components are denoted by �+

ij . The formalism of Eq. (1) includes the assumption of a uniform
polymer concentration in the dilute regime that is governed by the viscosity ratio β0, where β0 = 1
yields the limiting behavior of the Newtonian case. The extra-stress tensor components �+

ij in Eq. (1)
represent the polymer’s contribution to the tension of the solution. This contribution is accounted
for by a single-spring-dumbbell model. We employ here the FENE-P kinetic theory [8]. This model
employs the phase-averaged conformation tensor Cij = 〈qiqj 〉, where the qi are the components
of the end-to-end vector of each individual polymer molecule. The components of the extra-stress
tensor �+ are then �+

ij = α0[f {tr(C)}Cij − δij ] with α0 = (1 − β0)/Wiτ0, where Wiτ0 = λu2
τ /νtot

is the friction Weissenberg number representing the ratio of the elastic relaxation time λ to the
viscous time scale. Additionally, δij is the Kronecker delta and f {tr(C)} is given by the Peterlin
approximation f {tr(C)} = L2−3

L2−tr(C) , where L is the maximum polymer molecule extensibility and
{tr(·)} represents the trace operator. This system of equations is closed with an evolution equation
for the conformation tensor

DCij

Dt+
= (CikS

+
kj + S+

ikCkj ) − (CikW
+
kj + W+

ikCkj ) − f {tr(C)}Cij − δij

Wiτ0
, (2)

where S+
ij = (∂u+

i /∂x+
j + ∂u+

j /∂x+
i )/2 and W+

ij = (∂u+
i /∂x+

j − ∂u+
j /∂x+

i )/2 are, respectively, the
terms of the rate-of-strain S+ and the rate-of-rotation W+ tensors.

We follow the same numerical method used by Pereira et al. [7] and all details of the scheme
employed are given by Thais et al. [9]. We analyze here the interaction of the polymer molecules with
the turbulence from the very beginning (when polymers are totally coiled) until the statistically-
steady-state regime. The initial condition for the conformation tensor is the identity tensor, i.e.,
C(t = 0) = I . In addition, for each viscoelastic case, both the velocity and the pressure fields are
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initially started from the same Newtonian fully developed turbulent flow. As a result of this method,
the DR exhibits a marked transient behavior before achieving its asymptotic value, from a statistical
point of view. We define the percentage of DR in time as

DR(t) =
(

1 − 〈τw(t)〉
〈τw(t = 0)〉

)
× 100, (3)

where 〈τw(t)〉 is the area-averaged wall shear stress at a given instant t and 〈τw(t = 0)〉 is the
area-averaged wall shear stress at the very beginning of the simulation, when the polymers are in an
isotropic configuration (coiled from an experimental point of view).

For the present study, we simulate the viscoelastic cases by fixing the Reynolds number based
on the plate velocities Reh = hUh/νtot (where h denotes the plane Couette half-width) at 4000,
β0 at 0.9, and L at 100. Five cases are studied by setting the following Weissenberg numbers
based on the plate velocities (Wih = λUh/h): 2, 4.3, 10, 20, and 30. The respective asymptotic
drag-reduction values DRasy are 11%, 33%, 50%, 53%, and 54%. Hence, both low drag reduction
(LDR) (DR < 40%) and high drag reduction (HDR) (DR � 40%) scenarios are investigated. Finally,
both the size of the domain (Lx × Ly × Lz = 12π × 4π × 2) and the number of mesh points
(Nx × Ny × Nz = 768 × 512 × 257) are kept fixed for all cases, which leads to grid resolutions of
7.2 � �x+ � 9.5, 3.6 � �y+ � 4.8, and 0.2 � �z+ � 3.4.

III. RESULTS AND DISCUSSION

Our primary focus here is on the oscillatory behavior of the turbulent viscoelastic flow through
the active and hibernating states, which is achieved by following the numerical method detailed by
Pereira et al. [7]. Hence, at the very first instant of the simulation, the molecules are totally coiled,
tr(C)/L2 ≈ 0, the DR level is null, and the turbulent velocity field still exhibits a Newtonian-like
nature. The flow is then characterized by the presence of a considerable number of turbulent
structures, some of which are illustrated in Figs. 1(a) and 2(a) by using the Q criterion [10] of
flow classification1 for the most elastic case (Reh = 4000, Wih = 30, and L = 100). In Figs. 1
and 2, the vortical and extensional structures respectively described by Q = 0.05 and Q = −0.05
are colored from blue [tr(C)/L2 = 0] to red [tr(C)/L2 = 1], which indicates a distribution of the
relative polymeric deformation over the domain. Since the development along time of the DR was
already discussed in our previous work [7], we present here only a brief overview of the beginning of
the phenomenon [shown in Figs. 1(a)–1(e) and 2(a)–2(e)] and we focus on the active and hibernating
states illustrated in Figs. 1(f)–1(j) and 2(f)–2(j).

At the very beginning tUh/h = 0.3 [Figs. 1(a) and 2(a)], the polymers are totally coiled and the
turbulent structures appear with a Newtonian morphology [11]. The drag reduction at this instant is
still negligible (DR ≈ 0%). The departure from this state develops toward highly negative values as
the simulation evolves over time, moving from DR ≈ −6% at tUh/h = 3 [Figs. 1(b) and 2(b)] to its
minimum value of DR ≈ −112% at tUh/h = 9.6 [Figs. 1(c) and 2(c)]. After that, the DR starts an
increasing trajectory, reaching its positive peak of DR ≈ 77% at tUh/h = 300 [Figs. 1(d) and 2(d)]
before it decreases towards an oscillatory state of a lower mean value (an asymptotic value from a
statistical point of view). During this period, the molecules strongly interact with the flow, stretching
[especially near the wall, as displayed in Figs. 1(c) and 2(c)] and partially suppressing the turbulent
structures. At tUh/h ≈ 525 [Figs. 1(e) and 2(e)], DR starts to fluctuate around its time-averaged
value DRasy, indicating the beginning of the statistically-steady-state flow. A more detailed physical
description of such developing time is presented by Pereira et al. [7].

1The vortical (or elliptical) and extensional (or hyperbolic) structures are defined as the respective positive
and negative values of the second invariant of the velocity gradient tensor, computed for incompressible flows
by Q = 1

2 (‖W‖2 − ‖S‖2), where ‖W‖ and ‖S‖ denote the Euclidean norms of W and S. The Euclidean norm

of a generic second-order tensor A is ‖A‖ =
√

tr(A · AT ).
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FIG. 1. Three-dimensional structures represent isosurfaces of vortical (or elliptical) regions defined as
a positive value of the second invariant of the velocity gradient tensor ∇u. The colors indicate the
relative polymer stretching tr(C)/L2. (a) tUh/h = 0.3, DR ≈ 0%, (b) tUh/h = 3, DR ≈ −6%, (c) tUh/h =
9.6, DR ≈ −112%, (d) tUh/h = 300, DR ≈ 77%, (e) tUh/h = 525, DR ≈ 46%, (f) tUh/h = 640, DR ≈
54%, (g) tUh/h = 971, DR ≈ 60%, (h) tUh/h = 1081, DR ≈ 52%, (i) tUh/h = 1842, DR ≈ 49%, and
(j) tUh/h = 2063, DR ≈ 63%.
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FIG. 2. Three-dimensional structures represent isosurfaces of extensional (or hyperbolic) regions defined
as a positive value of the second invariant of the velocity gradient tensor ∇u. The colors indicate the
relative polymer stretching tr(C)/L2. (a) tUh/h = 0.3, DR ≈ 0%, (b) tUh/h = 3, DR ≈ −6%, (c) tUh/h =
9.6, DR ≈ −112%, (d) tUh/h = 300, DR ≈ 77%, (e) tUh/h = 525, DR ≈ 46%, (f) tUh/h = 640, DR ≈
54%, (g) tUh/h = 971, DR ≈ 60%, (h) tUh/h = 1081, DR ≈ 52%, (i) tUh/h = 1842, DR ≈ 49%, and
(j) tUh/h = 2063, DR ≈ 63%.
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FIG. 3. Contours, in the x-y center plane (z = 0), of the norm of the streamwise velocity made dimensionless
by the plate velocities (|ux |/Uh) at two dimensionless instants: (a) tUh/h = 1842 (activation) and (b) tUh/h =
2063 (hibernation).

At the dimensionless time tUh/h = 640, the DR level is equal to 54%, which represents its
asymptotic value DRasy. Nevertheless, once the statistically steady state is reached (tUh/h > 525),
the turbulence starts to oscillate between periods of strong activation and hibernation. The differences
between these two flow scenarios can be observed by comparing the turbulent structures pictured
in Figs. 1(f) and 2(f) (our reference for the active state) with the others structures displayed in
sequence. During highly active periods [Figs. 1(h), 1(i), 2(h), and 2(i)], the flow is dominated by
the expected three-dimensional turbulent structures, the drag increases, and, in consequence, DR
appears smaller than DRasy. In contrast, within hibernating periods [Figs. 1(g), 1(j), 2(g), and 2(j)],
the structures with Q = ±0.05 almost vanish, which is a distinct characteristic of the MDR. As a
consequence, the drag decreases and DR assumes more pronounced values. At tUh/h = 2063, for
instance, DR approaches 63%, a value around 14% greater than that observed at tUh/h = 1842.
Contours, in the x-y center plane (z = 0), of the norm of the streamwise velocity made dimensionless
by the plate velocities (|ux |/Uh) of these two dimensionless instants are illustrated in Fig. 3. At
tUh/h = 1842 [Fig. 3(a)], the turbulent activity is stronger and consequentially |ux |/Uh exhibits a
shorter characteristic wavelength in the spanwise direction as well as a stronger dependence in the
streamwise direction. In contrast, at tUh/h = 2063 [Fig. 3(b)], low- and high-speed streaks have
a weaker dependence in the x direction. Hence, during the hibernation, much longer wavelength
streaks are observed. As previously reported by Xi and Graham [5,6], extremely weak turbulent
structures [Figs. 1(g), 1(f), 2(g), and 2(f)] and nearly streamwise-invariant streaks [Fig. 3(b)] are
common characteristics between the MDR and the hibernating turbulence.

It is worth noting in Figs. 1 and 2 that the molecules are more stretched in the active state than in
the hibernating one. This can be seen more clearly in Fig. 4, where the evolution of both the spatial
average of the relative polymer stretching 〈tr(C/L2)〉xyz (blue triangles) and the area-averaged wall
shear stress dimensionalized by its asymptotic value 〈τw〉/〈τw,asy〉 (red diamonds) are shown as
functions of tUh/h. Only the statistically steady state is considered (500 < tUh/h < 3000). Our
five cases are displayed: Reh = 4000, Wih = 30, and L = 100 [Fig. 4(a)]; Reh = 4000, Wih = 20,
and L = 100 [Fig. 4(b)]; Reh = 4000, Wih = 10, and L = 100 [Fig. 4(c)]; Reh = 4000, Wih = 4.3,
and L = 100 [Fig. 4(d)]; and Reh = 4000, Wih = 2, and L = 100 [Fig. 4(e)]. The rectangular green
boxes indicate the hibernating periods, which are identified by considering the criteria proposed by
Xi and Graham [5]. The authors considered as hibernation the period of at least 50 s during which
〈τw〉/〈τw,asy〉 drops below a cutoff value of 0.9, indicated by the black line in Figs. 4(a)–4(e). Clearly,
the fraction of the total time of hibernation in our simulation FH (black asterisks) increases with Wih
as displayed in Fig. 4(f), which corroborates the results reported by Xi and Graham [5]. Additionally, a
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FIG. 4. (a)–(e) Evolution of the spatial average of the relative polymer stretching as a function of the
dimensionless time tUh/h (blue triangles). The area-averaged wall shear stress is made dimensionless by its
asymptotic value 〈τw〉/〈τw,asy〉 as a function of the dimensionless time (red diamonds). (f) Time scales TA and
TH and fraction of time spent in hibernation FH .

maximum FH of 25% is observed, the same value found by Xi and Graham [5]. However, differently
from the cited work, in the present paper, the hibernating turbulence is only observed in HDR
scenarios (10 � Wih � 30) [Figs. 4(a)–4(c)]. In consequence, for the LDR cases [Wih = 4.3 and
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Wih = 2 in Figs. 4(d) and 4(e), respectively], the average duration of a hibernation period TH (purple
stars) is null while the mean duration of active periods TA (gray open circles) becomes equal to
the total physical time of the simulations (TA = 3000 s). Furthermore, the reduction of stress also
becomes less significant as Wih decreases. Finally, it is worth mentioning that the polymer stretching
is in line with the wall shear stress, which means that the molecules are more stretched in the active
periods.

The profile of the relative polymer extension is plotted in Fig. 5 (left column) together with the
streamwise velocity (right column). Each point in this figure is an average in the x-y plane along z+.
The channel half-width is divided into three distinct regions: I (0 < z+ < 5), II (5 < z+ < 30), and
III (z+ > 30). In order to compare our profiles with those available in the literature, the velocity of
the bottom plate was subtracted from the velocity field, resulting in a relative streamwise component
urx . Three cases with Re = 4000 and L = 100 are shown: Wih = 30 [Figs. 5(a) and 5(b)], Wih = 10
[Figs. 5(c) and 5(d)], and Wih = 4.3 [Figs. 5(e) and 5(f)]. For each case, three different instants
are considered: an instant for a moderately active state characterized by 〈τw〉/〈τw,asy〉 = 1 and thus
DR = DRasy (gray circles); an instant corresponding to a peak of 〈τw〉/〈τw,asy〉 (blue triangles),
which indicates a strong active state for the HDR cases; and, finally, an instant relative to a valley of
〈τw〉/〈τw,asy〉 (red diamonds), which represents an intense hibernation for the HDR cases. It can be
clearly observed that the differences between the active (Act) and the hibernating (Hib) states become
more pronounced as Wih increases. In other words, the hibernation intensity is accentuated by the
presence of polymers. For Wih = 4.3, no hibernation is perceived and, in consequence, the curves
practically collapse into a single one. The differences increase slightly for Wih = 10 and become
quite clear for Wih = 30. At this level of elasticity, the hibernating velocity profile (red diamonds)
approaches the Virk asymptote (red dash-dotted line). Moreover, the urx profile corresponding to
the most active case (blue diamond) is markedly below the curve that represents the time-averaged
asymptotic profile (gray circles), getting close to the log-law profile represented by the gray dotted
line. Concerning the most elastic case, it is also important to mention that the polymers appear more
extended in the active periods. In contrast, in the hibernating periods, the molecules are in their
least stretched configuration. Such an observation is similar to the phenomenon reported by Xi and
Graham [5,6] for turbulent plane Poiseuille flows.

Differences between the active and the hibernating turbulence can also be perceived by analyzing
the normal and the cross components of the instantaneous Reynolds stress tensor displayed in
Figs. 6(a)–6(d). Average values in the x-y plane 〈u′

i
+
u′

j
+〉 are evaluated as a function of z+ at three

dimensionless instants for the most elastic case (Reh = 4000, Wih = 30, and L = 100): tUh/h =
640 (moderately active state, gray circles), tUh/h = 1842 (a peak of the active state, blue triangles),
and tUh/h = 2063 (a valley of hibernation, red diamonds). A comparison of the Reynolds stresses
during the moderately active state (〈τw〉/〈τw,asy〉 = 1) and the peak of activation reveals that these
terms increase during strong active periods. Interestingly, a stronger tensor anisotropy is observed
within hibernating periods. The streamwise Reynolds stress component [red diamonds in Fig. 6(a)]
becomes even more pronounced, while the other normal terms [red diamonds in Figs. 6(a)–6(c)]
decrease compared with the active states. The hibernating Reynolds shear stress [red diamonds
in Fig. 6(d)] then assumes a particular profile, fitting the moderately active curve [gray circles in
Fig. 6(d)] within regions I and II, and becoming the larger shear stress term close to the channel
center (z+ > 100).

In an attempt to further understand the role played by the active and hibernating turbulences in
drag-reducing flows, we conduct an analysis from the energy transfer and the spectral perspectives,
which are displayed in Figs. 7–9. Figure 7 shows the average values in the x-y plane of the
instantaneous kinetic energy terms obtained from the work equation [7]
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FIG. 5. The left column shows average values in the x-y plane of the relative polymer stretching 〈tr(C)/L2〉
as a function of the dimensionless wall distance. The right column shows average values in the x-y plane of the
streamwise relative velocity 〈u+

rx〉 as a function of the dimensionless wall distance. Three FENE-P turbulent
flows are analyzed: (a) and (b) Reh = 4000, Wih = 30, and L = 100; (c) and (d) Reh = 4000, Wih = 10, and
L = 100; and (e) and (f) Reh = 3000, Wih = 4.3 and L = 100. For each viscoelastic flow, 〈tr(C)/L2〉 and 〈u+

rx〉
are analyzed at three dimensionless instants tUh/h.
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FIG. 6. (a)–(c) Normal and (d) cross components of the instantaneous Reynolds stress tensor. Average
values in the x-y plane, 〈u′

i
+
u′

j
+〉, are evaluated as a function of z+ at three dimensionless instants for the most

elastic case: tUh/h = 640 (moderately active state) (gray circles), tUh/h = 1842 (a peak of the active state)
(blue triangles), and tUh/h = 2063 (a valley of hibernation) (red diamonds).

where the instantaneous polymer work term E+
x indicates the amount of energy stored (E+

x < 0)
or released (E+

x > 0) by the polymers from the velocity field in the streamwise direction u+
x . The

complementary work terms denote the advection by A+
x , the pressure redistribution by P +

x , and the
viscous stress by V +

x . The sum A+
x + P +

x + V +
x is referred to as the Newtonian work N+

x and T +
x is

the local time derivative term. The x-y plane averages of these terms are plotted as a function of z+.
The profiles are evaluated at tUh/h = 1842 (a peak of the active state) [Fig. 7(a)] and tUh/h = 2063
(a valley of hibernation) [Fig. 7(b)] for the most elastic case. In fact, a careful analysis of the energy
exchange for the drag-reducing flow between parallel plates was reported in Pereira et al. [7]. In
the present paper it is worth noting the main difference between each term of the kinetic energy in
the active and hibernating states, displayed in Figs. 7(a) and 7(b). The main difference refers to the
polymeric (blue pluses) and the viscous (green squares) works within the viscous sublayer (region I).
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FIG. 7. Average values in the x-y plane of the streamwise total kinetic energy transfer against the
dimensionless wall distance for the most elastic case. Two dimensionless instants tUh/h are analyzed.

The energy stored by the polymers near the wall is clearly less pronounced during the hibernating
state. This term is balanced by the viscous work, which also decreases in the hibernation.

There are striking differences between the active and hibernating states that appear in Fig. 8,
where the x-y averages of fluctuating work terms are displayed across the channel half-width for

FIG. 8. Average values in the x-y plane of the streamwise fluctuating kinetic energy transfer against the
dimensionless wall distance for the most elastic case. Two dimensionless instants tUh/h are analyzed.
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FIG. 9. Power spectral densities of the streamwise velocity component at the wall-normal position z+ = 15
for the most elastic case. Three dimensionless instants tUh/h are analyzed.

the most elastic case. These energy terms are that exclusively related to the fluctuating fields that
appear on the right-hand side of the streamwise work fluctuation equation, which in turn is obtained
by decomposing the variables of the streamwise momentum equation into mean flow (Ū+

x , p̄+,
and �̄+

xj ) and fluctuations (u′
x
+, p′+, and �′

xj
+), and then multiplying the resulting equation by the

streamwise velocity fluctuation u′
x
+ (a detailed deduction of the work equations is provided in [12]).

The work terms exclusively linked with the fluctuating fields are then E′
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+ = (u′
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from the fluctuating velocity field in the streamwise direction u′

x
+ (the fluctuations are denoted by

the prime superscript). The supplementary fluctuating work terms denote the advection by A′
x
+,

the pressure redistribution by P ′
x
+, and the viscous stress by V ′

x
+. The sum A′

x
+ + P ′

x
+ + V ′

x
+ is

referred to as the Newtonian fluctuating work N ′
x
+. Following the profiles shown in Fig. 8, it can

be clearly seen that, when the flow state changes from the active [Fig. 8(a)] to the hibernating one
[Fig. 8(b)], the magnitudes of both the advection (|A′

x
+|) and the pressure (|P ′

x
+|) work fluctuations

decrease far from the wall (region III). However, |A′
x
+| increases within the region II. The same

tendency is observed for |V ′
x
+|. It is worth noting that, in the active state, the molecules located

in the regions II and III store energy from the fluctuating velocity field (E′
x
+

< 0). However, this
scenario considerably changes during the hibernation since significant positive values of E′

x
+ are

perceived within the region II, which indicates a release of energy by the polymers in the streamwise
fluctuating velocity field. More specifically, the polymer elasticity moves the turbulent kinetic energy
from the transverse components (y and z) to the streamwise velocity fluctuation in the near-wall
region, which is consistent with the elastic theory described by Tabor and de Gennes [3]. Hence,
we can conclude that, especially during the hibernating state, the polymers considerably favor the
increase of the streamwise turbulent kinetic energy in region II. In other words, the turbulence tends
to be reactivated by the polymers, which, finally, increases |N ′

x
+|, as indicated by the orange inverted

triangles in Fig. 8(b). This is rather in line with the description provided by Dubief et al. [13], who
numerically showed that, in the absence of an elastic term in the streamwise momentum equation,
the flow laminarizes at high Wih, thereby indicating that the near-wall injection of elastic energy
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into the streamwise velocity component plays a cardinal role in the sustainability of HDR scenarios.
The polymer-turbulence exchanges of energy in the hibernating state may provide a reasonable
explanation for the MDR’s limit, as previously speculated by Dubief et al. [14]. Xi and Graham
[5] argue that the MDR scenario is a state in which hibernating turbulence is the norm, with active
turbulence arising intermittently.

Finally, Fig. 9 shows the longitudinal one-dimensional spectra of the turbulent kinetic energy
E11/hU 2

h at z+ = 15 for the most elastic case. Around this point, |N ′
x
+| is maximum for both the

active and hibernating states (see Fig. 8). For the former state, illustrated by the gray solid line and
the blue dashed line, a range of wave numbers 3 � kx � 9 exhibits the typical power-law decay
related to drag-reducing flows k

−14/3
x (black solid line) [15]. However, such a decay is modified

in the hibernating period, moving from k
−14/3
x towards k−8

x (black dotted line). Consequently, the
large-wave-number structures (kx > 15) are strongly suppressed. In contrast, within very small wave
numbers, no significant changes in E11/hU 2

h are perceived by comparing the three curves plotted in
Fig. 9. Hence, we can conclude that the oscillatory behavior of the turbulence between the active and
hibernating states affects basically the small-scale structures (high frequencies), which in turn tend
to be suppressed before the hibernation while the large structures (low frequency) are preserved.
Finally, it is important to emphasize that the profiles of E11/hU 2

h collapse into a single one at
Wih = 4.3 and Wih = 2 (not shown, for brevity).

IV. CONCLUSION

Direct numerical simulations of FENE-P fluids were used to analyze the active and hibernating
turbulence states in drag-reducing plane Couette flows. Five viscoelastic flows were examined,
keeping the Reynolds number Reh = 4000, the viscosity ratio β0 = 0.9, and the maximum polymer
molecule extensibility L = 100 fixed. A large range of Weissenberg numbers based on the plate
velocities was explored (2 � Wih � 30), which provided asymptotic drag-reduction levels DRasy

from 11% (LDR) up to 54% (HDR).
Graham and co-workers [5,6,16] have demonstrated that the oscillation between the active and the

hibernating states is present in Newtonian flows and is accentuated by the polymers. In the present
work, the hibernation was only detected in HDR scenarios (10 � Wih � 30). This seems to indicate
that the hibernation could be attenuated by the increase of the Reynolds number, a possibility that
needs further investigation.

Concerning the drag-reducing flows with oscillations between active and hibernating states,
the qualitative picture that emerges from our energy transfer and spectral analyses is a cycle that
begins when the polymer-flow interactions in the active turbulence state favor the extension of
the molecules. In their stretching process, polymers reduce the mean fluid velocity and partially
suppress the turbulent structures (the small-scale ones), driving the flow towards a very weak
turbulent hibernating state in which the polymers tend to relax. Hence, their level of stretching
decreases while a significant amount of energy is released by the polymers into the flow, increasing
its mean velocity towards the MDR asymptote. Additionally, polymers also directly inject energy into
the fluctuating velocity field, favoring the reactivation of turbulence. Finally, the active turbulence
stretches the molecules again, reinitiating the cycle.
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