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Particle-resolved numerical simulations based on the Force Coupling Method are carried
out to study the effect of finite-size particles on turbulent plane Couette flow. The Reynolds
number is close to the laminar-turbulent transition, such that large-scale rotational structures
are well developed and self-sustained. The study particularly considers the effect of
concentration, particle size, and particle-to-fluid density ratio on the mixture flow features.
Time-averaged profiles, in the wall-normal direction, of the mean flow and Reynolds
stress components reveal that there is no significant difference between single-phase and
two-phase flows at equivalent effective Reynolds number, except that the wall shear stress
is higher for the two-phase flow. However, temporal and modal analysis of flow fluctuations
suggest that besides injecting small-scale perturbation due to their rigidity, particles have
an effect on the regeneration cycle of turbulence. Indeed, the shape of the streaks and
the intermittent character of the flow (amplitude and period of oscillation of the modal
fluctuation energy) are all altered by the particle presence, and especially by the inertial
ones.
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I. INTRODUCTION

Particulate flows are ubiquitous in industrial applications (mixing, transport, fluidization), in
engineering like petroleum or chemical processes, food or solid processing, and water treatment.
The transport of mixtures is often realized under a turbulent regime, especially at large scales. Under
a turbulent regime, it is known that the dispersed phase (particles, bubbles, droplets) modulate
transport properties of dispersed flows (see the review by Balachandar and Eaton [3] for turbulent
flows laden with solid particles). The mechanisms of turbulence modulation by particles depend on
many parameters (flow geometry, particle size, concentration, flow, and particle inertia), and they
are still not completely elucidated over the entire parameter space.

Turbulence modulation by inertial particles (typically in gas-solid flows) results from a
competition between drag-induced local dissipation and enhanced velocity fluctuations due to wake
dynamics and self-induced vortex shedding. In summary, these phenomena depend predominantly
on the size ratio between the particle diameter d and characteristic flow length scales, the macro-
and microscales being set respectively by the flow geometry and bulk Reynolds number. In a
review of works carried out between 1971 and 1988, Gore and Crowe [20] established a qualitative
relationship between the flow turbulent intensity and the ratio d/le (le being the flow integral length
scale). A critical ratio d/le ≈ 0.1 was found above (resp. below) which turbulence enhancement
(resp. reduction) occurs. Flow modulation depends on d/η (η being the flow microscale) in a less
obvious way. Pan and Banerjee [48] have shown through numerical simulations based on two-way
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coupling that, at small particle Reynolds numbers, the increase (resp. decrease) of turbulence intensity
occurs for d/η > 1 (resp. d/η < 1). However, Burton and Eaton [7] who performed fully resolved
simulation of homogeneous isotropic turbulence around a fixed particle with d/η = 2 showed
reduction of the turbulence kinetic energy (TKE) within 1.5d of the particle surface but negligible
turbulence modification outside a layer of 5d from the particle surface. A large number of works on
this subject can be found in the literature, showing that modification of flow fluctuating energy varies
with the wavelength compared to the particle size, and can depend on the direction and on the eventual
location of the vortical structures with respect to a wall. It is out of the scope of the paper to make
an exhaustive review of that, so we reference only few contributions: see Refs. [18,32,57,63,73].

The effect of neutrally buoyant particles on turbulent flow is different because there is no mean
slip between phases. Dissipation and velocity fluctuations are both increased due to the perturbation
of locally strained flow by particle rigidity. Among the few studies realized with neutrally buoyant
particles Rashidi et al. [51] made measurements in turbulent channel flow at low concentration,
with different particle sizes. They found that large particles increase the number of wall ejections,
leading to higher turbulent intensities and Reynolds stress, while the opposite was observed for
smaller particles. Recently, with the fast development of computer power and resources, a few
studies considered the simulation of turbulent suspension flow with finite-sized particles. In addition
to the conclusion of Ref. [51], Shao et al. [61] found a reduction of the intensity of the large-scale
streamwise vortices by particles carried inside these structures, whereas other particles not carried
by these structures induce small-scale perturbation that hinder the development of the large-scale
streamwise vortices. Meanwhile, an increasing number of smaller-scale structures are induced.
Their conclusions are done for suspension flows with low concentration up to 7%. Recently, Picano
et al. [49] performed particle-resolved numerical simulations of turbulent channel flow at higher
concentration (up to 30%) and focused on the effect of particles on the overall drag. They showed
that when the concentration increases, the friction on the walls is increased, mainly from the increase
of particle stress, while turbulent activity is reduced.

Close to laminar-turbulent transition, the presence of particles can advance or delay the transition
from one regime to another. The experiments of Matas et al. [40] revealed that the effect of neutrally
buoyant particles on the onset of turbulence in a pipe flow is non monotonous when the particle
size and/or concentration is increased. Recent numerical studies [34,37,70] have shown a significant
impact of large particles on the unsteady nature of pressure-driven flows, enhancing transverse
turbulent stress components and modifying the flow vortical structures.

While the lifetime and shape of large-scale vortices (LSVs) in pressure-driven flows are strongly
unsteady, turbulent plane Couette flow (pCf), close to the transition threshold, offers steady pairs
of counter-rotating LSVs, which size is comparable to the Couette gap width. Near the wall, the
large vortices generate ejection and sweep flows in the wall-normal direction that constitute the
large-scale streaks (LSSs). These two structures permanently exchange energy and play a key role
in the self-sustained turbulence process, so-called regeneration cycle [67]. In a minimal pCf unit,
one can isolate a pair of LSVs, without affecting the regeneration cycle [24]. This allows us to study
the impact of particles-vortices interaction on the regeneration cycle and thereby the turbulent flow
features. We are interested in the modulation of large-scale structures by finite-sized particles. We
consider first neutrally buoyant particles. Studies dedicated to turbulent pCf laden with finite-sized
particles are scarce. In addition to being transported by the local fluid flow, neutrally buoyant
finite-sized particles are subject to inertial migration (across flow streamlines) at large Reynolds
numbers. Therefore its wall-normal motion results from a competition between repulsive turbulent
ejection and inertial migration away from the Couette walls, against attractive turbulent sweep
towards the wall, and turbulent or shear-induced dispersion. All this leads to possible heterogeneity
in the particle distribution. The effect of a particle-to-fluid density mismatch is also interesting from
a fundamental point of view (with zero average slip between dispersed and fluid phases, no effect
of gravity). It is known that particles denser than the fluid tend naturally to accumulate in low strain
rate regions of a vortex, whereas lighter particles have an inward motion towards the vortex center.
Klinkenberg et al. [30] observed that inertial point particles (d/η < 1) induce a significant time delay
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on the streak breakdown which may cut off the regeneration cycle near the transition threshold. In
highly turbulent flows, less inertial point particles collect into low-speed streaks, especially in the
small-scale hairpin vortices corresponding to Q2 events [53–55]. This leads to an increase in the
streamwise fluctuating velocity, while spanwise and wall-normal velocity fluctuations are damped.
However, heavy particles are confined in the high-speed streak. They reduce near-wall swirling
motion, which in turn results in a reduction of the turbulent Reynolds stress.

In this context, we aim at investigating numerically the properties of turbulent pCf laden with
finite-size particles. Particles 10 to 20 times smaller than the LSVs are considered. The particle
concentration investigated in this work is low to moderate (φ � 10%), and the Reynolds number of
the Couette flow is relatively low Reb = 500 based on the fluid viscosity. The paper is organized as
follows. In Sec. II particular features of the Force-Coupling Method used to simulate the suspension
flow dynamics, and some validations are outlined. In Sec. III the effect of neutrally buoyant particles
on statistical properties of the turbulent flow (velocity profile, concentration distribution, turbulence
intensity, shear stress) are discussed. In Sec. IV we consider the effect of the particle-to-fluid
density ratio (ranging from zero to five) on the flow properties. Finally, the effect of particles on
the regeneration cycle is discussed, using modal and quadrant analysis and vorticity stretching. The
paper ends with a conclusion on the main findings.

II. SIMULATION METHOD AND VALIDATION

Direct numerical simulations of single-phase flows are performed by using the code JADIM
for an incompressible Newtonian fluid [8]. The unsteady 3D Navier-Stokes equations discretized
on a staggered grid are integrated in space using the finite volume method. All terms involved in
the balance equations are written in a conservative form and are discretized using second-order
centered schemes in space. The solution is advanced in time by a second-order semi-implicit
Runge-Kutta combined to Cranck Nicholson time-stepping procedure, and incompressibility is
achieved by correcting the pressure contribution, which is a solution of the Poisson equation.

Numerical simulations of particle trajectories and suspension flow dynamics are based on
multipole expansion of momentum source terms added to the Navier-Stokes equations [namely,
the Force-Coupling Method (FCM) as described in Refs. [12,39,43]], the comparison of FCM with
other methods that belong to the class of Fictitious Domain methods can be found in a review by
Maxey [42] on the simulation methods for particulate flows. Flow equations are dynamically coupled
to Lagrangian tracking of particles. The fluid is assumed to fill the entire simulation domain, including
the particle volume. The fluid velocity and pressure fields are a solution of continuity [Eq. (1)] and
momentum balance [Eq. (2) and Eq. (3)]:

∇ · u = 0, (1)

ρ
Du
D t

= −∇p + μ∇2u + f (x,t), (2)

fi(x,t) =
Np∑
n=1

Fn
i �[x − Yn(t)] + Gn

ij

∂

∂xj

�′[x − Yn(t)]. (3)

The body force distribution f (x,t) in the momentum balance (3) accounts for the presence of
particles in the flow. It is written as a multipole expansion truncated after the second term. The first
term of the expansion called the monopole represents the force Fn that the particle exerts on the
fluid, due to particle inertia, external forcing, or particle-to-particle contact forces [Eq. (4)]. The
second term, called dipole, is based on a tensor Gn sum of two contributions: an antisymmetric
part is related to external torques applied on the particle, and a symmetric part that accounts for the
resistance of a rigid particle to deformation by ensuring zero average strain-rate inside the particle
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volume [Eq. (5)]:

Fn = (mp − mf )

(
g − dV n

dt

)
+ Fn

ext, (4)

Sn
ij (t) = 1

2

∫ (
∂ui

∂xj

+ ∂uj

∂xi

)
�′[x − Yn(t)] d3x = 0. (5)

The particle finite size is accounted for by spreading the momentum source terms around
the particle center Yn using a Gaussian spherical envelope, one for the monopole �(x) =
(2πσ 2)−3/2e(−|x|/2σ 2), and another one for the dipole �′(x) = (2πσ ′2)−3/2e(−|x|/2σ ′2). The widths
of the Gaussian envelopes, σ and σ ′, are set with respect to the particle radius a such that the settling
velocity and the hydrodynamic perturbation generated by a particle in a shear flow are both exactly
matched to Stokes solutions [σ = a/

√
π and σ ′ = a/(6

√
π )1/3] for a single particle.

The particle translation and rotation velocities are obtained from a local weighted average of the
volumetric fluid velocity (resp. rotational velocity) field over the region occupied by the particle:

V n(t) =
∫

u(x,t)�[x − Yn(t)] d3x = 0, (6)

�n(t) = 1

2

∫
[∇ × u(x,t)]�′[x − Yn(t)] d3x = 0. (7)

Particle trajectories are then obtained from numerical integration of the equation of motion:

dYn

dt
= V n. (8)

This modeling approach allows calculating the hydrodynamic interactions with a moderate
computational cost. In order to capture correctly the dynamics of dilute suspension flows, four
grid points per particle radius are usually required when the monopole force is not zero, and in the
case where only dipole forcing is relevant, three grid points per particle radius are sufficient.

For neutrally buoyant particles, the only contribution to the monopole is Fn
ext due to rigid body

contact forces. For a pair of particles α and β, a force derived from a repulsive potential is added
to the monopole term of both particles [such as Eq. (4) for particle α] when the distance between
particles is smaller than Rref − 2a and zero otherwise. Following Abbas et al. [1], this force is written
as

Fα,β
ext = Fref

[
R2

ref − (rα,β)2

R2
ref − (2a)2

]
xα,β

2a
. (9)

Fref is scaled with the Stokes drag force Fd = 6πμγa2 based on characteristic particle relative
velocity in shear flow γ a where γ is the shear rate. The value of the force barrier during a collision
is set in response to the proximity of the particles. The total force is obtained through a pairwise
summation procedure.

The relative trajectories of two colliding particles in laminar Couette flow are shown in Fig. 1.
The particles were placed initially in the flow velocity gradient plane. Their relative initial position
was set outside the area where closed relative trajectories might be observed (see Refs. [21,33]). A
condition for utilizing this simplified model is that there is no elastic or inelastic collisions when
contacts between particles happen. As demonstrated in Ref. [15], a no-rebound situation exists
during the collision under the condition of St < 10 where the particle impact Stokes number St
compares particle inertial effect to viscous effect. All values St(max) (shown in Table II for this work)
are below this critical value. Figure 1 shows that particles do not overlap when the repulsive force is
activated for either bubbles or neutrally buoyant or inertial particles.

At higher volume fractions it is necessary to provide a more detailed representation including
viscous lubrication forces and solid-body contact forces. In principle, viscous lubrication forces
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FIG. 1. Relative trajectory of a particle pair in laminar Couette flow, in the case of neutrally buoyant or
inertial particles and bubbles. The red half sphere represents the reference particle. The semicircle of radius 2a is
the limit of particle overlapping. The other semicircle indicates the barrier corresponding to Rref = 2.2a where
the repulsion force is enabled. The particle Rep ≡ γ a2/ν = 1.0 and St ≡ (2Repρp)/(9νρf ) varies between 0.2
and 2. neutrally buoyant particle; ρp/ρf = 5; ρp/ρf = 10; bubble.

will prevent contact of perfectly smooth particles, but contact occurs in practice through surface
roughness. Tests were made, varying the magnitude of the force Fref and the cutoff distance Rref .
In turbulent flow simulations, Fref was chosen such that the number of overlapping particles was
found to be less than 1% of the total particle number (Fref/Fd = 10) at the largest concentration
( = 10%).

A. Validation of FCM

In the absence of external forces (no gravity effect for neutrally buoyant particles), the coupling
between the particles and the carrier flow occurs exclusively from the force dipole term, which
is mainly related to the local flow strain rate. Accordingly, the method has been validated under
finite Reynolds number flow configurations. The dipole tensor computed for a particle in pure
shear flow (negligible wall effect in wide-gap pCf) was validated (in Refs. [37,38]) against direct
numerical simulation results reported in Ref. [46]. The comparison revealed that our method captures
accurately the hydrodynamic perturbation when the particle Reynolds number is below 10. Also the
equilibrium position of a particle in laminar pressure-driven flow due to cross-streamline inertial
migration (Segré-Silberberg effect) agrees well with theoretical predictions in the same range of
particle Reynolds numbers. In this paper, we show additional validation tests relevant to particles
in Couette flow. First, the effect of increasing the particle-to-Couette gap size ratio, i.e., a particle
confined between walls, is studied in the limit of low Rep, where theoretical predictions exist. Second,
particle wall-normal velocity is calculated, in a Couette flow, at low but finite flow inertia. Last, the
effect of particle inertia is considered to test the unsteady response of a particle in a quiescent fluid
experiencing an oscillatory force. In this latter configuration, FCM results are accurate as long as
the Stokes layer of the velocity perturbation near the particle surface is not too thin. An additional
configuration is reported in Appendix A where the Taylor-Green vortex array mimics to a certain
extent the large-scale vortices in turbulent pCf.

1. Effect of confinement on particle stresslet and rotation in laminar pCf

The first configuration consists in a single neutrally buoyant particle, located at the center of a
laminar pCf for low Reynolds number. The particle does not have any initial translation or rotational
velocity, and its translational velocity remains zero because the flow velocity cancels at the gap
center. However, particle rotation due to the shear flow vorticity converges in time to a steady value
that depends on the Couette gap width. In the limit of wide gap, where the wall contribution to
hydrodynamic perturbation is negligible, our previous tests have shown that the FCM response is
accurate especially when the particle Reynolds number is lower than 10 ([37,38]). In the case of
thin gap, short-range particle-wall interaction becomes important. Particle stresslet and rotational
velocity are calculated numerically and compared to the theoretical predictions of Sangani et al.
[59] based on Lamb multipoles (following the work of Ozarkar and Sangani [47]). In their work,
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FIG. 2. (a) Rotational velocity and (b) stresslet of a neutrally buoyant sphere at the center of laminar pCf as a
function of the ratio between the particle radius and half of the gap width a/h. The rotational velocity is scaled by
the flow shear rate γ , and the stresslet is scaled by its value in unbounded shear flow G0

12 = 10
3 πμa3γ . The stars

∗ are obtained using FCM simulations at Rep = 0.01, and circles ◦ are from simulations of Sangani et al. [59]
in Stokes flow. The lines are from asymptotic limits written in Ref. [59]: a/h 
 1; 0 
 a/h < 1.

the rotational velocity and stresslet are predicted for both asymptotic limits: 0 < a/h 
 1 and large
0 
 a/h < 1 particle-to-gap size ratio (where h is half the Couette gap width).

As shown in Figs. 2(a) and 2(b), the confinement reduces the rotational velocity of the sphere
and increases its shear stresslet when compared to its value for unbounded shear flow. The FCM
response is accurate up to a/h = 0.8. The deviation observed for stronger confinement would
need to be supplemented by adding higher order multipoles or lubrication correction. The largest
discrepancy of FCM results compared to theoretical predictions is ≈4% and 10% for rotational
velocity and stresslet, respectively, when the particle size is a/h = 0.8.

2. Wall-normal particle migration

When a neutrally buoyant particle is not set in the midplane of the Couette gap, the asymmetry of
velocity perturbation leads to a wall-normal force oriented towards the center of the gap, as long as
the particle Reynolds number is not negligibly small (which breaks the flow reversibility argument).
This was observed in the experiments of Ref. [22] in cylindrical Couette flow and later in the
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R
e

FIG. 3. Quasisteady wall-normal velocity of a single particle as a function of the particle distance to the
wall in laminar pCf. The lines are theoretical predictions from Ref. [66] (dashed line) and Ref. [25] (solid line);
� present simulation with κ = d/Ly = 1/32, Rep = 2.4 × 10−4.

2D direct numerical simulation by Ref. [19]. Theoretical predictions were derived by Refs. [25,66],
under quasisteady state, in the limit of finite particle size and low but finite particle Reynolds number
(the wall falls inside the region perturbed by the particle). We tested the accuracy of the FCM under
such conditions, using a Couette gap-to-particle diameter size ratio Ly/d = 32 and particle Reynolds

number Rep ≡ γ d2

4ν
= 2.4 × 10−4, where γ is the shear rate and ν is the kinematic viscosity. Figure 3

shows the quasisteady dimensionless wall-normal migration velocity Vp,y

κUwRep
where κ = d/Ly is the

ratio between particle diameter with Couette gap width. The numerical results are obtained after
100 iterations corresponding to tν/a2 = 1.5, which are required for the convergence of the velocity
while the wall-normal migration distance is still insignificant. The simulation results are in very
good agreement with the theoretical predictions proposed by Ref. [66]. Near the wall, the method is
less accurate. Higher orders are required in the multipole expansion to capture the lubrication effect.
At higher particle Reynolds number, the wall-normal velocity is larger leading to effective particle
migration towards the Couette center [the migration velocity scales as O(Rep)].

3. Periodic oscillation of a single particle

Turbulence has a wide range of length or time scales which exert forcing on particles. Large-scale
vortices have strong forcing amplitudes but longer time scales, whereas small-scale vortices may
generate higher frequency forcing on particles. As described by Climent and Maxey [11], FCM
framework embeds drag, added-mass, lift, and history forces experienced by the particle in Fn

[Eq. (4)]. In this section, we focus on the ability of FCM to model the unsteady response of a
particle experiencing an oscillatory external force without considering gravity. Following Ref. [41],
we consider the motion of a rigid (neutrally buoyant or dense) particle moving in a fluid that
is otherwise quiescent. The solution of this problem is equivalent to that of an oscillating fluid
obtained in a frame attached to the particle which generates the development of Stokes layer at
the particle surface. Particle oscillation is imposed via temporal evolution of the monopole term
Fext(t) = 6πμau0 sin(ωt), where u0 is a constant vector. The velocity field induced by the particle is
obtained by solving Eqs. (1)–(3), and the particle velocity up is obtained by integration of the local
fluid velocity using Eq. (6). Snapshots of the velocity field are displayed in Fig. 4, for two values
of δ2 ≡ ωa2/ν, which is the ratio of the particle radius to the Stokes layer thickness. This figure
shows that the flow velocity perturbation representing the Stokes layer thickness shrinks when the
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FIG. 4. Velocity field and contours of u/up when t = 0 + 2kπ/ω (top half: δ2 = 0.25, and bottom half:
δ2 = 4.0 where δ stands for dimensionless Stokes layer) around an oscillatory particle.

oscillation frequency increases. Note that δ2 (as defined here) is equivalent to the ratio of particle
relaxation to fluid characteristic oscillation time scale, and by consequence to a Stokes number.

The motion of the oscillating particle is written as

up(t) = αu0 sin(ωt + ϕ), (10)

where the velocity is proportional to the force amplitude and ϕ is the phase shift.
FCM results are compared to that of Maxey-Riley equation [Eq. (A1)] following Ref. [44]

which is valid in the limit of low particle Reynolds number. For quiescent fluid far from the
particle, the analytical relationship between the amplitude of external oscillatory forcing [written as
F (t) = F̂ eiωt ] and particle velocity is

F̂ = ûp

[(
mp + 1

2mf

)
iω + 6πμa(1 + δeiπ/4)

]
eiϕ. (11)

The terms on the right-hand side of Eq. (11) correspond to particle inertia, added mass, and steady
and unsteady drag forces. The Basset history force is important when the particle-to-fluid density
ratio is low to moderate. The theoretical prediction of α and ϕ as well as the FCM results [Eq. (11)]
are displayed in Figs. 5(a) and 5(b) as a function of δ2. This figure shows that the modulus is
calculated accurately up to δ2 = 2.5. The under-estimation of the phase lag increases when particle
inertia decreases, and the maximum discrepancy with respect to Maxey-Riley’s prediction is around
13% for the bubble case when δ2 = 2.5. The numerical simulations corresponding to turbulent plane
Couette flow with the largest particles (Ly/d = 10) are carried out only with neutrally buoyant
particles, in which case δ2 is less than 1.25 (7% discrepancy in the test case). As for the error
corresponding to the small particle case (Ly/d = 20), its maximum value is around 5%, according
to the oscillation test for the case of bubbles. At higher values of δ2, the Stokes layer is too thin
to be accurately resolved by FCM. The purely viscous contribution of the hydrodynamic force (in
the absence of added mass term) is also plotted in Figs. 5(a) and 5(b) for comparison. Furthermore,
the effect of density ratio up to five is also investigated. It is clear that FCM predictions become
gradually closer to the theoretical prediction while particle density is increased because the relative
contribution of unsteady Basset drag reduces.

III. SIMULATION OF SINGLE-PHASE TURBULENT PLANE COUETTE FLOW

The flow is driven by two infinite parallel plates moving in opposite directions. Periodic boundary
conditions are set in streamwise and spanwise directions, and no slip condition is imposed at the
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FIG. 5. (a) Amplitude and (b) phase shift of 6πaμûp/F̂ as a function of the dimensionless frequency
(δ2). The lines are obtained from solving the Maxey-Riley equation (A1), with and without the added mass
contribution (solid and dashed lines, respectively). The symbols are from present simulation of + bubbles;

◦ ρp/ρf = 1; ρp/ρf = 2; ρp/ρf = 5.

two walls. The domain size and velocity components are noted as Lx , Ly , Lz and u, v, w in the
streamwise x, wall-normal y, and spanwise z directions, respectively. The bulk Reynolds number is
defined for pCf by Reb = Uwh

ν
where h is half of the Couette gap width while the bulk flow has a

zero mean velocity. The domain used for the simulations has the size of the minimal flow unit (or
simply Miniunit) as introduced by Jiménez and Moin [28] and Hamilton et al. [24]. Table I shows
the mesh grid size used for the simulation of the Miniunit, from some selected publications. Three
to four grid points inside the laminar sublayer (y+ < 5) are required in order to calculate accurately
the near-wall flow structures.
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TABLE I. Simulation domain characteristics for the Miniunit in (a) some selected references and (b)
the present work. Mesh is stretched in the y direction and follows an error function mapping y(k) =
erf(αk)/erf(α),k = (−1:2/Ny :1) with α = 2.0.

(a) In the references
Reb �y+ �x+ �z+ Reference

4500 0.92 (wall)–5.9 (center) 13.7 6.18 Ref. [2]
3000 0.08 (wall) 7.55 4.8 Ref. [50]
2150 0.18 (wall)–8.34 (center) 12.05 6.02 Ref. [65]
625 0.18 (wall)–3.7 (center) 13 8.9 Ref. [24]

(b) In the present work
Case Reb Lx × Ly × Lz Nx × Ny × Nz

Stretched mesh
A 500 2.75 × 1.0 × 1.88 30 × 86 × 32

�y+
min = 0.08, �y+

max = 1.91; �x+ = 7.35; �z+ = 4.70

Regular mesh
B 500 2.758 × 1.0 × 1.939 182 × 66 × 128

�y+ = �x+ = �z+ = 1.19
C 500 2.758 × 1.0 × 1.939 382 × 134 × 256

�y+ = �x+ = �z+ = 0.60

First simulations of single-phase flow in a Couette configuration were intended to test the unsteady
development of the fluid flow initially at rest towards a linear flow when the walls of the domain
start to move, at t = 0 with velocity +Uw and −Uw. The theoretical evolution of the flow profile
given by Batchelor [5] occurs with a characteristic diffusion time scale h2/ν. Figure 6 shows the

u
/
U

w

-1

-0.5

0

0.5

1

y/h
-1 -0.5 0 0.5 1

FIG. 6. Streamwise velocity profile in the wall-normal direction starting from fluid at rest. Lines correspond
to our simulations: Reb = 365, η = 0.1; Reb = 650, η = 0.1; Reb = 300, η = 1.0;
Reb = 345, η = 1.0, where η is the dimensionless time scaled with h2/ν. Symbols stand for experimental
or direct numerical simulation results. Tillmark and Alfredsson [64], Reb = 365, η = 0.1; Tillmark and
Alfredsson [64], Reb = 650, η = 0.1; ◦ Reichardt [52], Reb = 300 when flow is fully developed; Tillmark
and Alfredsson [64], Reb = 345 when flow is fully developed.
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TABLE II. Parameters used in numerical simulations. The particle Reynolds number Rep ≡ �a2/ν based
on local shear rate � = | du

dy
|, and the Stokes number St ≡ ρp/(3ρf )Rep cancel at the Couette center and are

maximum at the wall Rep(max) takes place near the Couette wall where the shear rate is the strongest.

Domain size Lx × Ly × Lz = 0.88π × 1.0 × 0.6π

Reb 500 750 1000
Reτ 39.5 52.2 67.3
y+ [0–80.5] [0–105.4] [0–134.5]
Ly/d 10, 20 20 20
d+ 8.0, 4.0 5.3 6.7
Rep(max) 17.5, 4.38 5.83 8.75
St(max) 3.89, 0.97 1.30 1.94
τ+

p 5.31, 1.37 2.32 3.77
Stturb 0.066, 0.017 0.022 0.028
Mesh grid 182 × 66 × 128 382 × 134 × 256

(for Ly/d = 10) (for Ly/d = 20)
(%) [0, 1, 5, 10]

numerical simulation by using case A compared with experiments [52,64]. The numerical code used
for this study captures accurately the transient evolution of the streamwise velocity.

Simulations of single-phase turbulent flow were realized in domains needed later for particle-laden
flows, with the constraint of three to four grid points per particle radius that must be respected for
FCM. Therefore two simulation domains (cases B and C) with regular mesh grids were designed for
two Couette gap-to-particle size ratios Ly/d = 10 and Ly/d = 20. Simulations of single-phase flow
in these domains are compared with the simulation based on stretched mesh grid (case A). In cases
B and C, at least three points stand inside the laminar sublayer for Reb = 500. At this Reynolds
number, the discrepancy of the mean and rms velocity profiles between simulations using domains
A, B, and C is less than 5%.

We also performed simulations of turbulent Couette flow with larger domains in both streamwise
and spanwise directions and the comparison with existing experimental data and numerical results
from Refs. [6,31,65]. The major effects of increasing the domain size are the following. First, the
average velocity gradient is steeper near the walls in larger domains. The nondimensional velocity
gradient in the Couette gap near midplane is ψ = h

Uw

du
dy

|y=0≈ 0.18–0.2 in large domains (at low
Reb like in Ref. [65]), whereas it is almost zero in the Miniunit. According to Ref. [65], the nonzero
velocity gradient will lead to a finite production of TKE in the midplane. Second, it is found that the
streamwise rms velocity is larger, whereas the wall-normal and spanwise components are smaller in
the Miniunit compared to larger domains. However, the turbulent Reynolds stress is nearly unchanged
close to the boundary, whereas it is slightly smaller in the core region for larger domain size.

Despite these differences, certainly due to the confinement of large-scale vortices in the
streamwise direction, the Miniunit is useful because it allows to accommodate a single set of (periodic
array of) vortical structures, which are sufficient to reproduce low-order turbulence statistics. In this
domain, the turbulence is sustained while the Reynolds number is decreased down to Reb = 330,
below which the flow becomes fully laminar. This threshold for flow relaminarization is slightly
higher than in larger simulation domains (Rec = 324 ± 1 in Ref. [17]) which accommodate many
longer large-scale structures.

IV. TURBULENT PCF LADEN WITH NEUTRALLY BUOYANT PARTICLES

The dimensionless length and velocity wall units are y+ ≡ yuτ

ν
, and u+ ≡ u

uτ
, where uτ =

√
τw

ρ

is the friction velocity based on the wall shear stress. Table II contains a summary of all parameters
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selected for this study. Both bulk and frictional Reynolds numbers Reb and Reτ are based on the
fluid viscosity. The effective Reynolds number Res of the suspension flow is lower than Reb due
to the increase of energy dissipation by rigid particles in shear flow and depends on the particle
concentration ϕ. Simulations of suspension flows were performed with two particle sizes Ly/d = 10
and 20 and at Res larger than the laminar-turbulent transition threshold. Since one cannot be sure a
priori that the suspension will behave like an effective fluid with equivalent properties, we verified
a posteriori the flow turbulent nature and statistics. Most of the two-phase flow simulations were
carried out at a Reynolds number Reb = 500 and were compared to a reference effective fluid flow,
at mixture Reynolds number equal to Res = Uwh

νeff
. The effective viscosity νeff was estimated from an

Eilers fit for low Reynolds number suspensions and a posteriori compared to the real suspension
viscosity obtained from the shear stress distribution as explained further in this section:

νeff = ν

[
1 + 1.25

1 − /0.63

]2

.

In the turbulent flow, particles experience turbulent forcing with a characteristic time scale
τ+

f ∼ L+
y / max(v′+|w′+) related to large-scale vortices. The characteristic time scale for a particle

to relax when submitted to flow forcing is given by

τ+
p = 2

9

(
ρp

ρf

+ 1

2

)
Re2

τ

(
d

Ly

)2

. (12)

The ratio of particle to fluid time scales leads to the definition of a Stokes number Stturb = τ+
p /τ+

f

related to the flow turbulence. Referring to the test of one particle oscillating in a steady fluid, this
Stokes number can be related to the dimensionless Stokes layer by δ2 = 9π/(ρp/ρf + 1/2)Stturb. δ2

is below 0.5 for Ly/d = 20 and reaches its maximum value δ2
max = 1.25 for Ly/d = 10. Therefore

the turbulent flow simulations considered for this paper are within the range of validity of FCM. The
statistics were performed using ensemble averages over 500 time units (time unit is h/Uw).

A. Velocity profiles

In turbulent single-phase pCf, mean velocity profile is governed by streamwise vortices. The
suspension flow profile is very close to single-phase configuration as observed in Fig. 7. The
largest discrepancy occurs at the highest concentration  = 10% for the highest Reynolds number,
Reb = 1000. Since the mean velocity profile is mainly governed by large-scale vortices [24], i.e.,
here the vortex pair, we can conclude that particles did not modify significantly the large scales.

The evolution in time of the total friction coefficient is displayed in Fig. 8. The friction coefficient
is calculated from the sum of shear stress on both walls [Cf = 2τw/(ρU 2

w)]. Both single-phase
and particle-laden flows with  = 10% are shown. The suspension wall shear stress is slightly
larger than for single phase. Consequently the power input from the moving walls per unit time
[
∫ Lz

0

∫ Lx

0 Uwτw(x,z) dx dz] is larger for suspension flows. This observation is almost independent
of the Reynolds number and particle size. In Fig. 8 the amplitude and frequency of wall friction
fluctuations are modified by the presence of particles. It is a first indication that the flow intermittency
is altered by particles.

B. Spatial distribution of particles

Figure 9 shows the concentration profiles for different Reb, particle sizes, and bulk concentrations.
In all cases, the concentration is higher in the core than near the walls, due to particle inertial migration
as explained in Sec. II. The profiles of concentration are the result of an equilibrium between several
mechanisms. On the one hand the hydrodynamic wall repulsion and turbulent ejection events push
the neutrally buoyant particles towards the center of the gap, whereas on the other hand, turbulent
sweep events pull the particles towards the walls. Although on average the concentration profiles
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FIG. 7. Mean velocity profiles for different Reynolds numbers, particle sizes, and bulk concentrations.
(a) Reb = 500, Ly/d = 10; (b) Reb = 500, Ly/d = 20; (c) Reb = 750, Ly/d = 20; (d) Reb = 1000, Ly/d =
20. The lines stand for different solid concentration:  = 0%;  = 1%;  = 5%;  =
10%. The profiles are symmetric with respect to the Couette center plane. Therefore half of all the profiles are
shown between y = 0 (wall) and y = h (center) in this figure and elsewhere.
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FIG. 8. Temporal evolution of the wall friction coefficient (Cf , summed on both walls) at Reb = 500.
single-phase flow; Ly/d = 10,  = 10%; Ly/d = 20,  = 10%. Straight lines stand for temporal
averages.
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FIG. 9. Concentration profiles for different Reynolds numbers, particle sizes, and bulk concentrations. From
bottom to top : 1,5, and 10%. (a) Ly/d = 20 and Reb = 500; Reb = 750; Reb = 1000. (b)
Reb = 500 and Ly/d = 10; Ly/d = 20.
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FIG. 10. Top panels: contours of the magnitude of the streamwise flow velocity in the middle cross
section. Bottom panels: particle positions projected on the plane (y,z), colored according to local magnitude of
streamwise velocity. Comparison between Ly/d = 10 (left) and 20 (right) for Reb = 500 and  = 5%.

are relatively flat, snapshots in the wall normal-spanwise plane show strong instantaneous coupling
between the spatial distribution of neutrally buoyant particles and flow structures as noted in Fig. 10.

A local maximum can be noticed in the concentration profile near the walls. It is more evident
at higher average concentrations ( = 5 and 10%) and higher Reb. Picano et al. [49] noted that
these peaks are of the same order of magnitude as the bulk concentration, and therefore they are
not related to turbophoresis drift typically observed in dilute suspensions when particles are heavier
than the fluid. These near-wall layers are the result of excluded volume effects when particles are
gathering in the near wall region.

C. Turbulence intensity

Figure 11 shows the normal Reynolds stress components of turbulence agitation for two-phase
flows which are compared to single-phase configurations. They are all scaled with uτ , the friction
velocity of single-phase flow at the corresponding Reynolds number Reb. The overall turbulent
intensity is not much modulated by particles. Close to the walls (y+ < 20), u′

rms slightly decreases,
whereas transverse components increase with concentration, especially the wall-normal component
v′

rms. The increase of transverse velocity fluctuations with concentration is even more pronounced
with larger particles. It is not necessarily due to the increase of turbulent activity but more likely
related to the local peak of concentration observed near the wall (at y+ = 8 − 10 when Reb = 500)
where shear is large and generates frequent particle encounters.

Also velocity fluctuations profiles in all directions are flatter for particle-laden than single-phase
flow. This indicates that particles redistribute the fluctuating energy into a more isotropic flow. The
trend towards isotropy is more pronounced with larger particles. Such a trend was also observed
in pressure-driven flows [49] with neutrally buoyant finite-size particles, whereas it is noticeably
different for inertial point particles [54].

D. Energy spectrum

Wall-normal profiles of turbulence intensity did not show significant modification of turbulence
features in the Couette flow. These profiles are mainly dominated by large-scale vortices which do
not seem to be influenced by the presence of particles (Fig. 11). The size of particles being between
the largest and smallest length scales, it is interesting to investigate the influence of particles’ energy
distribution among various scales of the flow.

Fourier transform of the turbulent kinetic energy (TKE) is calculated in order to analyze the energy
cascade. Figure 12 shows the average Fourier transform of the streamwise velocity fluctuations E

uu

scaled by U 2
w as a function of the streamwise wave number scaled by the inverse of both viscous
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FIG. 11. Profiles of velocity rms for different Reynolds numbers, particle sizes and bulk concentrations.
(a) Reb = 500, Ly/d = 20; (b) Reb = 750, Ly/d = 20; (c) Reb = 1000, Ly/d = 20; (d) Reb = 500,  = 5%.
Half of the domain is shown because of midplane symmetry. From (a) to (c):  = 0;  = 1%;
 = 5%;  = 10%. (d) Ly/d = 10; Ly/d = 20.

length scale and particle size. The single-phase flow spectra are calculated with a stretched mesh
(finer in the viscous sublayer) and regular mesh. The wave number is scaled by the viscous length
scale wave number. Both single-phase spectra are close, indicating that the near wall turbulent
structures are well captured by the regular mesh. The maximum energy is contained in the largest
wavelength corresponding to the domain size in the streamwise direction, because large-scale rolls
fill the entire domain length in the minimal unit. The energy drops considerably at wavelengths
between half and quarter of the Couette gap size. The energy spectra of single-phase flow are

FIG. 12. TKE spectra as a function of wave number in streamwise direction. Single phase of Reb = 500
scaled by kd = 2π/δν : ∗ stretched mesh; regular mesh for Ly/d = 20. Two-phase flow with  = 10%
and Reb = 500 for two particle sizes: Ly/d = 10 and Ly/d = 20, scaled by kd = 2π/δν ;
Ly/d = 10, scaled by kd = 2π/d10; Ly/d = 20, scaled by kd = 2π/d20. d10 and d20 correspond to particle
diameter, and δν is the viscous length scale based on single-phase flow.

084302-15



GUIQUAN WANG, MICHELINE ABBAS, AND ERIC CLIMENT

FIG. 13. Vortex identification for single-phase flow and two-phase flows using λ2 criterion. (a) single-phase
flow with Reb = 500 using λ2 = −0.1;  = 5% and λ2 = −1.0 for the followings. (b) Ly/d = 10 and Reb =
500; (c) Ly/d = 20 and Reb = 500; (d) Ly/d = 20 and Reb = 1000.

compared to the two-phase dispersed flows for both particle sizes with an unique scaling of the wave
numbers by the same 2π/δν based on single-phase flow, all spectra matched at small wave numbers,
indicating that the large-scale motions were not modified by the presence of the particles. The energy
is increased at the smallest scales because finite-size particles induce perturbations and small-scale
vortices near the particle surface especially in the high-flow shear rate regions. This unified scaling
shows in addition that the deviation from the single-phase flow spectrum is correlated with the actual
size of the particles, as this deviation takes place at smaller wave numbers for the largest particles
we investigated. The energy spectra plotted for different particle sizes overlap with each other at
large wave numbers, if they are scaled by the respective particle size.

This suggests that finite-size particles promote continuous energy transfer across all scales in the
turbulent Couette flow. Actually, finite-size particles add perturbation to the sheared or strained flow,
as displayed in Fig. 13 using the λ2 criterion. The number of small-scale vortices is increased due to
local distortion of flow vortices by particles, similarly to what was described in the experiment of
Tanaka and Eaton [63] who measured the flow around a single particle. These perturbations induced
by finite-size particles make turbulence in suspension flow more isotropic.

E. Shear stress budget

The streamwise momentum balance of the suspension flow in a Couette geometry yields a
constant shear stress τtotal across the gap. In single-phase flow, the shear stress is composed of two
contributions, namely, viscous and Reynolds stress contributions. In particle-laden flow, additional
momentum transfer arises due to particle rigidity, to the forces and torques they apply on the fluid,
and to their fluctuating motion with respect to local flow. The decomposition of the shear stress
according to Batchelor is given in Appendix B. The increase of stress due to particle rigidity τs is
calculated using the particle-induced stresslet (from the dipole tensors associated to each particle)
as follows:

τs(y) = 1

T LxLz

∫ T

0

∫ Lz

0

∫ Lx

0
dGij (x,y,z,t) dx dz dt. (13)

The integral over the streamwise and spanwise directions is calculated in slabs of width dy, and
the differential dGij refers to weighting the stresslet by the percentage of particle volume included
into a slab. From τs(y) one can calculate the increase of mixture viscosity using

νeff(y) − ν

ν
= τs(y)

ν�(y)
, (14)

where νeff is the effective suspension viscosity taking into account the presence of particles. It
depends on the wall-normal position because the stresslet terms depend on local shear rate. Figure 14
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FIG. 14. Profiles of relative mixture viscosity across the Couette gap for Reb = 500,  = 10% and two
particle sizes Ly/d = 10,20. Eilers fit ([1 + 1.25/(1 − /0.63)]2 − 1.0) based on the local concentration
[(y/h)] for two particle sizes: Ly/d = 10; Ly/d = 20; Eq. (14) based on the local shear stress:
◦ Ly/d = 10; Ly/d = 20.

displays the effective viscosity profiles for two particle sizes. They are compared to the Eilers fit
(low Reynolds limit) based on the local concentration of particles. As expected from the studies
on the effect of finite particle Reynolds number on suspension viscosity [33,62,69], the suspension
viscosity increases [as O(Re3/2

p ) in the dilute limit]. The ratio of the average effective viscosity in
the present simulations and that of Eilers fit is 1.11 for Ly/d = 10 and 1.02 for Ly/d = 20. Note
that the decrease of effective viscosity near the midplane is due to local weak shear rates.

Figure 15 shows the dependence on bulk concentration of all terms in Eq. (B4), for different
Reynolds numbers and particle sizes. Our numerical simulations lead to an accurate balance for the
shear stress. Only a slight imbalance is obtained near the wall or in the core region at the highest
concentration where the residual is ±3%. Particle size (up to Ly/d = 10 used in this work) has no
significant effect on the shear stress budget contributions.
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FIG. 15. Profiles of the shear stress budget components for different Reynolds numbers, particle sizes,
and bulk concentrations. Plots in (a) to (c) compare single-phase flow results (solid line) to two-phase flow
simulations (dashed lines) at  = 5% and  = 10%. In (d) the shear stress components are
compared at  = 5% Ly/d = 10 and Ly/d = 20.
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FIG. 16. Effect of particle inertia on the trajectory of a single particle in turbulent pCf at Reb = 500.
bubble; ρp/ρf = 1.0; ρp/ρf = 2.0; ρp/ρf = 5.0.

The impact of increasing the bulk concentration on stress components depends on the wall-normal
distance. The fluid and particle turbulent stress contributions reach their maximum values at the gap
center, where cross-gradient mixing (as defined in Ref. [56]) is ensured by large-scale structure
motion [35]. When concentration increases, turbulent fluid stress is reduced, whereas turbulent
particle stress is enhanced. Near the walls, the momentum transfer is governed by the viscous
contribution. When the concentration increases, the fluid viscous stress decreases, whereas the
rigidity stress significantly increases (it becomes as high as 20% of the total stress), the latter being
especially promoted by the high shear rate of the flow near the walls (whereas it is almost zero at
the center of the gap).

V. EFFECT OF INERTIAL PARTICLES AND BUBBLES

Before studying the influence of particle density on the turbulent flow statistics, we considered the
trajectory of a single particle in turbulent pCf in order to observe if it exhibits preferential position
depending on its inertia, like in Taylor-Green vortex (see Appendix A). Figure 16 shows the particle
trajectory with unfolded periodic boundary conditions. Like in a Taylor-Green vortex, the lighter
particle ρp/ρf = 1.2.10−3 is trapped inside one of the large-scale vortices and can hardly leave
it. The neutrally buoyant particle spans the entire domain. Heavier particles ρp/ρf = 2.0,5.0 tend
slightly to be ejected out of LSVs in the high-speed streak where the fluid is swept towards the wall.
These observations suggest that the concentration spatial distribution for two-phase flow laden with
denser or lighter particles might be different from the case with neutrally buoyant particles.

Simulations of suspensions with light (ρp/ρf = 1.2.10−3) and heavy (ρp/ρf = 2.0,5.0) particles
are realized with the small particle size, i.e., Ly/d = 20 for flow Reynolds number Reb = 500 and
concentration  = 10%. The Stokes number corresponding to the these density ratios range from
0.0012 to 4.85.

The average concentration contours in the transverse plane is shown in Fig. 17. These contours
are averaged over ∼400 time units. As it can be expected, bubble concentration is higher inside the

FIG. 17. Contour of particle concentration in the transverse y-z plane averaged over ∼400 time units.
(a) Bubble; (b) ρp/ρf = 1.0; (c) ρp/ρf = 2.0; (d) ρp/ρf = 5.0.
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core of the flow. Bubbles are not exclusively found inside the vortex cores: they are permanently
exchanged between both rolls. For denser particles, the probability of finding them close to the
Couette walls increases with the density. Unlike neutrally buoyant particles, they are found in
both low- and high-speed streaks (ejection regions). The preferential accumulation found for these
finite-size particles correspond to a distance equal to one particle radius from the wall [see 18(b)
It is different from what is known on heavy point particles that tend to “stick” near the walls
in pCf; see, for instance, Richter and Sullivan [54]. This phenomenon, called turbophoretic drift,
has been already observed in the experiments of Ref. [71], which investigated the interaction
between turbulent-burst activity and deposited particles within the viscous sublayer. They suggested
that, once particles of diameter less than 1.3 viscous sublayer thickness are trapped in this layer,
wall normal flow velocity fluctuations are not efficient anymore for particle re-entrainment in the
bulk.

The velocity profiles of pCf laden with light and heavy particles are plotted in 18(a). They are
similar to the profiles obtained with neutrally buoyant particles. As discussed earlier in this paper,
the mean velocity profile is governed by LSVs in turbulent pCf, which seem to be unaffected by
the particle distribution at the average solid volume fraction we considered. The inset in this figure
displays τw/(μUw/h) as a function of the density ratio. The mean wall friction is slightly enhanced
when inertia is increased.

Figure 18(c) shows the diagonal components of rms velocity fluctuation tensor scaled by the
corresponding wall friction velocity uτ . Turbulence modulation is observed in Refs. the case ρp/ρf =
5, in contrast with what is classically observed for heavy point particles [16,36]. Point particles add
energy dissipation through the drag force in the fluid phase momentum balance. Their slip velocity
increases with inertia and damped turbulent fluctuations, especially in transverse directions. In the
case of heavy finite-size particles as shown in 18(c), u′

rms decreases across the gap, whereas transverse
components are unchanged when the density ratio is increased.

Finally, modification of energy distribution by particles is considered. The question related to the
effect of particle inertia on turbulence modulation does not have a unique answer in the literature.
Many works were done with very high density ratio (gas-solid), and the conclusions depend upon
the flow configuration (see, for example, Refs. [18,53]). Therefore the impact on the flow energy
distribution is different when coupling particle finite size with particle fluid density mismatch. The
average streamwise energy spectrum E

uu is plotted in 18(d) as a function of both streamwise and
spanwise wave numbers, for the cases of light and heavy particles in comparison with the neutrally
buoyant case. Inertia does not significantly influences the energy transfer process in the range of
parameters we considered.

VI. MODIFICATION OF THE REGENERATION CYCLE

The shape of LSVs can be clearly observed in Fig. 19(a) that displays the streamwise vorticity. As
mentioned before, in Miniunit, two spanwise counter-rotating LSVs are filling the entire simulation
domain.

As stated by Waleffe [68] and Hamilton et al. [24], turbulence activity in turbulent pCf follows a
regeneration cycle with a period of ∼100h/Uw when Reb = 400. Each cycle consists of three
sequential subprocesses: streak formation, streak breakdown, and vortex regeneration. Streak
formation is due to an ejection event by two counter-rotating large-scale vortices, which forms
a low-speed streak by pumping fluid away from the no-slip boundary. When a streak comes across
the region of strong mean shear flow, streak breakdown occurs forming a secondary flow. Finally the
vortex is regenerated due to the breakdown of streaks, being governed by a strong nonlinear process.
In this part, we consider large-scale streaks (LSSs) and LSVs separately, in view of understanding
how finite-size particles are affecting the regeneration cycle. We will observe that the particles reduce
the magnitude of ωx only in the core of the LSVs, without changing significantly their shape and
size.
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FIG. 18. Effect of inertia on the turbulent flow statistics. Mean profiles of (a) streamwise flow velocity,
(b) concentration, and (c) rms of velocity fluctuations. (d) Contains TKE spectrum as a function of streamwise
and spanwise wave numbers (Ly/d20 = 20 and kd = 2π/d20). The line style is the same as in Fig. 16.
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FIG. 19. Streamwise vorticity averaged over ∼500 time units, comparison between (a) Reb = 500, single-
phase flow and (b, c) Reb = 500,  = 10% for two particle sizes Ly/d = 10,20, respectively. The corresponding
contours of concentration projected onto the transverse plane (y-z plane) is shown in (d) and (e).

A. Quadrant analysis

An LSS corresponds to an ejection or sweep event, that can be identified by sampling u′-v′
correlation as shown in Fig. 20 (probability distribution is also shown). This figure is realized in the
midplane (xz) along the wall-normal direction. The LSS are identified from events (u′ < 0,v′ > 0)
and (u′ > 0,v′ < 0) in the second and fourth quadrants that are dominant in this plane. In pCf
configuration, sweep and ejection events cannot be distinguished because an ejection from one wall
which is crossing the midplane corresponds to a sweep on the opposite wall. Figure 20 reports on
these events taking place in single-phase flow as well as for two-phase flow with neutrally buoyant
particles. The event distribution is stretched from a curved shape to a more straight one, suggesting

FIG. 20. Modification by the neutrally buoyant particles of the quadrant analysis of u′ and v′ and of
their probability density functions (PDFs) in the Couette center plane. The single-phase plots in solid lines are
performed at the effective Reynolds number of the suspension flow (Res = 380). Other lines are from two-phase
simulations at  = 10% and Reb = 500. Ly/d = 10; Ly/d = 20.
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FIG. 21. Effect of particle inertia on the modification of the quadrant analysis of u′ and v′ and of their PDFs
in the Couette center plane, for Ly/d = 20, = 10% and Reb = 500. The line style is the same as Fig. 16.

that the shape of the streak is altered by particles especially for Ly/d = 10. The probability density
functions of u′ and v′ reveal that the interaction between particles and streaks promotes strong
streamwise fluctuations with no significant impact on wall-normal fluctuations.

Similar analysis is realized with light and heavy finite-size particles. The shape of streak is clearly
altered when heavier particles are added to the flow (see Fig. 21). Particularly in the streamwise
direction, the intensity of u′ is drastically reduced corresponding to the u′

rms attenuation as in
Fig. 18(c). In the present study, both lighter and heavier finite-size particles have damped the
turbulence intensity in the midplane compared with neutrally buoyant particles. On the other hand,
the maximum of v′ is decreased due to inertial heavier particles while its rms is almost unchanged
as shown in Fig. 18(c).

B. Modal decomposition of velocity fluctuations

To evidence the energy contained in different flow structures, we performed modal analysis of
the flow fluctuating energy. The Fourier decomposition of the energy, as introduced by Hamilton
et al. [24] in the periodic directions (streamwise and spanwise), is written as

M(kx = mα,kz = nβ) ≡
{ ∫ 1

0
[û′2(mα,y,nβ) + v̂′2(mα,y,nβ) + ŵ′2(mα,y,nβ)]dy

}1/2

, (15)

where (m,n) are the integer wave numbers, and (α,β) are the fundamental wave numbers in
streamwise and spanwise directions defined as (2π/Lx,2π/Lz). A combination (mα,nβ) represents
different characteristic turbulent structures. For instance, (0,nβ),n �= 0 is the x-independent structure
(e.g., LSS) and (α,nβ),n �= 0 is the x-dependent structure (e.g. streaks confined in the streamwise
direction).

Figure 22 shows the evolution in time of the finite energy modes, the highest energy content
corresponds to the mode (0,β). The energy signals are fluctuating in time with a period of order 100
time units, resulting from flow intermittency. In Fig. 22, M(0,β) and M(α,0) are plotted for two
particle sizes and compared with single-phase flow at Res = 380. The average values of M(0,β)
and M(α,0) are nearly unchanged. However, one can note that the intermittent character of the flow
is modified by the particle presence, since the amplitude of fluctuations is reduced, and the period
is also modified, especially by the large particles. As a conclusion, particles have an effect on the
streaks dynamics. However, this modification is not strong enough to destroy the stability of the
cycle sustaining shear-driven turbulence.

Figure 23(a) shows the effect of particle inertia on the time evolution of M(0,β) and M(α,0),
based on the simulations with small particles (Ly/d = 20). In all cases the average energy content
is almost unchanged. Inertial particles have the same effect as the neutrally buoyant particles. As
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FIG. 22. Modal decomposition: M(0,β) and M(α,0). The solid lines are for single-phase flow with effective
Reynolds number Res = 380; The two-phase flow simulations are obtained for neutrally buoyant particles using
 = 10% and Reb = 500 and Ly/d = 10; Ly/d = 20.

for the bubble-laden case, the frequency and amplitude of both modes are very close to single-phase
flow configuration, suggesting that bubbles have weak impact on turbulent flow activity.

Hamilton and co-workers [23,24] stipulated that over one cycle, vortices must have a maximum
circulation above a given threshold in order to produce unstable streaks so that turbulence can be
sustained. We consider the circulation based on the contour that gives the maximum circulation
from among all rectangular contours. The circulation of the streamwise vortices of mode 0 in the
streamwise direction (like the streaks), and mode n in the z direction is

�kx=0 =
∫

ω̂x(0,y,nβ)dS(n), (16)

where S(n) is a transverse surface, with y varies from 0 to 1 and z varies from 0 to 2π/(nβ) for
n �= 0. The maximum circulation corresponds to n = 1.

Figure 23(b) shows that, regardless of particle inertia, the dimensionless circulation �kx=0/4Uwh

is higher than the threshold given by Ref. [24], which is 0.0375. Like the modal energy, the average
value of the circulation is maintained, whereas the amplitude of fluctuations around the mean is
reduced when particle inertia is increased. We can note that the circulation oscillation has phase
shift when compared to M(0,β) (standing for LSS) in Fig. 23(a). The circulation is the highest when
the energy of the streaks is the lowest. It can be noted that the flow circulation is in phase with the
x-dependent streamwise streaks in Figs. 23(a) and 23(b). Hamilton et al. [24] argued that generation
of LSSs is the result of nonlinear interactions of x-dependent streaks. These x-dependent streaks
are part of the coherent structures that are the constitutive elements of near-wall turbulence, and
they are closely linked to the vorticity stretching (ωx∂u/∂x, where ωx is the streamwise vorticity) as
demonstrated by Schoppa and Hussain [60]. Instantaneous snapshots containing contours of both the
streamwise velocity fluctuations (that illustrate the streak shape), as well as the vorticity stretching
term are displayed in Fig. 24. This figure shows that the high-flow circulation is synchronized with
the appearance of x-dependent flow structures. This gives a strong proof that nonlinear processes
like streak breakdown, and thereby vortex regeneration, take place in the considered suspension
flows like in single-phase flow, regardless of particle inertia.

C. Evolution of Reynolds stress

In turbulent wall shear flows, ejection events are driven by the presence of coherent structures such
as hairpin vortices or LSVs. Ejections of fluid and sweeps are always responsible for energy transfer
from large-scale flow structures in the bulk to small-scale near-wall structures. During this process,
the turbulent fluctuations are enhanced. From the investigation of total energy input and dissipation
rate, Kawahara and Kida [29] evidenced the temporal evolution of spatial structures. They observed
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FIG. 23. Effect of inertia on (a) modal decomposition and (b) flow circulation. The light blue dashed line
is for single-phase flow with effective Reynolds number Res = 380. Other lines correspond to two-phase flow
simulations with Reb = 500 and smaller particles Ly/d = 20. with bubble; ρp/ρf = 1.0;
ρp/ρf = 2.0; ρp/ρf = 5.0.

that this cyclic sequence is consistent with the regeneration cycle proposed by Hamilton et al. [24].
This quasiperiodicity of the ejection events can be represented by the evolution of Reynolds stress
in Fig. 25. We can observe that the maximum of Reynolds stress amplitude occurs in the core region
rather than at the walls. The quasiperiodic evolution of Reynolds stress is existing for all single-phase
and two-phase configurations. A strong ejection event is followed by a gradual decrease of intensity
over a certain time period. The maxima of the temporal evolution of the Reynolds stress occur when
dissipation rate is large along the periodic orbit described in Ref. [29]. This maximum intensity
of ejection event is decreasing with heavy particles corresponding to a reduction of the level of
turbulent fluctuations as shown in 18(C). The typical period of ejection events occurrence is longer
when Reb is lower [see Figs. 25(a) and 25(b)]. Moreover, this time interval between strong ejection
for particulate flows [Figs. 25(c)–25(f)] becomes very similar to single-phase flow associated to
effective viscosity [Fig. 25(b)] highlighting that enhanced dissipation by the presence of particles
is a major effect on the flow. Either larger particle size or higher particle density has a tendency to
delay ejection events compared to single-phase flows.

It is interesting to compare this evolution to the minimal turbulent channel flow investigated in
Ref. [26]. Although both of them are wall shear turbulence, the configurations of channel flow and
pCf lead to different flow dynamics of ejection events due to the interaction between high- and
low-speed streaks. As stated by Itano and Toh [26], two walls share one buffer layer and a couple of
LSVs in pCf whereas the channel flow contains log-law region and the central region is ruled by the
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FIG. 24. (a) Time evolution of Circulation and spacial average of the absolute value of vorticity
stretching (| ωx∂u/∂x | within 0.2 < y/Ly < 0.8 where LSVs take place as seen in Fig. 19) in single-phase
flow and Reb = 380. (b)–(e) Contours of the streamwise velocity fluctuations u′/Uw in the Couette central
plane (y/Ly = 0.5), showing the streak structures. The iso-contour interval is 0.07. stands for u′/Uw < 0
and stands for u′/Uw > 0. The color contours indicate the stretching term ωx∂u/∂x. (a) and (b) are for
single-phase flow and Reb = 380, with x-independent flow (at the trough of the vorticity stretching instant
�tUw/h = 200) and for x-dependent flow (at the peak of the vorticity stretching �tUw/h = 235) respectively.
The trough and peak instants are noted by dots in (a) at the top of this figure. The contours in (d) and (e) are
both x-dependent with bubbles and inertial particles (ρp/ρf = 5), respectively.

FIG. 25. Evolution in time of shear Reynolds stress u′+v′+(y,t) averaged over the homogeneous directions.
(a), (b) For single-phase flow at Reb = 500 and 380, respectively. (c)–(f) Corresponding to two-phase flow
simulations at Reb = 500,  = 10%, and different particle size and inertia. (c) Ly/d = 10 and ρp/ρf = 1.
(d) Ly/d = 20 and bubbles are used. (e) Ly/d = 20 and ρp/ρf = 2. (f) Ly/d = 20 and ρp/ρf = 5.
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velocity-defect law. In pCf, the existence of the LSVs leads to a strong coupling between the two
low-speed streaks generated by the two walls with opposite velocities. The low-speed streak will
extend to the other wall acting as the high-speed streak on this wall. These two low-speed streaks
promote each other while LSVs are located in the core of pCf. These different coherent structures
also determine the different locations and periodicity of ejection events for these two configurations.
Comparing Fig. 1 in Ref. [26] to Fig. 25, in channel flow, the intervals between ejection events are
distributed intermittently and close to the boundary, whereas they are quasiperiodic and located in
the core region for pCf.

VII. CONCLUSION

In this study we addressed the effect of finite-size particles on turbulent plane Couette flow,
at moderate concentration. The Reynolds numbers considered were close to the laminar-turbulent
transition, such that large-scale rotational structures were well developed and self-sustained. Thereby,
interaction of particles with coherent structures could be evidenced using particle-resolved numerical
simulations with two Couette gap-to-particle size ratios (10 and 20), and with particle-to-fluid density
ratio ranging from 0 to 5. The average settling induced by gravity forces was neglected to focus on
the interactions induced by the sheared or strained flow. Careful tests were carried out to verify the
numerical method accuracy in the range of particle Reynolds and Stokes numbers up to 10, which
corresponds to turbulent suspension flow configuration.

Regarding the distribution of particles, the volumetric concentration profiles (averaged in the
homogeneous streamwise and spanwise directions) have shown a homogeneous distribution of
particles across the Couette gap, resulting from the balance between hydrodynamic repulsive force
from the walls, turbulent mixing, and shear-induced diffusion. In the case of neutrally buoyant
particles, 2D snapshots of particle positions revealed higher (resp. lower) presence of particles
in the sweep (resp. ejection) regions where they are periodically trapped (resp. expelled). Light
particles (ρp/ρf < 1) were experiencing, in addition to the above-mentioned flow interactions,
an inertia-induced lift force towards the center of large-scale vortices. This led to an increase of
the concentration in the Couette center. On the contrary, inertial particles (ρp/ρf > 1), were rather
moving towards the walls, leading to small localized peaks in the concentration profile in that region.

Time-averaged profiles, in the wall-normal direction, of the mean flow and Reynolds stress
components did not reveal significant difference between single-phase and two-phase flows at
equivalent effective Reynolds number, except that the wall shear stress is higher for the two-phase
flow. However temporal and modal analysis of flow fluctuations, suggested that particles had an
effect on the regeneration cycle of turbulence. While the energy of large-scale vortices (LSVs) was
unchanged by particles (only the rotation rate inside the vortex core was slightly reduced), the level of
kinetic energy was increased over the range of intermediate wave numbers for all considered particle
sizes and densities. This is mainly due to flow perturbations induced by the nondeformability of
the dispersed phase (finite-size effect). The shape of the streaks was altered by particles, with an
increased probability of strong streamwise fluctuations with the largest particles and reduction of the
range of streamwise fluctuations by the heaviest ones. The modal analysis of velocity fluctuations
revealed that particles had also an effect on the streak dynamics. The intermittent character of the
flow was modified by the particle presence: the amplitude of fluctuations was reduced and the period
was modified especially by the largest particles. Similarly to the modal energy, the average value
of the circulation was kept unchanged, whereas its standard deviation was reduced when particle
inertia was increased.
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FIG. 26. Trajectory of a bubble (ρp/ρf = 1.257 × 10−3) in a Taylor-Green vortex at different Rep .
(a) Trajectory in x-y plane. Rep = 0.1; Rep = 1.0; Rep = 5.0. (b) Comparison of the FCM
results with the numerical solution of Eq. (A1): Eq. (A1); Eq. (A1) with adding the lift force from
Eq. (A3) and Eq. (A2); present simulation.
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APPENDIX A: EFFECT OF INERTIA ON PARTICLE DYNAMICS IN TAYLOR-GREEN VORTEX

In rotational flows, particles are known to exhibit preferential concentration in vortices that
depends on their inertia: bubbles accumulate in low-pressure regions (center of a vortex), whereas
heavy particles are expelled towards high-strain regions. To test the ability of FCM to predict the
correct particle motion across flow streamlines for different particle inertia, we performed numerical
simulations using a single finite-size particles in a periodic Taylor-Green vortex array. Figure 26
shows the particle trajectory in a Taylor-Green vortex for different particle-to-fluid density ratios
and different particle Rep, with a particle-to-vortex size ratio d/le = 0.4/π . The behavior of light
and heavy particles is correctly captured by FCM: bubbles move towards the vortex center and
inertial particles are pushed towards the high-strain rate regions (not shown here). Only the motion
of bubbles is illustrated in Fig. 26 for different Reynolds numbers. The higher the Reynolds number,
the faster is the inward spiraling motion.

Numerical results were compared to the trajectory of a single particle predicted by the Maxey-
Riley equation [44] written for point particles (of radius a and mass mp) at low Reynolds number:

mp

dup

dt
= mf

Duf

Dt
− mf

2

(
dup

dt
− Duf

Dt

)
− 6πapρf ν(up − uf )

− 6a2
pρf

√
πν

∫ t

t0

1√
t − τ

(
dup

dτ
− duf

dτ

)
. (A1)

In Eq. (A1) the Faxén terms due to velocity curvature in the added mass, drag, and Basset
contributions are neglected. Equation (A1) was solved using the Adams-Bashforth multistep integral
method with an explicit scheme for the Basset history force (following Daitche [13]), the accuracy of
this scheme being second order in time. The numerical integration of Eq. (A1) was tested against the
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analytical solution of Ref. [10] to calculate particle trajectory in a rigid-body vortex. The agreement
was very good.

The single particle trajectory in a Taylor-Green vortex from FCM simulations is very well
predicted by Maxey-Riley equation of motion at Rep = 0.1. At higher Rep, the agreement is good
during the first period of rotation. Then discrepancy builds in following periods. Adding Faxen terms
(except for the history contribution) did not have any significant impact on particle trajectory.

The Maxey-Riley equation of motion does not contain the lift force due to shear of the undisturbed
flow. This force perpendicular to the particle slip velocity is negligible at low Reynolds numbers
and becomes significant when Rep increases. Its analytical expression is somehow complicated to
derive in a general flow configuration, because the contribution of convective and unsteady terms
to this force are not additive due to nonlinearity [9]. However we can use the model proposed in
Saffman’s work [58] in the limit of low but finite Reynolds number based on the particle slip velocity
(uf − up) with respect to the unperturbed fluid flow velocity uf :

FL(Sa) = −6.45ρf νa2

(
ν

|�|
) 1

2

� × (uf − up). (A2)

� = � × uf is the flow vorticity. An extension of this lift force can be found in Mei [45] at finite
particle Reynolds number (Res � 40) fitting the numerical results reported in Dandy and Dwyer
[14]:

FL

FL(Sa)
= (1 − 0.3314α0.5) exp

(
−Res

10

)
+ 0.3314α0.5, (A3)

where Res is a Reynolds number based on the slip velocity ReS = |uf −up |2a

ν
and α is a dimensionless

shear rate α = |∂uf /∂y|a
|uf −up | .

Adding the lift force to the Maxey-Riley equation reduces the overestimate of the theoretical
prediction, but it did not match exactly the numerical evolution obtained with FCM.

APPENDIX B: SHEAR STRESS BUDGET

The stress of a suspension flow has been derived by Batchelor [4] assuming homogeneous
conditions. Batchelor introduced a decomposition of the stress into fluid and particulate phase
contributions �ij = �

(f )
ij + �

(p)
ij where both terms are explicitly written as (the dispersed phase has

total surface �A0 and volume �V0)

�
(f )
ij = 1

V

∫
V −∑

V0

[
μ

(
∂ui

∂xj

+ ∂uj

∂xi

)]
dV︸ ︷︷ ︸

τv ,viscous stress

− 1

V

∫
V −∑

V0

ρu′
iu

′
j dV︸ ︷︷ ︸

τTf
, fluid Reynolds stress

, (B1)

�
(p)
ij = 1

V

∑ 1

2

∫
A0

[
σikxj + σjkxi

]
nk dA︸ ︷︷ ︸

τs , particle stresslet

+ 1

V

∑ 1

2

∫
A0

[
σikxj − σjkxi

]
nk dA︸ ︷︷ ︸

particle rotlet

− 1

V

∫
∑

V0

ρf ′
i xj dV︸ ︷︷ ︸

stress due to particle acceleration

− 1

V

∫
∑

V0

ρu′
iu

′
j dV︸ ︷︷ ︸

τTp , particle Reynolds stress

. (B2)

In the absence of external torques and forces applied on particles, the first and last terms of
Eq. (B2) account for the contribution of particles to the total stress. Note that the Reynolds stress
components in the work of Batchelor appear only inside the particle contribution because the flow
is laminar. Here the Reynolds stress appears also in the stress of the fluid phase due to the flow
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TABLE III. Contributions to the Reynolds-stress transport Eq. (C2) and Eq. (C3)

u2 u′u′ v′v′ w′w′ u′v′

Pij ρu′v′ du

dy
−ρu′v′ du

dy
– – −ρv′v′ du

dy

εij −μ( du

dy
)2 −μ ∂u′

∂xj

∂u′
∂xj

−μ ∂v′
∂xj

∂v′
∂xj

−μ∂w′
∂xj

∂w′
∂xj

−2μ ∂u′
∂xj

∂v′
∂xj

Tij −ρ d

dy
(u′v′u) −ρ ∂

∂y
( 1

2 u′2v′) ρ ∂

∂y
( 1

2 v′3) ρ ∂

∂y
( 1

2 w′2v′) −ρ ∂

∂xj
(u′v′u′

j )

�s
ij p du

dx
p′ ∂u′

∂x
p′ ∂v′

∂y
p′ ∂w′

∂z
p′( ∂v′

∂x
+ ∂u′

∂y
)

�d
ij − dpu

dx
− ∂p′u′

∂x
− ∂p′v′

∂y
− ∂p′w′

∂z
−( ∂p′v′

∂x
+ ∂p′u′

∂y
)

Dij μ d2

dy2 ( 1
2 u2) μ ∂2

∂y2 ( 1
2 u′2) μ ∂2

∂y2 ( 1
2 v′2) μ ∂2

∂y2 ( 1
2 w′2) μ ∂2

∂x2
j

(u′v′)

FBm
ij ufm(x) u′f ′

m(x) v′f ′
m(y) w′f ′

m(z) u′f ′
m(y) + v′f ′

m(x)

FBd
ij ufd (x) u′f ′

d (x) v′f ′
d (y) w′f ′

d (z) u′f ′
d (y) + v′f ′

d (x)

turbulence. To summarize,the stress budget is

τtotal = τv + τTf
+ τs + τTp

(B3)

similarly to what has been written in Ref. [49] following Ref, [72]. When scaled by the wall shear
stress τw, this budget writes

τ+
total = 1 = τ+

v + τ+
Tf

+ τ+
s + τ+

Tp
(B4)

APPENDIX C: REYNOLDS STRESS BUDGET

The Reynolds stress budget was obtained starting from the Navier-Stokes equations coupled to
particle volume forcing terms derived from the FCM:

ρ

(
∂ui

∂t
+ uj

∂ui

∂xj

)
= − ∂p

∂xj

+ μ
∂2ui

∂xi∂xj

+ fm(xi,t) + fd (xi,t). (C1)

Here fm and fd correspond to monopole and dipole forces, respectively. Multiplying Eq. (C1) by
the fluid velocity and subtracting the mean energy balance equation, one can obtain the balance for
the flow velocity fluctuations or Reynolds stress. The Reynolds stress and mean energy balances are
written as

ρ

(
∂

∂t
u′

iu
′
j + uk

∂

∂xk

u′
iu

′
j

)
= P′

ij − ε′
ij + T ′

ij + �′
ij + D′

ij + FB′
ij , (C2)

ρ

[
∂

∂t

(
1

2
ui ui

)
+ uj

∂

∂xj

(
1

2
ui ui

)]
= Pij − εij + Tij + �ij + Dij + FBij . (C3)

A prime symbol is added to all fluctuating components. The expressions of the contributions on
the right-hand side of Eq. (C2) and Eq. (C3) are written in Table III.

The Reynolds stress budgets allow to obtain the rate of change of both normal and off-diagonal
Reynolds stress terms. As stated by Jeong et al. [27], energy is extracted from the mean flow
large-scale vortices to u′u′ due to advection. Intercomponent energy transfer (from u′u′ to v′v′ and
w′w′) occurs by vortex stretching and reorientation of vorticity from the mean flow.

In the feedback term FBij derived from the source term in Navier-Stokes equations, the main
contribution comes from the dipole forcing (stresslets) due to particle rigidity. The monopole term is
different from zero only when two particles are close to contact, and its contribution to the balances
[Eq. (C2) and Eq. (C3)] is negligible in the range of concentrations considered in this work.
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FIG. 27. Contributions to the budget of (a) u′u′, (b) v′v′, (c) w′w′, and (d) u u in the case of Reb = 500 and
Ly/d = 20. Comparison between single-phase and φ = 5% suspension flow. Because of symmetry of profiles,
in each figure the left part correspond to single-phase flow and the right part stands for two-phase flows.
production; dissipation; turbulent transport; pressure strain; pressure diffusion;
viscous diffusion; dipole feedback.

Different contributions to Reynolds stress and mean flow budgets are plotted in Fig. 27. In
two-phase flow, the sign of all contributions is not changed with respect to the reference single-phase
flow case. It is observed that particles mainly increase the rate of energy dissipation in all directions.
Other observations can be summarized as follows:

(1) P ′
11 is the only term that extracts energy from the mean flow to produce u′u′. This production

term is almost unchanged by particles.
(2) FB ′

22 injects energy in v′v′. The feedback term is maximum near the wall where the shear rate
is the strongest. It generates the major evident signature of the turbulence modulation by particles.

(3) �′s
33, the source term in the budget of w′w′, is slightly stronger in two-phase flow.

(4) P ′
12 is the main production term of u′v′ and �′s

12 is the main sink term. Their respective rates
are both increased when particles are added to the flow (see Fig. 27).
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