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Scalar statistics in variable property turbulent channel flows
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Direct numerical simulation of fully developed, internally heated channel flows with
isothermal walls is performed using the low-Mach-number approximation of Navier-Stokes
equation to investigate the influence of temperature-dependent properties on turbulent scalar
statistics. Different constitutive relations for density ρ, viscosity μ, and thermal conductivity
λ as a function of temperature are prescribed in order to characterize the turbulent scalar
statistics. It is shown that the dominant effect caused by property variations on scalar
statistics can be parameterized by two nondimensional parameters, namely the semilocal
Reynolds number Re�

τ ≡ Reτ

√
(ρ/ρw)/(μ/μw) (the bar and subscript w denote Reynolds

averaging and wall value respectively, while Reτ is the friction Reynolds number based on
wall values), and the local Prandtl number Pr� = Prw(μ/μw)/(λ/λw) (Prw is the molecular
Prandtl number based on wall values). Near-wall gradients in Re�

τ modulate the turbulent
heat flux generation mechanism because of structural changes in turbulence. However,
the influence of these modulations on the inner scaling of turbulent heat conductivity
normalized by local mean viscosity is shown to be weak. Using this observation, a
temperature transformation is derived that is invariant of Re�

τ variations and only exhibits
a Pr�-dependent shift.

DOI: 10.1103/PhysRevFluids.2.084604

I. INTRODUCTION

Wall-bounded turbulence involving mixing of scalars, such as temperature or concentration fields,
plays an important role in many engineering applications. In applications with small variations in
temperature or concentration, the scalar field is passive, as they do not influence the turbulent
motions. A significant amount of studies involving direct numerical simulation (DNS) of turbulent
passive scalar transport have been performed at different Reynolds and Prandtl numbers (or Schmidt
number, if the scalar is a concentration field) during the past few decades. One of the important
aspects in all these studies involve investigating the analogy between momentum transfer and scalar
transport, since it results in a simple modeling approach, where the turbulent scalar flux is determined
by the turbulent eddy viscosity μt and a turbulent Prandtl (or Schmidt) number Pr (or Sct ), which is
defined as the ratio of eddy viscosity μt to eddy conductivity αt . Kim and Moin [1] and Kawamura
et al. [2] performed DNS of turbulent heat transfer in a channel at a friction Reynolds number of
Reτ = 180 and Prandtl numbers Prw ranging from 0.1 to 2 in the former study and 0.025 to 5 in the
latter. For fluids with Prw > 0.1, the turbulent Prandtl number was found to be independent of Prw,
with values of the order of unity in the regions away from the center. Schwertfirm and Manhart [3]
performed DNS with Schmidt number Scw up to 50 and found that near the wall Sct increases for
higher Scw. Kawamura et al. [4] studied the effect of varying Reτ (=180, 395) and Prw (=0.025,
0.2, 0.71) in a channel and found that Prt is independent of Reτ and Prw, if Prw > 0.2. Pirozzoli
et al. [5] extended DNS of passive scalars in channel flows to Reτ ≈ 4000, with Prw = 0.2,0.71,1.
The turbulent Prandtl number was found to be nearly constant in the lower 50% of the half-channel,
regardless of the Reynolds and Prandtl number. The slope of the log-law for the mean scalar profile,
which also is directly related to the turbulent Prandtl number, was found to be 1/0.46.
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In applications with large temperature or concentration differences, the variation of scalar
dependent thermophysical properties can be strong. Some of the well-known examples which
involve variable thermophysical properties include supersonic flows for aircraft and propulsion
systems, strongly heated or cooled flows in heat exchangers, or chemically reacting flows in
combustion chambers. Furthermore, recently, in order to increase the efficiency of power cycles, there
is increased interest in studying turbulent heat transfer to fluids at supercritical pressure [6–8]. These
fluids exhibit strong thermophysical property variations due to a strong dependence of properties
on temperature. In all such cases, the effects of thermophysical property variations can be strong
enough to modulate turbulence and the traditional approach of treating temperature as a passive
scalar no longer holds. Although turbulence modulation in a turbulent channel flow due to variable
thermophysical properties has been investigated in great detail in high-Mach-number flows [9–12]
and in low-Mach-number flows [13–16], the effect of property variations on scalar transport is not
well understood. Lee et al. [17] studied the influence of wall heating on turbulent thermal boundary
layers with variable viscosity and observed variations in mean scalar, scalar fluctuation, and scalar
flux, relative to a reference isothermal flow. In order to account for an inhomogeneous Prandtl
number distribution, they proposed to modify Kader’s relation [18] for the mean scalar profile by
incorporating both the local Prandtl number and the Prandtl number at the the inner edge of the
log-layer. Nemati et al. [19] studied the effect of thermal boundary conditions on developing turbulent
pipe flows with fluids at supercritical pressure. Two different thermal wall boundary conditions were
studied: The first corresponds to a Neumann boundary condition that permits wall temperature
fluctuations and the second corresponds to a Dirichlet boundary condition that does not allow wall
temperature fluctuations. They showed that the mean enthalpy and Nusslet number are significantly
affected because of wall thermal fluctuations, a result which is in contrast to constant property cases
which are known to be independent of wall thermal fluctuation for Prandtl numbers above unity
[20–22].

In our previous work [15], we provided a theoretical framework for the semilocal scaling that has
been proposed based on heuristic arguments by Huang et al. [23]. In contrast to the conventional
scaling with wall values, the semilocal scaling uses the wall-shear stress τw and the mean local
properties to define the characteristic friction velocity and viscous length scale as u�

τ = √
τw/ρ

and δ�
v = μ/ρu�

τ , respectively (bar denotes Reynolds averaging). This leads to the semilocally
scaled wall distance y� = y/δ�

v and the corresponding semilocal Reynolds number Re�
τ = h/δ�

v =
Reτ

√
(ρ/ρw)/(μ/μw) (h is the half-channel height or boundary layer thickness and subscript w

denotes averaged wall value). The theoretical framework involved a scaling transformation to the
Navier-Stokes equations, which is based on local mean values of density ρ, viscosity μ, and semilocal
friction velocity u�

τ = √
τw/ρ. The framework further suggests that leading-order effects of property

variations on turbulence can effectively be characterized by the semilocal Reynolds number. In
order to test the framework and to further investigate the turbulence statistics, a DNS database
was generated by solving the low-Mach-number approximation of Navier-Stokes equation in a
fully developed internally heated channel flow. Further analysis of the scaling characteristics of
turbulent velocity statistics and of turbulence structures were performed by Patel et al. [16]. It
was shown that the semilocal Reynolds number accommodates the change in viscous scales due to
property variations and also provides a measure of near-wall turbulence modulation with respect
to a constant property case. For example, cases with decreasing Re�

τ away from the wall show an
increased streamwise anisotropy in the near-wall region, which alters the Reynolds-stress-generation
mechanism and modifies the near-wall universality of turbulence. The structural change, however,
does not significantly affect the universality of the viscous shear stress as a function of the semilocal
wall coordinate. This observation was then used to derive an extension of van Driest velocity

transformation defined as u� = ∫ uvD

0 (1 + (y/Re�
τ )dRe�

τ /dy)duvD, where duvD = √
ρ/ρwd(u/uτ )

and uτ = √
τw/ρw is the friction velocity. A mathematically equivalent version of u� was introduced

earlier by Trettel and Larsson [24] using a different route. In the present work, we discuss the
influence of variable properties on scaling characteristics of turbulent temperature statistics, and we
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TABLE I. Simulation parameters for all cases. CP395Pr1, constant property case with Reτ = 395 and
Prw = 1; CRe�

τ , variable property case with constant Re�
τ (=395) across the channel; CRe�

τ CPr�, variable
property case with constant Re�

τ (=395) and Pr� (=1) across the channel; GL, case with gaslike density and
viscosity variation; SRe�

τGL, variable property case with Re�
τ similar to case GL; GLCPr�, case with gaslike

density and viscosity variations and constant Pr� (=1) across the channel; LL, case with liquidlike viscosity
variations; VλSPr�LL, case with variable thermal conductivity and Pr� similar to case LL; and CP395Pr4, constant
property case with Reτ = 395 and Prw = 4.

Case ρ(T ) μ(T ) λ(T ) Pr�c Re�
τ c

Line and symbols

CP395Pr1 1 1 1 1 395
CRe�

τ (T )−1 (T )−0.5 1 0.71 395
CRe�

τ CPr� (T )−1 (T )−0.5 (T )−0.5 1 395
SRe�

τGL 1 (T )1.2 1 2.6 152
GL (T )−1 (T )0.7 1 1.8 142
GLCPr� (T )−1 (T )0.7 (T )0.7 1 159
LL 1 (T )−1 1 0.56 703
VλSPr�LL 1 1 (T ) 0.56 395
CP395Pr4 1 1 1 4 395

investigate if, similar to velocity statistics, the combined influence of property variations on turbulent
temperature statistics can also be parametrized using nondimensional parameters.

II. SIMULATION DETAILS

DNS of fully developed turbulent channel flows are performed using the low-Mach-number
approximation of the Navier-Stokes equations without the influence of buoyancy. Using the low-
Mach-number approximation, density and other transport properties can be evaluated independently
of pressure fluctuations as a function of temperature only [7,25]. The flow is driven by a constant
streamwise pressure gradient. Gradients in temperature, and consequently in properties, are achieved
using a uniform volumetric heat source. The heat is removed from the two isothermal walls, resulting
in averaged temperature and property profiles that are symmetric about the channel center with the
maximum average temperature in the middle of the channel. The DNS code discretizes the spatial
derivatives in the wall-normal direction using a sixth-order staggered compact finite difference
scheme [26,27]. The derivatives in the homogeneous spanwise and streamwise directions are com-
puted using a Fourier expansion with periodic boundary conditions. The time integration is performed
using the second-order Adams-Bashforth method. The pressure correction scheme is based on the
projection method [28]. Further details on the governing equations can be found in Ref. [15].

A summary of all the simulated cases is given in Table I. The constitutive relations for density
ρ, viscosity μ, and thermal conductivity λ as a function of temperature T are given in the second,
third, and fourth columns, respectively. The fifth column reports the value of the local mean Prandtl
number

Pr� = Prw
(μ/μw)

(λ/λw)
(1)

at the channel center and is denoted as Pr�c. The semilocal Reynolds number at the channel center,
denoted as Re�

τ c, is given in the sixth column. Note that at the wall Re�
τ w = Reτ and Pr�w = Prw. For

all simulations, specific heat, cp, is considered to be constant and the reference friction Reynolds
number Reτ (based on wall quantities) is taken to be 395. The reference Prandtl number Prw (also
based on wall quantities) for all variable property cases is set to unity. Cases CP395Pr1 and CP395Pr4

correspond to constant property cases with Prandtl numbers of 1 and 4, respectively. CRe�
τ refers to a

variable property case, whose density and viscosity are proportional to 1/T and
√

1/T , respectively,
such that Re�

τ remains constant across the whole channel. Case CRe�
τ CPr� has a similar temperature
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FIG. 1. Averaged (a) density ρ/ρw , (b) viscosity μ/μw , and (c) thermal conductivity λ/λw as a function of
wall-normal distance y/h.

dependency for ρ and μ as case CRe�
τ , while also allowing thermal conductivity to be temperature

dependent and equal to viscosity, making the local mean Prandtl number constant across the whole
channel. GL corresponds to a gaslike density and viscosity variation. Case GLCPr� has a similar
temperature dependency for ρ and μ as case GL and in addition has a constant Pr� across the
channel. SRe�

τGL refers to a case that has a similar Re�
τ distribution as case GL. LL corresponds to a

case with a liquidlike μ variation. VλSPr�LL corresponds to a case with thermal conductivity directly
proportional to temperature, such that its Pr� varies but is similar to that of case LL.

Figure 1 shows the distributions of averaged density, viscosity, and thermal conductivity for all
cases (except CP395Pr4). Considerable variations in ρ, μ, and λ are obtained. Cases with variable
density are shown as symbols and cases with constant density are shown as lines. Figure 2 shows
the distributions of Re�

τ and Pr�. Cases CP395Pr1, CP395Pr4, CRe�
τ , CRe�

τ CPr�, and VλSPr�LL with
constant Re�

τ across the channel are shown in black. Cases SRe�
τGL, GL, and GLCPr� with Re�

τ

decreasing away from the wall are shown in blue. Case LL with Re�
τ increasing away from the wall

is shown in red. In the following, the velocity components along the streamwise x, wall-normal y,
and spanwise z directions are denoted as u, v, and w, respectively.

Table II lists the maximum grid spacing in terms of the Batchelor scale ηθ = η/
√

Pr� (with η the
Kolmogorov scale) for all cases. The values are within the resolution requirements of 
x < 12ηθ ,

y < 2ηθ , 
z < 6ηθ , as also reported in other DNS studies [13,29].
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FIG. 2. (a) Semilocal Reynolds number Re�
τ and (b) local Prandtl number Pr� as a function of wall-normal

distance y/h.

III. SCALAR STATISTICS

As shown in previous works [11,12,15,16,23,24,30], the semilocal wall coordinate y� is effective
in accommodating changes in viscous scales due to variable properties, thus providing a meaningful
representation for the turbulent velocity statistics. Therefore, all wall-normal profiles are plotted as
a function of y� in the present work.

A. Conventional mean scalar scaling

Figure 3(a) shows the profile of the mean transformed temperature

θ = T − Tw, (2)

normalized by the friction temperature

θτ = qw

ρwcpwuτ

(3)

(qw is the wall heat flux), for all cases (except case CP395Pr4). The constant property case CP395Pr1

compares well with the correlation from Kader [18], while all other cases deviate significantly. Using

the van Driest transformed temperature profile θ
vD = ∫ θ/θτ

0

√
ρ/ρwd(θ/θτ ), shown in Fig. 3(b), case

CRe�
τ CPr� (for which both Re�

τ and Pr� are a constant) shows a good collapse with case CP395Pr1 [see

TABLE II. Maximum spatial resolution, normalized by the Batchelor scale ηθ = η/
√

Pr�.

Case (
x/ηθ )max (
(y)min/ηθ )max (
(y)max/ηθ )max (
z/ηθ )max

CP395Pr1 6.98 0.69 0.89 3.49
CRe�

τ 7 0.7 0.74 3.5
CRe�

τ CPr� 7 0.7 0.88 3.5
SRe�

τGL 10.78 0.64 0.69 4.31
GL 10.8 0.64 0.55 4.31
GLCPr� 10.82 0.65 0.45 4.32
LL 5.6 0.68 0.77 2.8
VλSPr�LL 6.98 0.69 0.66 3.49
CP395Pr4 10.35 0.75 1.34 5.17
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FIG. 3. (a) Mean temperature normalized by friction temperature and (b) van Driest transformed temperature

θ
vD

, plotted as a function of y�. The inset in panel (b) shows θ
vD

for cases CP395Pr1 and CRe�
τ CPr�.

inset of Fig. 3(b)]. Unlike the uvD profiles, which for cases with constant Re�
τ collapse with constant

property cases, a collapse of θ
vD

additionally requires Pr� to remain constant. This can be seen for
case CRe�

τ and VλSPr�LL, for which Re�
τ is a constant but Pr� varies, therefore showing deviation

from case CP395Pr1. A Prandtl-number-dependent shift also occurs when comparing profiles of θ/θτ

for constant property cases at different Prandtl numbers, as can be seen by comparing case CP395Pr1

with CP395Pr4 (also see, e.g., Ref. [2]). Similar to uvD, which does not collapse for cases with Re�
τ

gradients, θ
vD

also deviates significantly for cases with Re�
τ gradients. This can be seen for the

case GLCPr�, for which Pr� is constant and Re�
τ varies. Cases SRe�

τGL, GL, and LL experience the
combined effect of variations in both Pr� and Re�

τ .
Lee et al. [17], who investigated heated turbulent boundary layers with variable viscosity, proposed

a modification to Kader’s original relation [18] for the mean scalar distribution by accounting for
variations in local Prandtl number. The relation is given as

θ
vD = Pr�y� exp(−�) +

{
2.12 ln

[
(1 + y�)

1.5(2 − y/h)

1 + 2(1 − y/h)2

]
+ β(Prv)

}
exp(−1/�), (4)

with

β(Prv) = (
3.85Pr1/3

v − 1.3
)2 + 2.12 ln Prv (5)

and

� = 10−2(Pr�y�)4

1 + 5Pr�3
y�

and Prv = Pr�(y� ≈ 30). (6)

They proposed that except for the definition of β, all Pr values in the original relation by Kader
should be replaced by Pr� and the inner-scaled wall coordinate should be y� instead of y+. For
defining β, which determines the elevation of the log-law, they proposed to use the Prandtl number
at the start of the log region Prv = Pr�(y� ≈ 30).

A comparison of the proposed relation for selected cases is shown in Fig. 4(a). A close
approximation is provided for cases with decreasing Re�

τ and increasing Pr� (SRe�
τGL, GL) or

vice versa (LL). The prediction for cases where only one of the parameters (Re�
τ or Pr�) varies

(CRe�
τ , GLCPr�, VλSPr�LL) is in general poor. This can be clearly seen for case GLCPr� [see inset of

Fig. 4(a)], where because of constant Pr�, Eq. (4) provides a similar distribution as case CP395Pr1.

However, θ
vD

for GLCPr� is much higher. This nonuniversal behavior can be attributed to the fact
that Eq. (4) assumes that the slope of the log-law is unaffected by property variations, which is not
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FIG. 4. (a) van Driest transformed temperature θ
vD

from DNS (open symbols and thin lines) compared with
the modified Kader correlation as suggested by Lee et al. [17] (closed symbols and thick lines) and (b) von
Karman constant kθ for the van Driest transformed temperature profile, plotted as a function of y�. The inset in

panel (a) shows θ
vD

from DNS for cases CP395Pr1 and GLCPr� compared with prediction from Eq. (4).

the case for cases with Re�
τ gradients as can be seen by the diagnostic function that is related with

the inverse of the slope of the log-law kθ as

1

kθ

= y� dθ
vD

dy�
. (7)

A plot of kθ is shown in Fig. 4(b). It is noticeable that kθ increases with increasing Re�
τ and decreases

with decreasing Re�
τ away from the wall. Clearly, the distribution of θ

vD
is influenced by Re�

τ

gradients.

B. Re�
τ invariant mean scalar scaling

In order to account for Re�
τ variations and to further investigate the characteristics of mean

temperature profiles, we first introduce the mean heat flux equation. The relation for the wall-normal
turbulent heat flux and conductive heat flux can be obtained by integrating the mean energy equation,
which for a fully developed turbulent channel flow, can be written as

− ρṽ′′θ ′′

ρwuτ θτ

+ h

Reτ Prw

(
λ

λw

)
d(θ/θτ )

dy
+ h

Reτ

(
λ′

λw

)
d(θ ′/θτ )

dy
=

(
1 − y

h

)
. (8)

In the above equation, the prime and double prime denote fluctuations using Reynolds and Favre
decomposition, respectively, while the tilde denotes Favre averaging. Neglecting the thermal
conductivity fluctuations in Eq. (8) gives

− ρṽ′′θ ′′

ρwuτ θτ

+ h

Reτ Prw

(
λ

λw

)
d(θ/θτ )

dy
≈

(
1 − y

h

)
. (9)

Using the turbulent eddy conductivity

αt = −ρṽ′′θ ′′(
dθ
dy

) , (10)
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Eq. (9) can be written as [
αt

μw

+ 1

Prw

(
λ

λw

)]
h

Reτ

d(θ/θτ )

dy
≈

(
1 − y

h

)
. (11)

The above equation can then further be expressed in terms of semilocal parameters, Re�
τ and Pr�,

and the van Driest mean temperature increment

dθ
vD =

√
ρ

ρw

d

(
θ

θτ

)
(12)

to give (
αt

μ
+ 1

Pr�

)
h

Re�
τ

dθ
vD

dy
≈

(
1 − y

h

)
. (13)

A plot of the conductive heat flux [h/(Re�
τ Pr�)]dθ

vD
/dy, as a function of y� is shown in Fig. 5(a).

The plot provides a measure of the conductive sublayer thickness. For constant property cases, it can
be clearly seen that the conduction dominated region reduces for case CP395Pr4, when compared
with case CP395Pr1. For variable property cases, an increase in Pr� toward the channel center (cases
SRe�

τGL and GL) reduces the thickness of the conduction dominated region in terms of y�, while
the reverse happens when Pr� decreases (cases CRe�

τ , LL and VλSPr�LL). The case GLCPr� with
constant Pr� = 1 and variable Re�

τ , shows a good collapse with case CP395Pr1 over the entire inner
layer. This behavior is similar to constant property cases with the same Prw, but different Reτ values
(see, e.g., Ref. [2]). Similarly, cases LL and VλSPr�LL, which exhibit quasisimilar Pr� profiles, also
show quasisimilar conductive heat flux profiles, despite the different Re�

τ profiles. All the above
observations can be summarized mathematically by investigating the scaling characteristics of the
turbulent eddy conductivity. A plot of αt/μ as a function of y� in Fig. 5(b) shows a reasonable
collapse in the inner layer for all cases. While we will discuss this collapse later in more detail,
the direct implication of this collapse will be discussed first. Since in the overlap region, located
between the buffer layer and the channel core, the turbulent mixing dominates (i.e., αt/μ � 1/Pr�,
and the inner scaling applies), Eq. (13) gives

h

Re�
τ

dθ
vD

dy
= (y�), (14)
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FIG. 6. (a) van Driest temperature gradient normalized by the semilocal viscous length scale, (b) extended
van Driest transformed temperature, and (c) von Karman constant kθ� for the extended van Driest transformed
temperature profile, plotted as a function of y�.

where  is an unknown function of y�. A plot of the van Driest temperature gradient normalized
by the semilocal length scale is shown in Fig. 6(a) as a function of y�. A good collapse is obtained
in the entire inner layer, except in regions where molecular effects are dominant (y� < 30 for the
present cases). The effectiveness of this collapse can be used to extend the van Driest transformed
temperature to provide a temperature profile that exhibits similar characteristics as the ones of a
constant property case. Following a similar procedure we used to derive u� in Ref. [16], Eq. (14)
can be written as

h

Re�
τ

(
dy�

dy

)
dθ

vD

dy�
= (y�). (15)

dy�/dy can be obtained by taking the derivative of y� = yRe�
τ /h with respect to y, to obtain

(
1 + y

Re�
τ

dRe�
τ

dy

)
dθ

vD

dy�
= (y�). (16)
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Equation (16) can then be written in terms of the extended van Direst temperature profile increment
dθ

�
as

dθ
�

dy�
=

(
1 + y

Re�
τ

dRe�
τ

dy

)
dθ

vD

dy�
= (y�). (17)

The last equality in this equation is valid only in the overlap region. In the region close to the wall
(assuming a constant heat flux region), dθ

�
/dy� is given as

dθ
�

dy�
= h

Re�
τ

dθ
vD

dy
= 1(

αt

μ
+ 1

Pr�
) . (18)

Therefore, θ
� = ∫ θ

vD

0 (1 + (y/Re�
τ )dRe�

τ /dy)dθ
vD

(obtained by integrating from the wall), exhibits

a Pr�-dependent shift. A plot of θ
�
, as a function of y�, is shown in Fig. 6(b). It can be seen that all

cases with Pr� = 1 (CP395Pr1, CRe�
τ CPr�, and GLCPr�) show a reasonable collapse, irrespective of

the Re�
τ profile. Similarly, case LL and VλSPr�LL, with quasisimilar Pr� variations, exhibit similar θ

�

profiles. Additionally, all cases exhibit a similar slope in the log-law region, which can be seen by
the plot of the inverse of the log-law slope kθ� , given by

1

kθ�

= y� dθ
�

dy�
, (19)

which is shown in Fig. 6(c). θ
�

therefore exhibits all characteristics of a constant property scalar
distribution (for Prw > 0.2), which also have a Prandtl-number-dependent shift and a similar slope
in the log-law region, irrespective of their Reτ and Prw values. The origin of the log-law region in
terms of y� is also found to remain invariant for the cases presented herein.

The universal nature of θ
�

and its Prandtl-number-dependent shift can further be quantified by
splitting dθ

�
/dy� into a αt/μ-dependent term and a term that exists because of a nonunity Prandtl

number, as

dθ
�

dy�
≈ 1 − y/h(

αt

μ
+ 1

Pr�
) = 1 − y/h(

αt

μ
+ 1

) +
∞∑

n=1

(1 − y/h)(−1 + Pr�)n
( −αt /μ

αt /μ+1

)−1+n(
αt

μ
+ 1

)2 , (20)

which after integration gives

θ
� ≈

∫ y�

0

1 − y/h(
αt

μ
+ 1

Pr�
)dy�

=
∫ y�

0

1 − y/h(
αt

μ
+ 1

)dy�

︸ ︷︷ ︸
θ

�

T

+
∫ y�

0

∞∑
n=1

(1 − y/h)(−1 + Pr�)n
( −αt /μ

αt /μ+1

)−1+n(
αt

μ
+ 1

)2 dy�

︸ ︷︷ ︸
θ

�

P

. (21)

A good universal collapse of θ
�

T in the inner layer can be seen in Fig. 7(a). The Prandtl-number-
dependent shift occurring because of nonunity Pr� can be seen using θ

�

P in Fig. 7(b). The profile
becomes flattened in the overlap layer, indicating the dominance of αt/μ � 1/Pr�.

C. Turbulent Prandtl number

The success of the extended van Driest transformed temperature θ
�

is further investigated by
studying the analogy between momentum transfer and scalar transport. Patel et al. [16] showed
that the viscous stress h/Re�

τ (duvD/dy) collapses reasonably well when plotted as a function of y�.
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FIG. 7. Decomposition of θ
�

into (a) θ
�

T and (b) θ
�

P , as given in Eq. (21).

For the near-wall constant stress layer, this collapse can be written in terms of the turbulent eddy
viscosity μt as

h

Re�
τ

duvD

dy
= 1(

μt

μ
+ 1

) = �(y�), (22)

where � is an unknown function of y�. This results in μt/μ to be a universal function of y� in the
inner layer. A plot of μt/μ is shown along with αt/μ as a function of y� in Fig. 8(a). It can be seen
that the profiles of μt/μ and αt/μ behave similarly, showing a strong analogy between turbulent
momentum transfer and scalar transport. This is also seen in Fig. 8(b), where the turbulent Prandtl
number Prt is shown. Prt varies slightly around unity in the inner layer, indicating again the strong
analogy between momentum transfer and scalar transport. This, along with the universal behavior
of u� are the reasons for the success of θ

�
.

A closer inspection of the near-wall behavior of μt/μ and αt/μ shows deviations in the region
y� < 10 for cases with Re�

τ gradients. This deviation in μt/μ was noted by Patel et al. [16] as
a deviation in mixing length and stems from turbulence modulation occurring in cases with Re�

τ

gradients, which influence the anisotropy of the turbulence and also alter the Reynolds stress
generation mechanism. This change in anisotropy also influences the turbulent heat flux generation
mechanism and is discussed in the next section. The influence of this near-wall deviation in μt/μ

on scaling of u� was found to be negligible for the present cases, since the deviations were limited
to the viscous dominated region. A similar analysis is done for θ

�
in Fig. 8(c) by comparing αt/μ

with 1/Pr�. It can be seen that for the present cases the influence of turbulence modulation does
not influence θ

�
and its shift in the overlap layer is only because of Pr�. However, this change in

near-wall behavior of αt/μ for cases with Re�
τ gradients could play a crucial role in scalar transport

for high-Prandtl-number fluids, for which the cross-over point between 1/Pr� and αt/μ moves closer
to the wall.

D. Joint probability density function

This section discusses how the streamwise and wall-normal turbulent heat flux are
affected by turbulence modulation due to gradients in Re�

τ , and by variations in Pr�. For
this analysis, we will use contours of weighted joint probability density functions (JPDF’s),
ρu′′θ ′′P [

√
ρθ ′′/(

√
ρwθτ ),

√
ρu′′/(

√
ρwuτ )]/(ρwθτuτ ) and ρv′′θ ′′P [

√
ρθ ′′/(

√
ρwθτ ,

√
ρv′′/

(
√

ρwuτ ))]/(ρwθτuτ ), where P (X ,Y) represents the JPDF of X and Y . Note that their surface
integrals give the streamwise and wall-normal turbulent heat fluxes, respectively.
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FIG. 8. (a) Turbulent eddy conductivity and turbulent eddy viscosity (multiplied by 10 for visualization
purposes) normalized by mean viscosity, (b) turbulent Prandtl number, and (c) turbulent eddy conductivity
normalized by mean viscosity and inverse of local mean Prandtl number, plotted as a function of y�.

Figure 9 shows contours of the weighted JPDF for the streamwise turbulent heat flux in the left
column [Figs. 9(a), 9(c) 9(e), and 9(g)] and the wall-normal turbulent heat flux in the middle column
[Figs. 9(b), 9(d) 9(f), and 9(h)]. Both JPDF’s are taken at y� ≈ 12. The last column shows the Re�

τ

and Pr� distributions of the variable property cases that are compared with the reference constant
property case CP395Pr1. For all the plots, the filled contours depict the constant property case and
the variable property cases are shown as lines. The variable property cases in the rows from top to
bottom are CRe�

τ CPr� (variable property case with constant Re�
τ and Pr�), GLCPr� (constant Pr�, but

Re�
τ decreases away from the wall), VλSPr�LL (constant Re�

τ , but Pr� decreasing away from the wall),
and case GL (increasing Pr�, and decreasing Re�

τ away from the wall).
The turbulence modulation due to Re�

τ gradients can be seen in the first and second row. If Re�
τ

is constant, the streamwise and wall-normal turbulent heat fluxes [Figs. 9(a) and 9(b)] are similar to
the constant property case CP395Pr1, irrespective of the individual property gradients. However, if
Re�

τ decreases, the low-speed streaks strengthen and the corresponding correlated low-temperature
fluctuations increase in intensity, as evidently seen in the weighted JPDF for the streamwise turbulent
heat flux [Figs. 9(c)]. This behavior is in contrast to the Reynolds number effect and is associated with
changes in turbulence structure due to Re�

τ gradients. The change in turbulence structure is further
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FIG. 9. Weighted joint probability density functions at y� ≈ 12 of [(a), (c), (e), (g)] streamwise turbulent
heat flux, ρu′′θ ′′P (

√
ρθ ′′,

√
ρu′′), and [(b), (d), (f), (h)] wall-normal turbulent heat flux, ρv′′θ ′′P (

√
ρθ ′′,

√
ρv′′).

The last column gives an overview of the Re�
τ and Pr� profiles for the variable property cases. The filled contours

correspond to the reference constant property case CP395Pr1 and the lines correspond to case CRe�
τ CPr� [(a),

(b)], GLCPr� [(c), (d)], VλSPr�LL [(e), (f)], and GL [(g), (h)].

indicated by the weighted JPDF for the wall-normal turbulent heat flux, where the low-temperature
fluctuations do not lift as intensely as in case CP395Pr1 [Fig. 9(d)].

The influence of Pr� variations on the JPDFs can been seen in the third row. Case VλSPr�LL, for
which Pr� decreases away from the wall, results in weaker scalar fluctuations and thus results in an

084604-13



ASHISH PATEL, BENDIKS J. BOERSMA, AND RENE PECNIK

100 101 1020

5

10

15

20(a)
CP395Pr1

CReτ

CReτCPr
SReτGL

GL
GLCPr
LL
VλSPrLL

ρ
θ

2
/

ρ
w
θ
2 τ

y
100 101 102

-40

-30

-20

-10

0

10

20
(b)

ρ
1
.5
θ

3
/

ρ
1
.5

w
θ
3 τ

y

FIG. 10. (a) Second-order and (b) third-order temperature fluctuations, plotted as a function of y�.

higher slope of the JPDF for the streamwise turbulent heat flux [Fig. 9(e)] and a horizontal shift of
the JPDF for the wall-normal turbulent heat flux [Fig. 9(f)] toward weaker scalar fluctuations. The
combined effect of both Re�

τ and Pr� variations can be seen in the fourth row. The increase in Pr�

for case GL results in a lower slope of the weighted JPDF for the streamwise turbulent heat flux
[Fig. 9(g)], while the decrease in Re�

τ results in stretching the JPDF in the third quadrant since the
low-speed streaks and the corresponding correlated low-temperature fluctuations strengthen. The
weighted JPDF for the wall-normal turbulent heat flux [Fig. 9(h)] shifts horizontally toward higher
scalar fluctuations due to the increase in Pr�, while the decrease in Re�

τ causes the low-temperature
fluctuations to lift less intensely than in case CP395Pr1.

E. Higher order scalar statistics

Higher order statistics of the scalar field will be discussed next. Using the semilocal framework,
the appropriate forms of second- and third-order temperature fluctuations involve a density-weighted
correction and are given by ρθ ′′2/(ρwθ2

τ ) [Fig. 10(a)] and ρ1.5θ ′′3/(ρ1.5
w θ3

τ ) [Fig. 10(b)], respectively.
From constant property studies [4], it is known that the scalar fluctuation statistics show a strong
Prandtl-number dependency, while the Reynolds-number dependency, although present, is weak. A
similar behavior can be seen for the present cases, where for cases with increasing Pr� (SRe�

τGL and
GL) the peaks become more pronounced, while the reverse happens for cases with decreasing Pr�

(CRe�
τ , LL, VλSPr�LL). The statistics for cases with constant Pr� show a good collapse only when

the Re�
τ profiles are also similar (see, e.g., cases CP395Pr1 and CRe�

τ CPr�), while small deviations
are observed when Re�

τ differs (see, e.g., CP395Pr1 and GLCPr�). This Re�
τ -dependent deviation is

even more pronounced for third-order statistics. Similar observations can be made for cases LL and
VλSPr�LL, which have quasisimilar Pr� but different Re�

τ . Although not shown here, it should be
noted that, similar to statistics of velocity fluctuations discussed by Patel et al. [15], it was found that
ρθ ′′2 ≈ ρθ ′′2, but ρ1.5θ ′′3 �= ρ1.5θ ′′3. This highlights the importance of including density fluctuations
in third-order moments, because of the functional relation between density and temperature, which
causes a preferential concentration of a high-density fluid in a low-temperature streak, and vice versa.

IV. CONCLUSION

DNS of fully developed channel flows under the low-Mach-number approximation of the Navier-
Stokes equations are performed using different constitutive relations for density, viscosity, and
thermal conductivity to study the scaling characteristics of a turbulent scalar field. In addition to
the distribution of the semilocal Reynolds number Re�

τ , also the distribution of the local Prandtl
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number Pr� ≡ Prw(μ/μw)/(λ/λw) plays an important role in scaling of scalar statistics. The van

Driest transformed mean temperature profiles θ
vD

for variable property cases collapse with the
constant property mean scalar distribution (with Prandtl number Prw) only when their Re�

τ and Pr�

distributions are constant across the channel. Near-wall gradients in Re�
τ result in deviations of θ

vD
,

even if Pr� is constant. An extended van Driest transformation for the mean temperature profile

θ
� = ∫ θ

vD

0 [1 + (y/Re�
τ )dRe�

τ /dy]dθ
vD

is derived, which is able to collapse cases with varying Re�
τ

and constant Pr�. For cases with varying Pr� profiles, the thickness of the conduction-dominated
region changes. The turbulent diffusivity, however, shows a good collapse in the inner layer (except in
regions with y� < 10) for all cases, irrespective of Re�

τ and Pr� profiles. The modulation in turbulent
diffusivity in regions with y� < 10 occurs for cases with gradients in Re�

τ and is associated with
modulations in turbulence. The modulation is highlighted using the joint probability distribution
functions of velocity and temperature fluctuations. However, for the present cases the influence of
this turbulence modulation on θ

�
is negligible and its shift in the overlap layer is only caused by Pr�

variations. The θ
�

transformation is analogous to the u� transformation and follows from the strong
analogy between momentum transfer and scalar transport, as seen with the turbulent Prandtl number,
which varies slightly around unity in the inner layer. Higher order statistics also show quasisimilarity
for cases with similar Re�

τ and Pr� distributions.
The present work focuses on a calorifically perfect fluid at the low-Mach-number limit and heated

with a uniform heat source. It will be interesting to see the behavior of scalar statistics in supersonic
cases with adiabatic, heated, or cooled walls, where the heat source is due to viscous heating and
coupled to the momentum equation, as well as in low-Mach-number cases with different thermal
boundary conditions and calorifically imperfect fluids, such as those at supercritical pressure.
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