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A slow-growth formulation for DNS of wall-bounded turbulent flow is developed and
demonstrated to enable extension of slow-growth modeling concepts to wall-bounded flows
with complex physics. As in previous slow-growth approaches, the formulation assumes
scale separation between the fast scales of turbulence and the slow evolution of statistics
such as the mean flow. This separation enables the development of approaches where the
fast scales of turbulence are directly simulated while the forcing provided by the slow
evolution is modeled. The resulting model admits periodic boundary conditions in the
streamwise direction, which avoids the need for extremely long domains and complex
inflow conditions that typically accompany spatially developing simulations. Further, it
enables the use of efficient Fourier numerics. Unlike previous approaches [Guarini, Moser,
Shariff, and Wray, J. Fluid Mech. 414, 1 (2000); Maeder, Adams, and Kleiser, J. Fluid Mech.
429, 187 (2001); Spalart, J. Fluid Mech. 187, 61 (1988)], the present approach is based on a
temporally evolving boundary layer and is specifically tailored to give results for calibration
and validation of Reynolds-averaged Navier–Stokes (RANS) turbulence models. The use
of a temporal homogenization simplifies the modeling, enabling straightforward extension
to flows with complicating features, including cold and blowing walls. To generate data
useful for calibration and validation of RANS models, special care is taken to ensure that
the mean slow-growth forcing is closed in terms of the mean and other quantities that appear
in standard RANS models, ensuring that there is no confounding between typical RANS
closures and additional closures required for the slow-growth problem. The performance of
the method is demonstrated on two problems: an essentially incompressible, zero-pressure-
gradient boundary layer and a transonic boundary layer over a cooled, transpiring wall.
The results show that the approach produces flows that are qualitatively similar to other
slow-growth methods as well as spatially developing simulations and that the method can
be a useful tool in investigating wall-bounded flows with complex physics.

DOI: 10.1103/PhysRevFluids.2.084602

I. INTRODUCTION

Direct numerical simulation (DNS) is a valuable tool for investigating turbulent boundary layers.
DNS is of particular value to the formulation, calibration, and testing of engineering turbulence
models, such as Reynolds-averaged Navier–Stokes (RANS) models, because the conditions in
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which the turbulence evolves are precisely defined, making it possible for model-based simulations
to be performed under conditions that exactly match those in which the data are generated. Another
important use of boundary layer DNS is the study of the structure and statistics of the turbulence.
In this case, the ability to access three-dimensional, time-dependent turbulent velocity and scalar
fields is of great value. Furthermore, experimental measurements in turbulent boundary layers are
often difficult and limited, especially in the presence of complicating features such as transpiration,
compressibility, and chemical reactions. In these situations, DNS can provide data that would not
otherwise be available. In this work, we aim to develop DNS model problems that are (1) well suited
to generating data for turbulence model calibration and testing in boundary layers and (2) easily
generalizable to situations where additional physical phenomena are present, including, for example,
wall transpiration, pressure gradients, or chemical reactions, to enable study of the effects of these
phenomena on boundary layers.

The DNS of spatially developing boundary layers, which most often occur in reality, presents chal-
lenges. The biggest issue is the very long evolution lengths that are required for the turbulence to equi-
librate and eliminate artifacts of artificial inlet boundary conditions. This issue also arises in experi-
ments, where a long distance is required for a boundary layer to relax to a canonical turbulent bound-
ary layer downstream of a trip. However, in the case of DNS, this long evolution requires very large
computational domains and, consequently, great computational costs [1]. The importance of this issue
was highlighted by Schlatter and Örlü [2] who found that, even considering only well-resolved sim-
ulations, results for DNS of incompressible, low Reynolds number, turbulent boundary layers show
disconcerting inconsistencies. They concluded that the discrepancies are due to difficulties associated
with spatially developing simulations, including limited domain sizes and inflow boundary data.

The required streamwise domain size of a DNS of a spatially evolving boundary layer can be
minimized with realistic inflow boundary conditions. Formulation of appropriate inflow conditions
for spatially evolving simulations is a well-known problem. Often, an auxiliary simulation or a
recycling and rescaling procedure is used. While such procedures have been the subject of ongoing
research for more than 20 years [3], they still introduce implementation complexities and modeling
challenges. For instance, even in the best understood scenario, a canonical zero-pressure-gradient,
flat-plate boundary layer, where the method of Lund et al. [4] has been used successfully, recycling
and rescaling procedures have the potential to introduce spurious periodicity [5] and other issues [6].
In cases with additional complicating phenomena, such as wall transpiration or chemical reactions,
the challenges associated with posing appropriate inflow conditions can only increase.

Motivated by the difficulties of simulating spatially evolving boundary layers, Spalart [7] devel-
oped a “slow-growth” approximation, in which the effects of the slow streamwise evolution are mod-
eled while the turbulent fluctuations are directly simulated. Slow-growth approaches rely on an as-
sumed separation of scales between the fast evolution of the turbulent fluctuations and the slow evolu-
tion of mean characteristics of the boundary layer. Because of this separation, one can conduct a DNS
of the fast evolution at a single, fixed point in the slow evolution, with slow evolution effects modeled.

In a slow-growth formulation, the fast scale turbulence becomes homogeneous in the streamwise
direction. This allows the use of periodic boundary conditions in the streamwise direction, eliminating
the need for turbulent inflow boundary conditions or an exceptionally long streamwise domain size.
Further, homogeneity enables the use of Fourier spectral methods, which are the preferred numerical
discretizations for DNS due to their efficiency and good resolution properties.

This work develops and applies a slow-growth DNS model that has two notable characteristics.
The first characteristic is that the approach is based on a temporally evolving boundary layer that
is naturally homogeneous in the streamwise direction. Previous slow-growth approaches [7–9],
described further in Sec. I A, begin from a spatially evolving boundary layer and are therefore
naturally stationary in time. In these methods, the system is “homogenized” by modeling the terms
in the Navier–Stokes equations that are due to the boundary layer’s slow spatial growth, so that a DNS
that is spatially homogeneous and periodic in the streamwise direction can be performed and remain
stationary. Alternatively, in the present approach, the system is homogenized by modeling the terms
in the Navier–Stokes equations that correspond to the boundary layer’s slow temporal evolution.
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The advantage of this approach is that representing the slow temporal growth is easier because of
the simple way that time derivatives appear in the Navier–Stokes equations.

The second notable characteristic of the approach is that it is constructed to support calibration and
validation of RANS turbulence models for compressible boundary layers with complex physics. In
particular, special care is taken to construct the model in such a way that the mean slow-growth source
terms are closed in terms of the mean state and other quantities typically present in a RANS model,
so that additional closure modeling is not required to evaluate these terms. In doing so, we choose, for
simplicity, to model the slow evolution using an assumption of self-similarity. This assumption is not
generally valid in temporally evolving turbulent boundary layers, and thus it is natural and expected
that the resulting homogenized boundary layer will necessarily differ from a naturally developing
boundary layer, either spatial or temporal. Further, there is a potential for an inconsistency in the
characteristics of large structures between the slow growth and the temporally evolving boundary
layer that is the basis for the formulation. This inconsistency occurs if large structures evolve slowly
enough in time. An analogous inconsistency occurs in spatially homogenized simulations if large
structures vary slowly enough in the streamwise direction.

As will be shown in Sec. III, despite the differences described above, the temporal slow-
growth turbulent boundary layers obtained here resemble spatially evolving layers to a degree
comparable to previous spatially homogenized boundary layers. Whether any remaining differences
or inconsistencies are important depends on the goals of the simulation. For instance, if the goal
is to learn as much as possible about the features of a particular spatially evolving flow, then any
inconsistencies in statistics or large structures are potentially problematic, and a spatially developing
simulation is best. In this case, it is worth the time and effort required to overcome the challenges
associated with inflow boundary conditions and long domain sizes noted previously.

However, if the goal is to learn more generally about features of wall-bounded turbulence—
including, for example, the ability of RANS models to represent the effects of turbulence in such
flows or how the turbulence is affected by complicating physical phenomena—it is not necessarily
crucial to perfectly represent all features of a developing boundary layer. Instead, there are two
requirements. First, the fast turbulent scales must be governed by the Navier–Stokes equations with
forcing provided by the slow evolution. Second, the modeled effect of the slow evolution must be
sufficiently representative of the flow of interest. Thus, it is not necessary that the effects of the
slow evolution be represented exactly, and in fact, one may be willing to tolerate differences in
the name of simplicity if their effects can be understood. This realization enables the development
of a slow-growth modeling approach that is easily extensible to increasingly complex physical
phenomena, allowing straightforward and computationally efficient investigations of the effects of
these complicating phenomena on wall-bounded turbulence.

A. Previous slow-growth formulations

By modeling the forcing due to the slow evolution, slow-growth homogenization formulations
enable efficient simulation of turbulence that is representative of that in an evolving flow. The
slow-growth simulation concept was pioneered for incompressible turbulent boundary layers in a
series of papers [10,11] which culminated in simulation of an incompressible, zero-pressure-gradient
turbulent boundary layer with Reynolds number up to Reθ = 1410 [7]. The approach was later
extended to compressible flows by Guarini et al. [8] and used to simulate a M∞ = 2.5,Reθ = 1577,
adiabatic wall boundary layer. Both Spalart [7] and Guarini et al. [8] formulated slow-growth
models based on a coordinate transform combined with a multiscale analysis. In these approaches,
the coordinate transformation is designed to fit the boundary-layer growth, with the goal that, for
a section of small streamwise extent, the flow is approximately homogeneous in the transformed
streamwise direction. Then a multiscale analysis is performed to split the streamwise variation
into slow and fast components. The result of the analysis is a set of equations governing the fast
component of the flow at a single point in the slow streamwise evolution. These equations are
formally equivalent to the Navier–Stokes equations with the addition of source terms that quantify
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the effect of the slow evolution. Then, to enable a slow-growth simulation, the source terms are
modeled to close the system.

In the context of the current work, these formulations have two main drawbacks. First, as
formulated by Guarini et al. [8], many modeling assumptions are required in the compressible
regime. For instance, the van Driest relationship is used to relate mean temperature and streamwise
velocity, and it is assumed that the van Driest transformed velocity satisfies typical incompressible
scaling laws. These assumptions do not necessarily hold for more general situations, and it is unclear
how to extend the formulation to such cases.

The second difficulty is specific to using the data resulting from slow-growth DNS for calibration
and validation of RANS turbulence models. In doing so, one will naturally be required to solve the
Reynolds-averaged slow-growth equations, which are obtained by applying the Reynolds averaging
procedure to the slow-growth equations. The resulting equations govern the mean flow at a particular
point in the slow evolution and contain all the usual unclosed terms, e.g., the Reynolds stress, as well
as the Reynolds average of the slow-growth sources, which represent the mean forcing provided by
the slow evolution. Thus, to avoid confounding errors introduced by the standard RANS closures
with those introduced by additional models required to close the mean slow-growth sources, it is
necessary for the mean slow-growth source terms to be closed purely in terms of the mean flow and
quantities that are already modeled as part of a standard RANS model. Neither the Spalart nor the
Guarini formulations satisfy this requirement.

These difficulties are partially overcome in the method of Maeder et al. [9], where a slow-growth
method, termed extended temporal DNS, was developed and applied to simulate supersonic, zero-
pressure-gradient boundary layers at Mach numbers 3, 4.5, and 6 for Reθ ≈ 3000. Like Spalart and
Guarini, the formulation is based on a spatially developing boundary layer. However, unlike the other
methods, the effects of the slow evolution are represented based on an analysis of the parabolized
Navier–Stokes equations coupled with a backward difference approximation of necessary streamwise
derivatives. Because of this backward difference, simulations at multiple streamwise stations (i.e.,
Reynolds numbers) are required. This method has the advantage that it is straightforward to extend
to include additional physical phenomena because it does not require complex modeling. However,
it is more computationally expensive than the other techniques, since multiple simulations are
required. Further, while there is not a slow-growth source closure problem, the formulation is still
not well suited to RANS calibration and validation. In particular, a corresponding slow-growth
RANS simulation would need to use upstream RANS simulations to form the slow-growth forcing,
incurring the possibility of confounding between errors introduced by local closure approximations
and upstream closure approximations.

B. Overview

To overcome these limitations of existing slow-growth DNS models, a different formulation is
developed and presented in this work. The approach is based on homogenization of a temporally
evolving boundary layer. Thus, the motivating flow is the classical temporal boundary layer, where
an infinite plate is impulsively started at time t = 0. In this situation, a boundary layer develops over
the plate. This boundary layer is naturally homogeneous in the streamwise and spanwise directions,
inhomogeneous in the wall-normal direction, and nonstationary since it grows in time. Thus, unlike
the approaches of Spalart [7], Guarini et al. [8], and Maeder et al. [9], this formulation requires
homogenization in time rather than space. This change enables the development of slow-growth
models that are simultaneously easily extensible to complex physics and well suited to generate
data for calibration and validation of RANS closures. Section II gives details of this formulation,
including constraints imposed to ensure the data generated using the formulation are appropriate for
use in RANS calibration and validation and the specific modeling assumptions invoked to develop
a concrete model. Then two sets of example results are reported in Sec. III. To show how the results
of the present formulation differ from previous slow-growth models, Sec. III A compares statistics
from the present formulation for a M∞ = 0.3 turbulent boundary layer to those from a slow-growth
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simulation due to Spalart [7] and a spatially evolving simulation due to Schlatter and Örlü [2]. To
demonstrate the applicability of the approach to more complex flows, Sec. III B shows statistics
from a transonic turbulent boundary layer with a cold wall and wall transpiration. The cold wall
and transpiration are seen to have dramatic effects on both the mean velocity profile and turbulence
quantities near the wall. Section IV provides conclusions and directions for future work.

II. TEMPORAL SLOW-GROWTH FORMULATION

This section describes a temporal slow-growth DNS model designed to yield data useful for
calibration and validation of RANS models. In the development to follow, ρ will denote the fluid
density, ui the velocity vector in Cartesian tensor notation, and E = e + ukuk/2 the total energy per
unit mass, including the internal energy (e) and the kinetic energy. Einstein summation convention
will be used throughout. The spatial position vector is xi , with the wall-normal coordinate also
designated as y. Reynolds averaging will be denoted by an overbar, and the Reynolds fluctuations by
a single prime. Thus, the Reynolds decomposition of the density is given by ρ = ρ + ρ ′. The Favre,
or density-weighted, average will be denoted by a tilde, and the Favre fluctuations by a double prime.
For example, the Favre decomposition of the velocity is given by ui = ũi + u′′

i = ρui/ρ + u′′
i .

A. Multiscale formulation and RANS

As described in Sec. I, a statistically stationary slow-growth model is sought for a temporally
evolving turbulent boundary layer developing over an impulsively started infinite flat plate. The
evolution of such a boundary layer is described by the compressible Navier–Stokes equations,
written here in a generic form that will facilitate the analysis to follow:

∂ρq

∂t
+ Nρq = 0. (1)

Here q represents one of the five conserved quantities per unit mass, that is, q is either 1, one of
the velocity components ui or the total energy per unit mass E, so that the volume density of the
conserved quantities are ρ for mass, ρui for momentum, and ρE for energy. The quantities ρ and q

make up the so-called primitive variables. The symbol Nρq then represents all the remaining terms
in the equation for ρq in the Navier–Stokes equations. For example, Nρ = ∂ρui/∂xi .

The slow-growth formulation developed here is based on the assumption that the boundary
layer grows much more slowly than the evolution of the turbulence. This motivates the use of a
multi-time-scale asymptotic formulation in terms of a fast time tf = t and a slow time ts = εt ,
where ε � 1. The turbulence fluctuations are presumed to evolve in fast time tf , whereas mean
quantities evolve only in slow time ts . Introducing this two-time formulation into the Navier–Stokes
equations yields

∂ρq

∂tf
+ Nρq = −ε

∂ρq

∂ts
. (2)

The objective is to perform a DNS of the Navier–Stokes equations in fast time tf at some constant
value of the slow time ts = t0. For an impulsively started plate, the boundary-layer thickness is just
a function of ts , and so specifying ts = t0 is equivalent to defining the boundary-layer thickness and
therefore the Reynolds number of the DNS. The DNS will thus solve the equations

∂ρq

∂tf
+ Nρq = Sρq, (3)

where Sρq ≈ −ε
∂ρq

∂ts
|
ts=t0

is a model of the slow time derivative at time t0 and is referred to as the
slow-growth source term. In addition to (3), it will be convenient to consider the primitive-variable
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form of the slow-growth Navier–Stokes equations

∂ρ

∂tf
+ Nρ = Sρ, (4)

∂q

∂tf
+ Nq = Sq, (5)

where in the usual way

Nq = 1

ρ
(Nρq − qNρ), (6)

Sq = 1

ρ
(Sρq − qSρ). (7)

In formulating models for the slow-growth source Sρq , it will be important to consider how
the source terms enter the RANS equations. If the sources in the RANS equations are closed
with respect to the RANS state variables, then a RANS of the resulting slow growth system will
not require any additional modeling assumptions besides those inherent to the RANS model. The
RANS equations are obtained by averaging the Navier–Stokes equations. Because the temporally
homogenized turbulent boundary layer will be statistically stationary, this procedure gives simply

Nρq = Sρq . (8)

In addition, RANS models generally involve one or more auxiliary equations for turbulence
quantities, such as the turbulent kinetic energy (TKE) per unit mass k = ũ′′

i u
′′
i /2 and the turbulent

energy dissipation rate per unit mass ε, in the k − ε model. Another common auxiliary equation in
RANS models is the equation for the Reynolds stress tensor Rij = ρu′′

i u
′′
j . Because, k = Rii/2ρ, it

will be sufficient to consider just the Reynolds stress equation, which reduces to

u′′
i u

′′
jNρ + ρu′′

i Nuj
+ ρu′′

jNui︸ ︷︷ ︸
NRij

= u′′
i u

′′
jSρ + ρu′′

i Suj
+ ρu′′

jSui︸ ︷︷ ︸
SRij

. (9)

To avoid RANS modeling of terms arising from the slow-growth source terms, we will require that
the right-hand sides of (8) and (9) be closed in terms of the RANS state variables.

For simplicity, we do not require that the slow-growth source term in the dissipation rate equation
be closed. However, for constant density, constant viscosity flows, the formulation shown in Sec. II C
does result in a dissipation equation slow-growth source that is closed in terms of ε and k. This result
does not hold for a general compressible flow. However, in nonhypersonic wall-bounded flows, the
dissipation is dominated by the solenoidal component [8,12,13]. We therefore expect that a closure
model based on the incompressible result would adequately model the effect of the slow-growth
sources for many cases of interest.

B. RANS-consistent slow-growth sources

As is shown in Appendix A, a straightforward formulation of the slow-growth sources in terms of
the conserved variables leads to sources that require additional modeling in RANS. Here it is shown
that a formulation based on the primitive-variable source terms can yield RANS source terms that
are closed. Consider the following slow-growth source term formulation:

Sρ = ρfρ, (10)

Sq = gq + q ′′hq, (11)
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where the functions fρ , gq , and hq depend only on y and are expressed in terms of the statistical
quantities that serve as state variables in the RANS models. When these forms are used to write the
RANS slow-growth sources in (8) using (7), the results are

Sρ = ρfρ, Sρq = qSρ + ρSq = ρqfρ + ρgq + ρq ′′︸︷︷︸
=0

hq = ρqfρ + ρgq.

Thus, the mean slow-growth sources are closed purely in terms of the RANS variables ρ,ρq, and
the dependencies of fρ and gq . Similarly expanding the source in the Reynolds stress transport
equations, i.e., the right-hand side of (9), yields

SRij
= u′′

i u
′′
jSρ + ρu′′

i Suj
+ ρu′′

jSui
= Rijfρ + ρu′′

i guj︸ ︷︷ ︸
=0

+Rijhuj
+ ρu′′

j gui︸ ︷︷ ︸
=0

+Rijhui
. (12)

In this case, the Reynolds stress slow-growth source is closed only in terms of the Reynolds stress
tensor, and the dependencies of fρ and hui

.
Note also that SRij

is a second-rank tensor, and so the right-hand side of (12) must be as well. This
can only be true if the function hui

is a scalar, that is, it is the same function hu for all i. Similarly
considering that Sρui

is a vector, it is clear that gui
must be a vector. These conditions that lead to

tensorial consistency will be used in choosing the final form of the models in Sec. II C.
As discussed in Sec. II A, RANS models often carry equations for the turbulent kinetic energy k

rather than the Reynolds stress tensor. Since the closure of SRij
is in terms of the Reynolds stress

tensor, and k = Rii/2ρ̄, the slow-growth source in the TKE equation Sρk = SRii
/2 will be closed in

terms of k, provided hu depends on Rij only through k.

C. Constructing the slow-growth model

The development in Sec. II B shows how the slow growth source model can yield RANS sources
that are closed. However, it does not determine an actual model. In this section, a model of the
form shown in (10) and (11) is developed based on a multi-time-scale expansion of the primitive
variables, analogous to the spatial expansion introduced by Spalart [7] and Guarini et al. [8].

The multiscale expansions of ρ and q are formulated in terms of the mean and fluctuations as
follows:

ρ[x,y,z,t] = ρ[y,ts] + Aρ[y,ts]ρ
′
p[x,y,z,tf ]︸ ︷︷ ︸

ρ ′[x,y,z,tf ,ts ]

, (13)

q[x,y,z,t] = q̃[y,ts] + Aq[y,ts]q
′′
p[x,y,z,tf ]︸ ︷︷ ︸

q ′′[x,y,z,tf ,ts ]

. (14)

The purpose of these decompositions is to separate the slow and fast time dependencies of the
solution variables so that the slow variations can be modeled. To be clear, in (13) and (14), Aρ

and Aq are dimensional amplitude functions, having the same dimensions as ρ and q, respectively,
which characterize the magnitude of the fluctuations. Then ρ ′

p and q ′′
p are the turbulent fluctuations

normalized by this amplitude and are thus nondimensional. Consistent with the association of the
slow time with growth of the boundary layer in time, we assume that ρ,̃q,Aρ , and Aq vary only on
the slow time scale, while ρ ′

p and q ′′
p vary on the fast time scale.

Using (14), the time derivative of q can be expressed as

∂q

∂t
= ∂q

∂tf
+ ε

(
∂q̃

∂ts
+ ∂q ′′

∂ts

)
= ∂q

∂tf
+ ε

(
∂q̃

∂ts
+ q ′′

Aq

∂Aq

∂ts

)
.
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From this result, it is clear that the slow-growth source term Sq is simply

Sq = −ε

(
∂q̃

∂ts
+ q ′′

Aq

∂Aq

∂ts

)
. (15)

The challenge then is to model the slow time derivatives of q̃ and Aq . To do so, we assume that q̃

and Aq evolve self-similarly in slow time; that is,

q̃[ts ,y] = Fq

[
y

�(ts)

]
, (16)

Aq[ts ,y] = Gq

[
y

�(ts)

]
, (17)

where �(ts) is a measure of boundary-layer thickness. Note that this self-similar form is not exactly
satisfied by a time-evolving turbulent boundary layer because, as is well known, the thickness of
the near-wall layer grows much more slowly than the overall boundary-layer thickness. Further,
the magnitude of the turbulent fluctuations also evolve with the growth of the layer, albeit slowly.
Despite these shortcomings, the above similarity forms will temporally homogenize the turbulent
boundary layer and produce a flow with many of the characteristics of an evolving boundary layer,
as is shown in Sec. III. Also, the DNS model developed from these assumptions will be closed given
typical RANS variables, and thus will meet the goal of supporting RANS model development.

Introducing the similarity forms (16) and (17) into the right-hand side of (15) yields

Sq = y

(
ε

�

d�

dts

)
∂q̃

∂y
+ q ′′y

(
ε

�

d�

dts

)
1

Aq

∂Aq

∂y
. (18)

The logarithmic derivative of � that appears in parentheses is just the exponential growth rate of the
boundary layer, which is a function of time. Or, because � is a monotonically increasing function
of time, the growth rate γ can be considered a function of �:

γ (�) = ε

�

d�

dts
= 1

�

d�

dt
, (19)

where the slow time derivative has been expressed in terms of the physical time derivative, using
the fact that � varies only in slow time. In a slow-growth homogenized DNS, the boundary-layer
thickness will remain constant, so that γ will also be a constant. Indeed, it is the only parameter that
needs to be specified in the slow-growth source model. Once one determines the desired Reynolds
number and therefore the boundary-layer thickness �, the function γ (�) determines the required
value of the constant. However, the function is not known a priori, so in practice, we commonly use
an auxiliary RANS computation to determine a value of γ that will yield a value of � close to that
specified.

Comparing (18) to (11), it is clear that the two forms are consistent, provided that the functions
gq and hq are given by

gq = y γ
∂q̃

∂y
, hq = y γ

1

Aq

∂Aq

∂y
.

Therefore, provided the Aq are defined in terms of RANS state variables, and the tensor consistency
conditions are met, the source model will result in consistent closed source terms in the RANS
equations. To meet these requirements, and in recognition of the fact that the root-mean-square
(RMS) of the fluctuation velocity and total energy measure the strength of the fluctuations, Aui

is
taken to be the same scalar Au for all values of i,

Au =
√

ũ′′
ku

′′
k =

√
2k (20)
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and

AE =
√

˜E′′E′′. (21)

The resulting dependence of hu on k is exactly what was required to ensure closure of the source term
in the Reynolds stress transport and turbulent kinetic energy equations. There is no such restriction
on AE , since this term does not contribute to the mean of SE . Finally, note that because q̃,

√
2k

and
√

˜E′E′′ are fields with no variation in the directions parallel to the wall, the y ∂
∂y

operators in
(20)–(21) can be written as xi∂/∂xi , the inner product of the coordinate vector x with the gradient
operator. This makes clear that gui

is a vector, and hu, gE and hE are scalars, as required for tensor
consistency.

To complete the model, it remains to construct the slow-growth source for conservation of mass.
Following similar steps beginning from (13), we have

Sρ = yγ
∂ρ

∂y
+ ρ ′yγ

1

Aρ

∂Aρ

∂y
. (22)

Then, choosing Aρ = ρ, the source for density is consistent with the form (10):

Sρ = ρyγ
1

ρ

∂ρ

∂y
+ ρ ′yγ

1

ρ

∂ρ

∂y
= ρ y γ

1

ρ

∂ρ

∂y︸ ︷︷ ︸
fρ

.

D. Summary of equations

In summary, the complete set of slow-growth Navier–Stokes equations used in this work is
given by

∂ρ

∂tf
+ ∂

∂xi

(ρui) = Sρ, (23)

∂

∂tf
(ρui) + ∂

∂xj

(ρujui) = − ∂p

∂xi

+ ∂τji

∂xj

+ ρSui
+ uiSρ, (24)

∂

∂tf
(ρE) + ∂

∂xj

(ρujH ) = ∂

∂xj

(τjiui) − ∂qj

∂xj

+ ρSE + ESρ, (25)

where p is the pressure, τij is the viscous stress tensor, qj is the heat flux vector, and H = h + ukuk/2
is the total enthalpy per unit mass, with h the enthalpy per unit mass. The slow-growth sources are
modeled as

Sρ = ρy γ
1

ρ

∂ρ

∂y
, (26)

Sui
= y γ

⎛
⎝∂ũi

∂y
+ u′′

i√
ũ′′

ku
′′
k

∂

√
ũ′′

ku
′′
k

∂y

⎞
⎠, (27)

SE = y γ

⎛
⎝∂Ẽ

∂y
+ E′′√

˜E′′E′′

∂

√
˜E′′E′′

∂y

⎞
⎠. (28)

When coupled with appropriate models for the thermodynamics (e.g., ideal gas) and viscous transport
(e.g., Newtonian fluid with Sutherland’s law), these equations constitute a closed system that allows
one to perform DNS using the temporal slow-growth formulation.
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TABLE I. Parameters for the temporal slow-growth DNS cases.

Case M∞ Reθ Reτ Tw/Taw v+
w Tw[K] T∞[K] γ (�)[s−1]

L 0.3 703 306 1.0 0.0 5500 5500 65
C 1.2 422 685 0.23 0.0188 1634 5604 330

III. RESULTS

To illustrate the temporal slow-growth DNS model described in Sec. II, results for two cases are
presented. The first case, reported in Sec. III A and denoted Case L, is a low-Mach (M∞ = 0.3,
essentially incompressible) boundary layer to enable comparison with the spatially homogenized
boundary layer of Spalart [7] and the spatially evolving simulation reported by Schlatter and Örlü
[2]. The second case, reported in Sec. III B and denoted Case C, is a transonic boundary layer
with a strongly cooled, blowing wall. The conditions for this case—namely the edge Mach number
M∞ = 1.2, the ratio of the wall temperature to the adiabatic wall temperature of Tw/Taw = 0.23, and
the blowing velocity normalized by the friction velocity of v+

w = 0.0188—were inspired by features
of the boundary layer that develops on a space capsule with an ablating thermal protection system
during atmospheric entry [14–16]. This case demonstrates the ease with which complications from
a highly cooled, blowing wall can be incorporated into the temporal slow-growth formulation.

For both cases, the working fluid is taken to be calorically perfect air, and the viscosity is
computed according to Sutherland’s law [17]: μ = C1T

3/2/(T + S) where C1 = μ0T
−3/2

0 (T0 +
S) = 1.458 × 10−6Pa − s/K0.5 and S = 110.4 K. Further details of the case parameters and grids
are given in Tables I–III. In the tables and throughout the discussion to follow, M denotes Mach
number; Re denotes Reynolds number; T is temperature; v is the wall-normal velocity component.
The subscript ()w denotes wall conditions; the subscript ()∞ denotes freestream conditions; and the
superscript ()+ denotes nondimensionalization by the usual viscous scales (i.e., the friction velocity
uτ = √

τw/ρw, where τw is the shear stress at the wall, and the kinematic viscosity at the wall, νw).
Boundary-layer length scales are denoted by θ for the momentum thickness, δ∗ for the displacement
thickness; and δ for the distance from the wall to where the streamwise mean velocity obtains 99%
of the freestream value. H1 = δ∗/θ is the shape factor, H2 = δ/θ , and cf = 2τw/(ρ∞u2

∞) is the skin
friction coefficient. The domain size is denoted by Lx , Ly , and Lz in the streamwise, wall-normal,
and spanwise direction, respectively, and the total number of points in each direction is denoted by
Nx , Ny , and Nz. The distance from the wall to the first grid point is y1, and Ny<y+

10
and Ny<δ are the

number of wall-normal points inside y+ = 10 and y = δ.
Both simulations were performed using the compressible DNS code Suzerain developed by

Ulerich [18]. The spatial discretization in Suzerain couples a Fourier–Galerkin discretization in the
periodic streamwise and spanwise directions with a B-spline collocation method in the wall-normal
direction. The time advance is accomplished using a semi-implicit Runge–Kutta scheme in which
only the mean wall-normal convective and viscous terms are treated implicitly. See Ulerich [18] for
further details regarding numerical methods and the code.

TABLE II. Domain size and grid parameters for the temporal slow-growth DNS cases.

Case Lx/δ × Ly/δ × Lz/δ Nx × Ny × Nz �+
x �+

z y+
1 Ny<y+

10
Ny<δ

L 11.7 × 2.9 × 3.5 256 × 205 × 128 14.01 8.43 0.61 17 129
C 10.6 × 2.6 × 3.2 448 × 370 × 256 16.14 8.53 0.63 17 246
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TABLE III. Boundary-layer parameters for the temporal slow-growth DNS cases.

Case Reθ Re∗
δ Reτ H1 H2 cf

L 703 1050 306 1.49 8.98 4.70 × 10−3

C 422 267 685 0.63 7.22 4.65 × 10−3

A. Case L: M∞ = 0.3 boundary layer

Statistics from the Case L simulation are presented in this section. The temporal slow-growth
boundary layer at Reθ = 703 is compared with the spatial slow-growth case at Reθ = 670 from
Spalart [7] and a spatially evolving boundary layer by Schlatter and Örlü [2] at Reθ = 677. At
this condition, the temporal slow-growth DNS produces global boundary-layer parameters (shape
parameter H1 and skin friction coefficient cf ) that are similar to those reported for the spatial
slow-growth and spatially-developing simulations, as shown in Table IV.

Figure 1 shows the mean streamwise velocity ū+ and the quantity β = y∂ū+/∂y, which, in a log
layer, will be constant with value 1/κ , where κ is the Karman constant. Curves for the law of the
wall in the viscous sublayer (ū+ = y+) and in the logarithmic layer (ū+ = log(y+)/0.41 + 5.2) are
also shown. The mean velocity in the temporal DNS is qualitatively similar to that of both spatial
simulations and follows closely the linear and logarithmic profiles. However, examining the quantity
β makes clear that there is not really a region over which the velocity varies logarithmically in any
of the three simulations, because the Reynolds numbers are much too low. In channel flow, an order
of magnitude larger Reynolds number was required to observe a significant logarithmic region [19].
In the temporal case, the minimum of β occurs with a value corresponding to κ = 0.41, which is
slightly larger than that observed for the spatial simulations. However, the simulations of Lee and
Moser [19] indicate that the value of κ in an actual log layer at higher Reynolds number is likely
to be significantly lower than this, since in the channel flow simulation, the minimum in β is about
15% lower than the value in the log region.

Figure 2 shows the mean shear stress normalized by the wall shear stress. The shape of the
total shear stress in the temporally homogenized boundary layer differs qualitatively from both the
spatially homogenized and spatially evolving cases. In particular, as expected, the derivative of the
total shear stress is zero at the wall in all cases, but the stress drops more quickly in the buffer layer in
the temporally homogenized boundary layer. The mean viscous stress is essentially the same for the
three different models, as expected given the mean velocity. Thus, the difference in the total stress
is due to the Reynolds shear stress, with the peak value in the temporally homogenized simulation
approximately 10% lower than in either of the spatial cases.

The observed differences in the behavior of the total shear stress can be explained by examining
the relationship between the total stress and the mean velocity implied by the boundary-layer
approximation of the mean momentum equation. In particular, in a spatially evolving, zero-pressure-
gradient, constant-density boundary layer, the boundary-layer equations imply that the total shear

TABLE IV. Boundary-layer parameters as computed via the current temporal slow-growth approach, the
spatial slow-growth method of Spalart [7], and a spatially evolving simulation [2].

Method Reθ H1 cf

Temporal slow-growth 703 1.49 4.70 × 10−3

Spatial slow-growth 670 1.49 4.86 × 10−3

Spatially evolving 677 1.47 4.78 × 10−3
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FIG. 1. Mean streamwise velocity and its derivative, normalized by the viscous scales.

stress is given by

τ

τw
= 1 + ν

u2
τ

duτ

dx

∫ y+

0
(ū+)2dy+.

Alternatively, the temporal slow-growth formulation leads to

τ

τw
= 1 − γ (�)+

(
ū+y+ −

∫ y+

0
ū+dy+

)
,

where γ (�)+ = νγ (�)/u2
τ . These forms behave differently near the wall, leading to the discrep-

ancies in total shear and Reynolds shear stress shown in Fig. 2. For example, in the viscous
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(a)

(b)

(c)

FIG. 2. Shear stresses, normalized by the shear stress at the wall. (a) Total shear stress, (b) Viscous shear
stress, and (c) Turbulent shear stress.
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sublayer where ū+ = y+, the spatially evolving result is τ/τw = 1 − Cs(y+)3, while the temporal
slow-growth boundary layer gives τ/τw = 1 − Ct (y+)2, where Cs and Ct are problem-dependent,
positive constants. The temporal slow-growth behavior in the viscous sublayer is consistent with a
temporally evolving boundary layer—see Appendix B for more details—which leads to the observed
discrepancies between the total stress in the current simulations and the spatially homogenized or
evolving cases.

Figure 3 shows the RMS of the velocity fluctuations normalized by uτ . As for the shear stresses,
there is a reasonable agreement between the three simulations for the RMS velocities. The streamwise
component shows particularly good agreement, with both the location and magnitude of the peak
in close agreement between all three simulations. For the wall-normal and spanwise components,
the temporal slow-growth results tend to be below the spatial simulations, with the discrepancy
near the peak being roughly 10%. Near the boundary-layer edge, i.e., for y/δ � 0.8, the temporal
slow-growth RMS velocities all agree better with the spatially evolving case than do the spatially
homogenized profiles, although it is unclear why.

The turbulent kinetic energy budget is shown in Fig. 4. Specifically, using homogeneity in the
streamwise (x1) and spanwise (x3) directions, the TKE equation can be written

∂ρ̄k

∂t
= C + P + T +  + D − φ + V + Sρk,

where, in index notation,

C = − ũ2
∂ρk

∂x2
, P = −ρu′′

2u
′′
i

∂ũi

∂x2
, T = − 1

2

∂

∂x2
(ρu′′

i u
′′
i u

′′
2),

 = − ∂

∂x2
(u′′

2p
′) + p′ ∂u′′

i

∂xi

, D = ∂

∂x2
(u′′

i τ
′
i2), φ = τ ′

ij

∂u′′
i

∂xj

,

V = −u′′
2

∂p̄

∂x2
+ u′′

i

∂τ̄ij

∂xj

− ρ̄k
∂ũ2

∂x2
, Sρk = x2γ (�)

∂ρ̄k

∂x2
.

Because the density is essentially constant in this case, for the temporal formulation, ũ2 ≈ 0, which
implies that the mean convection term ũ2∂(ρ̄k)/∂x2 is negligible. Further, the compressibility term
V is also negligible. Thus, only P , T , , D, φ, and Sρk are shown.

Near the wall, the features of the dominant terms in the TKE balance from the temporal slow-
growth simulation are similar to those from the spatial slow-growth case. Both production and
dissipation are somewhat smaller in the temporal case, which is consistent with the reduced Reynolds
shear stress observed in Fig. 2. The viscous and turbulent transport terms (D and T , respectively)
however match almost perfectly. Away from the wall, production and dissipation remain smaller in
the temporal simulation, and the outer peak in the turbulent transport is significantly reduced.

To summarize, the temporal slow-growth model flow mimics many of the important features
of the statistics of a zero-pressure-gradient, spatially evolving boundary layer. The mean velocity,
streamwise RMS velocity, and dominant near-wall terms in the k budget are particularly well-
represented. However, as expected, the differences between temporal and spatial evolution of the
boundary layer and the approximations inherent to the slow-growth formulation lead to some
obvious discrepancies. For instance, the Reynolds shear stress, wall-normal RMS velocity, and
spanwise RMS velocity are all lower in the temporal simulation than in the spatially homogenized or
spatially evolving cases. Such differences are relevant if the goal is to investigate the characteristics
of a truly spatially evolving boundary layer; however, they do not diminish the utility of temporally
homogenized boundary layers for studying wall-bounded turbulence more generally or for RANS
model evaluation, as discussed in Sec. I.
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(a)

(b)

(c)

FIG. 3. RMS velocity components. (a) Streamwise velocity RMS, (b) Wall normal velocity RMS, and (c)
Spanwise velocity RMS.
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(a)

(b)

FIG. 4. Turbulent kinetic energy budget. Solid lines show results from the temporal slow-growth approach.
Dashed lines show results from spatial slow-growth approach of Spalart [7]. (a) Near wall region (non-
dimensionalized by uτ and ν/uτ ) and (b) Outer region (non-dimensionalized by uτ and δ).

B. Case C: M∞ = 1.2, cold wall boundary layer with transpiration

Results from the Case C simulation are presented and compared with those from Case L in
this section. Many of the statistics are normalized using semilocal scaling [12], where local mean
viscosity and density are used in the friction velocity and viscous length scale rather than wall values.
Hence, the semilocal friction velocity is uτ ∗ = √

τw/ρ, and the semilocal viscous length scale is
δν∗ = μ/(ρuτ ∗ ). The wall distance normalized by the semilocal viscous scale is denoted y∗ = y/δν∗ .
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FIG. 5. Variation of thermodynamic quantities and viscosity as a function of wall distance normalized
by the semilocal length scale (top) and ratio of Reynolds number based on local friction velocity, boundary-
layer thickness, and local kinematic viscosity to Reynolds number based on friction velocity, boundary-layer
thickness, and wall kinematic viscosity (bottom).

The use of this scaling has almost no effect on the Case L profiles. In Case C, the use of this scaling
is justified by the strong variation in density and viscosity near the wall due to the cold wall. As is
evident in Fig. 5, most of the variation in mean thermodynamic and transport quantities occurs in
the viscous sublayer and buffer layer where y∗ � 20. This strong variation in mean properties leads
to a large variation in local Reynolds number across the boundary layer, with the near-wall region
having the highest Re based on local properties.
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FIG. 6. Turbulent Mach number and Mach number RMS
√

M ′M ′, where M ′ = M − M̄ .

While the thermodynamic and transport properties vary dramatically, the turbulent Mach number

Mt =
√

ũ′′
i u

′′
i /a, shown in Fig. 6, is low, with a maximum of approximately 0.2, as expected in

a mildly supersonic boundary layer. Therefore, according to Morkovin’s hypothesis [20,21], it is

FIG. 7. Mean streamwise velocity. Five profiles are shown: The raw Case C profile (solid blue), the
van Driest transformed Case C profile (solid green with circles), the extended van Driest transformed (see
Appendix C) Case C profile (solid red with squares), the Case L profile (dashed blue), and the law of the wall
(dotted black). The inset shows the viscous sublayer only.
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(a)

(b)

FIG. 8. Shear stress components, normalized by the wall stress. The solid lines represent Case C, while the
dashed lines are from Case L. (a) Inner region and (b) Entire boundary layer.

expected that the effects of compressibility on turbulence are very weak for this case, although the
property variations will cause the results to differ substantially from a low-Mach boundary layer.

Figure 7 shows the mean velocity for Case C. Three different transformations of the Case C
streamwise mean velocity are shown. The first, shown in solid blue, is simply the mean velocity
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(a)

(b)

FIG. 9. RMS velocities, normalized by the semilocal friction velocity. The solid lines represent Case C,
while the dashed lines are from Case L. (a) Inner region and (b) Entire boundary layer.

normalized by the friction velocity. Of course, this normalization does not account for variable
property effects and, as expected, the result does not collapse on the Case L profile (blue dashed
line) or the incompressible law of the wall (black dotted line). It is common practice to consider the
van Driest [22] transformed mean velocity when comparing compressible boundary layers to their
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FIG. 10. Turbulent Prandtl number.

incompressible counterparts, and this transformation is often successful in collapsing the profiles in
the inner layer (viscous sublayer and log layer) [17]. The van Driest transformed velocity is shown
in Fig. 7 in green with circles. While this profile is closer to the incompressible velocity profile than
the untransformed velocity, there are still substantial discrepancies. First, the transformed velocity
is below the ū+ = y+ curve for y+ less than 3, as is clear in the inset of Fig. 7. Second, there is a
large offset in the log layer, which would lead to a log layer offset constant greater than 10. These
discrepancies can be explained by the fact that the transformation does not account for the effects
of wall transpiration or a highly cooled wall. Huang and Coleman [23] and, more recently, Trettel
and Larsson [24] have proposed modifications to the van Driest transformation that can account for
the effects of the cold wall. In Appendix C, we develop a further extension of the transformation
of Huang and Coleman [23] that accounts for both the cold wall and wall transpiration. The new
transformation is based on analysis of the mean momentum equation in the inner layer of the
boundary layer and assumes a mixing length model for the Reynolds stress. For these reasons, like
the original van Driest transformation, it is only intended to be valid near the wall, from the log layer
to the wall, not in the outer layer. The result of applying this transformation is shown in red with
squares in Fig. 7. The transformation is quite successful in collapsing the Case C velocity profile
with incompressible theory, indicating that mean property variation accounts for the differences
between the compressible and incompressible mean velocity profiles for this case.

Figure 8 shows the shear stresses. Unlike Case L, the total shear stress has a positive derivative
at the wall and peaks near y∗ ≈ 12 with a value approximately 20% larger than at the wall. These
features are a consequence of the wall transpiration. With wall transpiration, the term ρ̄ṽ∂ũ/∂y in the
mean momentum equation, which is zero at the wall and negligible near the wall in the nonblowing
case, is nonzero even at the wall. This term leads to a larger total shear over the entire boundary
layer, which, outside of the viscous sublayer, leads to a larger Reynolds shear stress. In particular, at
its peak, the Reynolds shear stress is also approximately 20% larger in Case C than in Case L.

The effects of wall transpiration can also be seen in the RMS velocities (Fig. 9). The streamwise
RMS velocity component in particular is greatly enhanced by wall transpiration, increasing by
approximately 30% from Case L to Case C. These observations are consistent with the results
obtained by Sumitani and Kasagi [25] for a channel flow with an injecting wall and a suction wall.
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(a)

(b)

FIG. 11. Turbulent kinetic energy budget. Solid lines show results from Case C. Dashed lines show results
from Case L. (a) Near wall region (non-dimensionalized by semi-local scales) and (b) Outer region (non-
dimensionalized by δ, ρ̄, and uτ∗ ).

They showed that turbulent fluctuations are larger on the injection side as compared with a channel
with an impermeable wall.

To examine the Reynolds heat flux, Fig. 10 shows the turbulent Prandtl number:

Prt = ρu′′v′′(∂T̃ /∂y)

ρT ′′v′′(∂ũ/∂y)
.
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In standard RANS modeling, Prt is taken to be a constant, usually Prt = 0.9, although values
between 0.6 and 1.0 have been used. Examining the figure, it is clear that, while the standard value
of Prt ≈ 0.9 is a reasonable compromise for this case, the true value varies substantially across the
boundary layer, from Prt ≈ 0.8 to greater than 1.1 near the wall. Similar values and trends for Prt
were also observed by Guarini et al. [8] and Pirozzoli et al. [26] in adiabatic, impermeable wall
simulations, indicating that the accuracy of the constant Prt approximation does not substantially
degrade due to cold wall or blowing effects.

Finally, the turbulent kinetic energy budget is shown in Fig. 11. Unlike the budget profiles of
Guarini et al. [8], which collapsed reasonably well with those from the incompressible simulations
of Spalart [7] when nondimensionalized using uτ and νw, the budget for Case C is substantially
different than that for Case L. The near-wall peak in production for Case C is almost 50% greater
than the peak production in Case L, which is consistent with the enhanced Reynolds stress due to
blowing. The dissipation and turbulent transport are also larger in magnitude in the near-wall region
for Case C relative to Case L. Further, neither the mean convection C nor the terms associated with
variable density V are entirely negligible.

IV. CONCLUSIONS

A new slow-growth formulation for DNS of wall-bounded turbulence has been developed and used
to simulate two flows: an essentially incompressible boundary layer and a transonic boundary layer
over a cooled wall with transpiration. Like previous slow-growth approaches, the new formulation
relies on an assumption that the mean and RMS quantities evolve slowly relative to the turbulent
fluctuations. This assumption is used to develop a set of governing equations for the fast evolution
of the turbulent fluctuations subject to forcing from the slow evolution of the mean and RMS. After
modeling the impact of the slow evolution in this scenario, one can simulate the fast evolution at a
fixed point in the slow development.

Unlike previous approaches, the present model is developed based on a temporally evolving
boundary layer. Furthermore, the current approach is specifically designed to enable calibration and
validation of RANS-based turbulence models for boundary-layer flows with complex physics. It is
formulated to ensure that the slow-growth sources that appear in the RANS equations are closed
in terms of the RANS variables. This avoids any potential confounding of errors between typical
RANS closures and new modeling required to close the mean slow growth sources. Further, the
slow-growth source terms that arise from the homogenization procedure are modeled assuming a
self-similar evolution of mean and RMS profiles. This procedure allows straightforward extensions
to cases involving other physical phenomena such as compressibility, transpiration and chemical
reactions, which have not been addressed in previous slow-growth formulations.

The results show that in the incompressible case the results display many characteristics associated
with typical boundary-layer turbulence. The mean velocity profile has the typical structure, and
the streamwise RMS velocity peak location and magnitude are consistent with other simulations.
Other statistics, most notably the total shear stress and Reynolds shear stress, display notable
discrepancies with spatial simulations. These discrepancies result from the difference between the
temporal slow-growth model and the true slow evolution of a spatially evolving boundary layer,
due both to the temporal evolution and the slow-growth approximations. This observation points to
the possibility that an improved slow-growth model could reduce this discrepancy and give a better
representation of a spatially developing flow. While beyond the scope of this paper, such models have
been proposed [18] and remedy some of the differences observed here. Nonetheless, despite the mild
discrepancies between the current slow-growth formulation and spatially evolving boundary layers,
the slow-growth simulations are a valuable resource for evaluation of RANS models. Specifically,
the slow-growth boundary layer is sufficiently similar to a spatially evolving one that a model that
represents the former should be able to simulate the later.

Finally, the transonic, cold wall case with wall transpiration shows that the approach can be
straightforwardly extended to problems with more complex physics. This capability is significant
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because it enables the development of data sets for assessing the validity of lower fidelity models,
namely RANS models, in the presence of these complicating phenomena. This is particularly useful
for calibration and validation because reliable data for boundary layers with such complications
is often scarce or nonexistent. Work to further extend the slow-growth capability to treat pressure
gradients and reacting flows is underway. These capabilities together will enable affordable DNS of
boundary-layer flows similar to those observed on vehicles during atmospheric entry and in other
complex systems.
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APPENDIX A: AN INCONSISTENT SLOW-GROWTH FORMULATION

A straightforward formulation can be obtained by considering a Reynolds decomposition of the
conserved variables. Specifically, let

ρq[x,y,z,t] = ρq[y,ts] + Aρq[y,ts]ρq ′
p[x,y,z,tf ]︸ ︷︷ ︸

ρq ′[x,y,z,tf ,ts]

,

where the mean ρq and amplitude function Aρq are assumed to evolve only in slow time. As in
Sec. II C, to model the slow time derivatives, the mean and amplitude are assumed to evolve in time
in a self-similar manner:

ρq[ts,y] = Fρq[y/�(ts)], Aρq[ts ,y] = Gρq[y/�(ts)].

Then, by an exactly analogous development to that shown in Sec. II C, the slow-growth source
for ρq is found to be

Sρq = y γ (�)

[
∂ρq

∂y
+ (ρq)′

Aρq

∂Aρq

∂y

]
.

Without specifying Aρq , it is clear that, while the mean of Sρq is closed in terms of the mean
flow, the mean of the slow-growth source in the TKE equation cannot be closed without additional
modeling in this formulation. In particular, because of the dependence of Sρq on (ρq)′, the TKE
equation slow-growth source depends on quantities that are not already modeled in a typical RANS
closure, such as (ρu)′u′′. Thus, the formulation is discarded in favor of that shown in Sec. II C.
Nonetheless, we have performed simulations using this formulation, and it leads to similar results
to those presented in this work. This observation indicates that the results are not highly sensitive to
the choice of whether to apply the Reynolds decomposition to the primitive or conserved variables.

APPENDIX B: ANALYSIS OF TOTAL STRESS

In this section, we examine the relationship between the mean streamwise velocity and the
total stress in a spatially evolving boundary layer, a temporally evolving boundary layer, and the
temporal slow-growth model. In particular, we consider a zero-pressure-gradient, constant-density
boundary-layer flow and analyze the appropriate form of the boundary-layer equations for each case.
For notational simplicity, throughout the section we use τ to denote the total stress divided by the
density, which can be taken to be one without further loss of generality. The implied behavior of
the total stress for the different cases explains the near-wall differences observed in the total stress
profiles shown in Sec. III A.
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1. Spatially evolving boundary layer

For the spatially evolving case, the mean boundary-layer equations can be written

∂ū

∂x
+ ∂v̄

∂y
= 0, ū

∂ū

∂x
+ v̄

∂ū

∂y
= ∂τ

∂y
,

where x is the streamwise direction, y is the wall-normal direction, ū and v̄ are the mean streamwise
and wall-normal velocities, respectively, and τ is the mean total shear stress. Assuming that the
streamwise velocity normalized by the friction velocity is only a function of wall-normal distance
normalized by the viscous length scale, i.e., ū(x,y)/uτ (x) = ū+(y+), one can derive a relationship
between the total shear stress and the velocity. To begin, note that

ū = uτ (x) ū+(y+) ⇒ ∂ū

∂x
= duτ

dx

(
ū+ + y+ dū+

dy+

)
= duτ

dx

d

dy+ (y+ū+).

Thus, the wall-normal velocity is given by

v̄(x,y) = −
∫ y

0

∂ū

∂x
dy = −

∫ y+

0

duτ

dx

d

dy+ (y+ū+)
ν

uτ

dy+ = − ν

uτ

duτ

dx
y+ū+.

Using these results to evaluate the convection term in the mean momentum equation gives

ū
∂ū

∂x
= uτ

duτ

dx
ū+ d

dy+ (y+ū+), v̄
∂ū

∂y
= −duτ

dx
y+ū+ ν

uτ

uτ

dū+

dy+
uτ

ν
= −uτ

duτ

dx
y+ū+ dū+

dy+ .

Thus,

ū
∂ū

∂x
+ v̄

∂ū

∂y
= uτ

duτ

dx

[
ū+ d

dy+ (y+ū+) − y+ū+ dū+

dy+

]
= uτ

duτ

dx
(ū+)2.

Substituting into the mean momentum equation gives

uτ

duτ

dx
(ū+)2 = ∂τ

∂y
.

Thus,

τ − τw =
∫ y

0

∂τ

∂y
dy = uτ

duτ

dx

∫ y

0
(ū+)2dy.

Finally, nondimensionalizing by ν and uτ gives

τ

τw
= 1 +

(
ν

u2
τ

duτ

dx

) ∫ y+

0
(ū+)2 dy+.

2. Temporally evolving boundary layer

In the temporally evolving case, the flow is necessarily homogeneous in the streamwise direction.
Conservation of mass plus the no-slip condition implies that v̄ = 0. Thus, the boundary-layer
equations reduce to

∂ū

∂t
= ∂τ

∂y
.

As in the spatially evolving case, we assume that ū+ is a universal function of y+ only. Then

∂ū

∂t
= duτ

dt
ū+ + y+ dū+

dy+
duτ

dt
= duτ

dt

d (ū+y+)

dy+ .
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Substituting this result into the mean momentum equation and integrating gives

τ − τw =
∫ y

0

∂τ

∂y
dy = ν

uτ

duτ

dt
(ū+y+).

Thus, nondimensionalizing using ν and uτ gives

τ

τw
= 1 +

(
ν

u3
τ

duτ

dt

)
(ū+y+).

3. Temporal slow-growth boundary layer

The temporal slow-growth solution is also homogeneous in the streamwise direction, which leads
to v̄ = 0, as in the temporally evolving case. In addition, the flow is statistically stationary by design.
Thus, the boundary-layer equations become

0 = ∂τ

∂y
+ Su,

where

Su = y γ (�)
∂ū

∂y
.

Thus,

τ = τw − γ (�)

(
ūy −

∫ y

0
ūdy

)
and

τ

τw
= 1 −

[
ν

u2
τ

γ (�)

](
ū+y+ −

∫ y+

0
ū+dy+

)
.

APPENDIX C: AN EXTENDED VAN DRIEST TRANSFORMATION

We construct an extension of the van Driest transformation that accounts for the effects of wall
transpiration and wall cooling. The van Driest transformation [22] is derived using the following
relationship between the compressible mean velocity (ũ) and the incompressible mean velocity
(ūinc):

dũ+

dy+ = (ρ̄/ρ̄w)1/2

κy+ =
(

ρ̄

ρ̄w

)1/2
dū+

inc

dy+ , (C1)

which is valid in the log layer. As pointed out by Huang and Coleman [23], in the viscous sublayer,
(C1) is incorrect. Instead, in the sublayer, the correct relationship is

dũ+

dy+ = μw

μ

dū+
inc

dy+ .

The van Driest transformation is derived by integrating (C1) starting at the wall, without any
correction for the viscous sublayer. Strictly speaking, this procedure is always incorrect, but as
long as the temperature does not vary dramatically in the viscous sublayer, the difference between
(μw/μ) and (ρ̄/ρ̄w)1/2 is not large, and the resulting transformed velocity profile agrees well with
incompressible results [17]. However, when the temperature variation in the sublayer is large, as it is
for a cold wall as shown in Sec. III B, the error due to the sublayer is large enough that the collapse
between the transformed profile and the incompressible results is quite poor.

To remedy this error, Huang and Coleman [23] proposed a blending between the viscous sublayer
and log layer results based on an assumed mixing length. Here, this approach is extended to include
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the effect of wall transpiration. The primary effect of wall transpiration is that the wall-normal
mean convection term in the mean momentum equation is no longer negligible near the wall. Thus,
rather than containing only the viscous and Reynolds shear stresses, the total shear stress contains a
contribution from wall-normal convection. Using the boundary-layer form of the slow-growth mean
momentum equation, one can show that

ρ̄ũṽ = τ − τw +
∫ y

0
Sρudy.

An analogous development can be done for the spatially developing case. For brevity, this analysis
is not shown since only the slow growth version is used here.

Since τ = μ∂ũ/∂y − ρu′′v′′ (where μ is the mean viscosity and we have neglected the viscosity-
velocity gradient correlation), the wall shear stress can be written as

τw = −ρ̄ũṽ +
∫ y

0
Sρudy + μ

∂ũ

∂y
− ρu′′v′′. (C2)

To simplify notation, the convection and slow-growth source terms can be grouped together.
Note that ∫ y

0
Sρu =

∫ y

0
yγ (�)

∂ρu

∂y
= yγ (�)ρu − γ (�)

∫ y

0
ρu.

Thus,

ρ̄ũṽ −
∫ y

0
Sρudy = ρ̄ũ

[
ṽ − yγ (�) + γ (�)

∫ y

0

ρu(η)

ρu(y)
dη

]
.

Then let

ṽmod = ṽ − yγ (�) + γ (�)
∫ y

0

ρu(η)

ρu(y)
dη.

With this notation, (C2) can be rewritten as

τw = −ρ̄ũṽmod + μ
∂ũ

∂y
− ρu′′v′′. (C3)

To continue, we use a mixing length model for the Reynolds stress:

−ρv′′u′′ = ρ̄�2

(
∂ũ

∂y

)2

.

Then, (C3) can be rewritten as

τw = −ρ̄ṽmodũ + μ
∂ũ

∂y
+ ρ̄�2

(
∂ũ

∂y

)2

.

Solving this quadratic for ∂ũ/∂y, one obtains

∂ũ

∂y
= 2(ρ̄ṽmodũ + τw)

μ +
√

μ2 + 4ρ̄�2(ρ̄ṽmodũ + τw)
.

Nondimensionalizing this result using ρw, μw, and uτ gives

∂ũ+

∂y+ = 2(ρ̂ṽ+
modũ

+ + 1)

μ̂2 +
√

μ̂2 + 4ρ̂(�+)2(ρ̂ṽ+
modũ

+ + 1)
, (C4)
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where ρ̂ = ρ̄/ρw, μ̂ = μ/μw, and �+ = ρwuτ�/μw. In the incompressible, nonblowing wall case,
this result simplifies to

∂ū+
inc

∂y+ = 2

1 +
√

1 + 4(�+
inc)2

, (C5)

where �inc is the mixing length for the incompressible case.
The extended van Driest transformation is obtained by requiring that the nondimensional

transformed velocity ũ+
eff has the same profile as the incompressible velocity; that is,

ũ+
eff[ũ

+(y+)] = ū+
inc(y+),

which implies that

dũ+
eff

dũ+
dũ+

dy+ = dū+
inc

dy+ .

Thus,

ũ+
eff(w

+) =
∫ w+

0

dũ+
eff

dũ+ dũ+ =
∫ w+

0

dū+
inc/dy+

dũ+/dy+ dũ+, (C6)

where the upper limit of integration, w+, corresponds to a point on the original nondimensionalized,
but not transformed, velocity profile. Substituting (C4) and (C5) into (C6) gives

ũ+
eff(w

+) =
∫ w+

0

μ̂ +
√

μ̂2 + 4ρ̂(�+)2(ρ̂ṽ+
modũ

+ + 1)

(ρ̂ṽ+
modũ

+ + 1)[
√

1 + 4(�+
inc)2 + 1]

dũ+. (C7)

To complete the transformation, one must define the mixing length. We use the van Driest damping
[27] function:

�+ = κy+[1 − exp(−y∗/A+)], �+
inc = κy+[1 − exp(−y+/A+)],

where the wall-distance normalized by the local viscous length is used in the compressible case. We
take typical values of the parameters: κ = 0.41 and A+ = 25.51.

At this point, if profiles for ρ̂, μ̂, ṽ+
mod and ũ+ are available, (C7) allows computation of the

equivalent incompressible profile. Thus, this form is appropriate for data analysis, and it is used
for this purpose in Sec. III B. However, it does not give a closed form for modeling a compressible
profile. For this task, a model temperature profile is required. See Huang and Coleman [23] for an
example.

To conclude, we examine how the extended transformation compares to existing transformations.
When ṽ+

mod is negligible (i.e., no wall transpiration or slow-growth source), the transformation
reduces to the method of Huang and Coleman [23], which itself reduces to the standard van Driest
transformation outside the viscous sublayer. Alternatively, for the incompressible case with wall
transpiration, the extended transformation in the log layer reduces to the log layer correction for
injection effects derived by Stevenson [28].
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