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We aim at studying gasodynamic vortex cooling in an analytically solvable, thermo-
dynamically consistent model that can explain limitations on the cooling efficiency. To
this end, we study an angular plus radial flow between two (coaxial) rotating permeable
cylinders. Full account is taken of compressibility, viscosity, and heat conductivity. For
a weak inward radial flow the model qualitatively describes the vortex cooling effect, in
terms of both temperature and the decrease of the stagnation enthalpy, seen in short uniflow
vortex (Ranque) tubes. The cooling does not result from external work and its efficiency is
defined as the ratio of the lowest temperature reached adiabatically (for the given pressure
gradient) to the lowest temperature actually reached. We show that for the vortex cooling
the efficiency is strictly smaller than 1, but in another configuration with an outward radial
flow, we find that the efficiency can be larger than 1. This is related to both the geometry
and the finite heat conductivity.
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I. INTRODUCTION

Air swirling through a cylindrical tube achieves temperature separation: Next to the swirling axis
the temperature is lower than the input temperature T0, while far from the axis it is higher than T0. This
is the vortex cooling-heating effect discovered by Ranque more than 80 years ago [1,2] (see [3–6] for
reviews). A temperature separation without cooling was observed also in highly pressurized water
[7]. An overall cooling (both output temperatures lower than T0) was seen for certain vortex tubes [8].

Coolers based on the Ranque effect are convenient in specific applications, e.g., because they
do not have moving parts. However, their efficiency is smaller than 1. Much effort was devoted to
increasing it, but the best efficiency is still �0.6 [4,6].

The flow inside the Ranque tube is highly complex: It is essentially three dimensional and
turbulent. Two configurations have been used: counterflow and uniflow [3–6]. In counterflow vortex
tubes the output flows are collected from two different ends of the cylinder: The cold air is extracted
from a small aperture around the axis and close to the injection point, while the hot air comes out
from the opposite end of the cylinder without being collimated close to the axis [3–6]. Such tubes
have both radial [3,4,9] and axial temperature separation [5,10–13]. In the uniflow situation the air is
injected circumferentially at one end of the tube and both output flows are collected from the opposite
end [3,14]. This radial temperature separation takes place close to the injection point of the air [15].

The full theory of the Ranque effect is elusive; there are several different approaches that attempt
to describe the complex three-dimensional flow inside the tube [16–26]. In particular, it is unclear
what the minimal ingredients needed to describe the effect are.

Given the complexity of the original Ranque effect and the necessity of understanding general
limitations on the efficiency of gasodynamic cooling, it is desirable to come up with a simpler cooling
setup, where the complexities of the original Ranque effect are deliberately omitted. The quest for
such a simplification was already considered in Ref. [27], where Savino and Ragsdal reported on
an experimental realization of a short uniflow tube, where the flow is injected from the surface via
a permeable rotating wall and the colder air is collected from the axis [27]. Axial separation of
temperature is absent and the whole outgoing flow is cooled [27].

Guided by this experiment, we aim at understanding the phenomenon of vortex, and more general
gasodynamic, cooling on a possibly simple theoretical model. We focus on a compressible angular
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FIG. 1. Cross section of the flow. Two coaxial permeable cylinders with radii r1 and r2 rotate with prescribed
speeds. Solid vectors �vφ = vφ �eφ and �vr = vr �er refer to the velocity components of the flow for r1 < r < r2.
Here the radial flow is directed from the outer (larger) cylinder to the inner (smaller) cylinder. Now |�vr | < |�vφ |,
since the radial flow has to be smaller for cooling.

flow between two rotating cylinders plus a radial motion via permeable cylinder walls (see Fig. 1).
We work with a compressible flow, because experimental angular velocities are nearly sonic [4,27].
Moreover, once we are interested by thermodynamic aspects (i.e., cooling efficiency), it is desirable
to work in the compressible situation, where the thermodynamic description of the flow is complete
and consistent.1 We assume that the flow is viscous, because (according to Bernoulli’s theorem)
the adiabatic motion of the fluid does not predict cooling in terms of stagnation enthalpy. However,
precisely, such cooling is observed experimentally [27].2 Hence viscosity is important [6] and then
heat conductivity is to be accounted for simultaneously with viscosity, because the Prandtl number
of air is close to 1 in both laminar and turbulent regimes.

Our first result is that in the stationary regime of a weak radial flow and a quasisolid angular
(vortical) motion, the model predicts cooling in terms of both thermodynamic temperature and
stagnation enthalpy. The efficiency of this cooling is smaller than 1. This qualitatively agrees
with experiments [27]. The agreement is achieved by using effective (turbulent or eddy) values of
viscosity and heat conductivity in the laminar flow model. Such an approach is well known [29].
Using turbulent diffusivities is crude but provides qualitative results [22–24] that allow a theoretical
understanding of the cooling effect.

The model predicts a stronger cooling effect for (radially) outward flow of fluid. The unique
feature of this effect is that its cooling efficiency is larger than 1, i.e., the pressure gradient is
employed more efficiently than for the adiabatic process. This effect agrees with the second law and
it is possible due to heat conductivity.

The scenarios of cooling studied here do not amount to refrigeration, i.e., they are not achieved
by investing an external work. Naturally, they also do not result from boundaries maintained at low
temperature by a heat bath; to ensure this we need to pay special attention to boundary conditions.
Hence cooling efficiency is defined as the ratio of the lowest temperature reached adiabatically (for
the given pressure gradient) to the lowest temperature actually reached.

1The incompressible limit is singular from the viewpoint of thermodynamics [28]. Despite the widespread
usage of this limit, its consistent thermodynamics was developed only recently [28].

2Thus adiabatic theories of the Ranque effect [16–20] do not describe the full cooling effect [21].
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Cylindrical vortices with radial flow were already studied in Refs. [23,25,26,30–37], but the
problem of finding cooling scenarios with proper boundary conditions was not posed. Dornbrand
[25] and later on Pengelley [26] studied the problem precisely having the same purpose as us: to
get a solvable model for vortex cooling. However, they did not account for boundary conditions and
heat conduction and thus did not obtain proper cooling. Pengelley proposed a necessary condition
for cooling that relates to the work done by viscous forces [26]. Below we show that under certain
additional limitations this condition is indeed able to produce cooling. References [22–24] used
simplified turbulence theories of various types that account for radial heat conductivity and viscous
vortex motion. A related but more complete turbulent theory that also accounts for axial motion
was given in Ref. [30]. References [31,33,35,36] focus on a laminar flow in the incompressible
limit (but they account for axial motion). As our analysis shows, compressibility does not need to
be large, but retaining it, and hence allowing for the proper coupling between thermodynamics and
mechanics, is necessary for the proper theoretical description of cooling. Reference [32] did not
employ the incompressible limit, but studied the problem without the outer cylinder. Several studies
on convective heat transfer between concentric cylinders are reviewed in [38–40].

The paper is organized as follows. The next section defines the problem and sets notation
and dimensionless parameters. There we also discuss general limitations (in particular, on the
cooling efficiency) imposed by the first and second laws. Section III focuses on the definition of
cooling, which is not trivial (especially for permeable walls) and thus demands clarification. Cooling
scenarios of inward radial flow are studied in Sec. IV. The extent to which these scenarios agrees
with experiments is discussed in Sec. V. Section VI discusses the cooling of outward radial flow and
shows that its efficiency is larger than 1. A summary is given in Sec. VII. Several technical questions
are relegated to the Appendixes.

II. MODEL

A. Navier-Stokes equation

The flow between two rotating concentric cylinders is described via cylindric coordinates (r,φ,z)
and �v = (vr,vφ,vz) are components of the velocity. We assume that all the involved quantities depend
only on r , e.g., �v = �v(r). We also assume that vz = 0, since in the context of our problem it is useless
to keep vz �= 0 if it is a function of r only. A schematic representation of the flow is displayed in
Fig. 1.

In the stationary regime the Navier-Stokes equations for vr and vφ read [29]

ρ

(
vr

dvr

dr
− v2

φ

r

)
= −dp

dr
+

(
ζ + 4η

3

)
d

dr

[
1

r

d(rvr )

dr

]
, (1)

ρ

(
vr

dvφ

dr
+ vrvφ

r

)
= η

(
1

r

d

dr

[
r
dvφ

dr

]
− vφ

r2

)
, (2)

where p is pressure, η and ζ are viscosities, and ρ is the mass density (see Table I). We assume that
η and ζ are constants, i.e., they do not depend on p, ρ, or T . Conservation of mass reads ( �∇ is the
gradient)

∂tρ + �∇(ρ�v) = r−1 d

dr
(ρrvr ) = 0, (3)

ρrvr = c = const, (4)

where c (a positive or negative constant) characterizes the radial flow. Equations (2) and (4)
transform to

ηr2 d2vφ

dr2
+ (η − c)r

dvφ

dr
− (η + c)vφ = 0. (5)
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TABLE I. Variables and parameters.

Defining
Variable or parameter equation(s) Description

r2 > r1 (6) radii of the coaxial cylinders
x = r/r2

a (7) dimensionless radial distance
x0 = r1/r2

a (28) dimensionless ratio of the radii
vφ (1) and (2) angular velocity
v2 = vφ(r2), v1 = vφ(r1) (6) angular velocities of the coaxial cylinders
vr (1) and (2) radial velocity
w = xvr/v2

a (21) dimensionless radial velocity
ρ (1) and (2) mass density; under normal conditions for air ρ = 1.2 kg/m3

p (1), (2) pressure
ρε (10) internal energy density
ρs (39) and (41) internal entropy density
λ (10) heat conductivity; molecular value for air

λmol = 0.02 J
ms K (for the turbulent value see Sec. V B)

T (10) temperature measured in degrees Kelvin
T̂ = λT/v2

2η
a (21) dimensionless temperature

c = ρvrr (4) radial flow (c is a constant with this model)
cp (4) isobaric heat capacity; for air cp = 103 J

kg K

ĉp
a (17) dimensionless isobaric heat capacity; ĉp/(ĉp − 1) = cp/cv

is the ratio of isobaric and isochoric heat capacities
η,ζ (1) and (2) viscosities; molecular value for air

ηmol = 1.8 × 10−5 kg
ms (for turbulent value see Sec. V A)

χ = η/ζ a (23) ratio of viscosities

α = 1−(v1/v2)x0

1−x2+κ
0

a (9) weight of the quasisolid vortex in the angular motion

κ = c/ηa (22) |κ| is the Reynolds number related to the radial flow
b = ccp/λa (22) |b| is the Péclet number
βa (23) and (11) |β| is the analog of the Reynolds number

related to the radial flow of energy
Pr = b/κ = ηcp/λa (26) Prandtl number
Û a (34) stagnation enthalpy

aDimensionless quantity.

This is a homogeneous equation linear in vφ . Its two independent solutions are obtained by putting
vφ ∝ ra into (5). The latter produces a quadratic equation for a. This equation has two solutions
a = −1 and a = 1 + c

η
.

We now impose boundary conditions on inner and outer cylinders, respectively,

v1 ≡ vφ(r1), v2 ≡ vφ(r2), (6)

where r2 > r1. Then (5) and (6) are solved as a linear combination of the a = −1 and a = 1 + c
η

solutions of (5):

vφ(r) = v2v̂φ(x), x ≡ r/r2, (7)

v̂φ(x) = [(1 − α)x−1 + αx1+κ ], (8)

κ ≡ c

η
, α ≡ 1 − (v1r1)/(v2r2)

1 − (r1/r2)2+κ
, (9)
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where we introduced the dimensionless coordinate x (see Table I). Equation (8) is a weighted sum
of two contributions: a potential vortex 1/x and a quasisolid vortex x1+k . The weight α can hold
both α > 1 and α < 0.

B. Energy equation

The fluid energy equation reads [29]

∂t

(
ρ�v2

2
+ ρε

)
+ �∇

[
ρ�v

( �v2

2
+ ε

)
+ p�v + �μ − λ �∇T

]
= 0, (10)

where ρ�v2

2 + ρε is the energy density (kinetic energy plus internal energy), ρ�v( �v2

2 + ε) is the advective
energy flux, p�v is the pressure-driven energy flux, T is absolute temperature (measured in degrees
Kelvin), �∇(λ �∇T ) is the heat flux with heat conductivity λ (we assume that λ does not depend on p, ρ,
and T ), μk = −∑

j vjσjk is the energy flow due to viscosity, and σjk is the stress tensor [29]. With
the assumptions and in the stationary regime the energy flux is ce/r , where ce is a constant [cf. (4)]:

ce = cE − rvrσrr − rvφσrφ − λr
dT

dr
, (11)

E = v2
r + v2

φ

2
+ ε + p

ρ
, (12)

σrr = 2η
dvr

dr
+

(
ζ − 2η

3

)
1

r

d(rvr )

dr
, (13)

σrφ = η

(
dvφ

dr
− vφ

r

)
. (14)

Here E is the full energy (kinetic plus internal plus potential) per unit of mass, −λdT
dr

is the heat
flux due to the radial temperature gradient, σrr and σrφ are the components of the stress tensor [29],
and vrσrr (vφσrφ) is the rate of radial (angular) work done by viscous forces. Equations (11)–(14)
express the first law for the radial flow. Equations (1) and (11) become closed after specifying the
thermodynamic state equation; we choose it by assuming that the fluid holds the ideal gas laws (see
Appendix A):

p = RρT/μ, (15)

(ρε + p)/ρ = cpT , (16)

cp = ĉpR/μ, (17)

where cp > 0 is the (constant) heat capacity at fixed pressure, ĉp is a dimensionless number of
order 1 (e.g., ĉp ≈ 3.5 for air) (see Table I), R = 8.314 J/K is the gas constant, and μ is the molar
mass (29 g for air).

C. Dimensionless parameters and variables

Employing (13)–(17) in (11) and Eqs. (15) and (16) in (1), we end up with the following
dimensionless form of (11) and (1), respectively:(

κ

2
+ 1

)
v̂2

φ − xv̂φv̂′
φ + bT̂ − xT̂ ′ − β +

(
κ

2
+ 2

)
w2

x2
−

(
χ + 4

3

)
ww′

x
= 0, (18)

(
χ + 4

3

)
w′′ −

(
κ + χ + 4

3

)
w′

x
+ κw

x2
+ κv̂2

φ

w
− bx

ĉp

(T̂ /w)′ = 0, (19)
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where x = r
r2

[cf. (7) and (9)], a prime means d
dx

, e.g.,

v̂′
φ = dv̂φ

dx
, (20)

and we have introduced (cf. Table I)

T̂ = λ

v2
2η

T , w = xvr

v2
, (21)

b = ccp

λ
, κ = c

η
, (22)

χ = ζ

η
, β = ce

ηv2
2

. (23)

Here |κ| is the Reynolds number related to the radial flow, while b/κ is the Prandtl number. These
and other dimensional and dimensionless parameters of the systems are discussed in Table I. The
angular Mach number Ma of the outer cylinder reads, via the above parameters,

Ma =
√

(ĉp − 1)κ

bT̂
= |v2|

vsound
, (24)

where vsound =
√

cpT

ĉp−1 =
√

ĉp

ĉp−1
p

ρ
is the speed of sound for the ideal gas [see (15) and [29]]. The

constant β in (18) can be related to T̂ ′(1) via v̂′
φ(1) [see (8)]:

T̂ ′(1) = −β + bT̂ (1) +
(

2 + κ

2

)
w2(1) −

(
χ + 4

3

)
w(1)w′(1) − α(2 + κ) + 2 + κ

2
. (25)

D. Scaling of temperature

The scaling over v2 employed in (21) and in (7) does have a physical meaning, since below we
show that cooling (i.e., temperature decrease) relates to the angular motion of the cylinders. The
choice of the dimensionless temperature T̂ is also a reasonable one because, using typical values of
experiments [4,27], we find T̂ ∼ 1. Indeed, using (21) we obtain

T (r2) = T̂ (1)v2
soundPr Ma/cp, (26)

where vsound is the sound velocity and Pr ≡ ηcp/λ and Ma = vφ(r2)/vsound are the Prandtl and
Mach numbers, respectively [cf. (24)]. Recall that T̂ (1) = T̂ (x = 1), where x = r/r2 � 1 is the
dimensionless length. For air we take, in (26), cp = 103 J/(kg K) and vsound = 3.31 × 102 m/s. In
vortex cooling experiments, the input air has Ma ∼ 1 [4,5]. Also Pr ∼ 1 holds for air.3 For an inward
flow c < 0, the input temperature is T (r2). We get for it

T (r2) � T̂ (1) × 100. (27)

Thus room temperature T (r2) � 300 K means T̂ (1) � 3.
However, the above scaling of the dimensionless temperature T̂ is not applicable for v2 → 0.

Then we should change v2 → v1 in (21) and (23) and take instead of (7)

vφ(r) = v1v̂φ(x), v̂φ(x) = x−1 − x1+κ

x−1
0 − x1+κ

0

, x0 = r1

r2
. (28)

3This relation holds for both the laminar regime and the fully developed turbulence regime [29,41]. For the
former (latter) we employ molecular (turbulent) values of heat conductivity and viscosity (see Sec. V).
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E. First law

Using (21)–(23), the energy balance (11) can be written in terms of dimensionless local rates of
energy Ê, radial work Ŵr , angular work Ŵφ , and heat Q̂:

Ê(x) = c

ηv2
2

[
v2

r (r) + v2
φ(r)

2
+ cpT (r)

]
= bT̂ + κ

2

(
v̂2

φ + w2

x2

)
, (29)

Ŵφ(x) = − r

ηv2
2

vφ(r)σrφ(r) = v̂φ(x)[v̂φ(x) − xv̂′
φ(x)], (30)

Ŵr (x) = − r

ηv2
2

vr (r)σrr (r) = 2w2

x2
−

(
χ + 4

3

)
ww′

x
, (31)

Q̂(x) = − λr

ηv2
2

T ′(r1) = −xT̂ ′(x), (32)

where we employed (21)–(23) and (6)–(9). The first law reads, from (11),

�Ê + �Ŵr + �Ŵφ + �Q̂ = 0, (33)

where �Ê ≡ Ê(1) − Ê( r1
r2

), etc. Note that �(Ŵr + Ŵφ) > 0 means that the system does work on
the external sources that immerse the fluid into the system and rotate the cylinders, i.e., the work
is extracted.4 We stress that this model of cooling is not completely autonomous, since it contains
moving boundaries. The condition �Ŵr + �Ŵφ � 0 means that cooling (if it is shown to exist)
is not due to external forces that move boundaries. Let us also give the dimensionless form of the
stagnation enthalpy

Û = 1

v2
2

( �v2

2
+ p

ρ
+ ε

)
= v̂2

φ

2
+ w2

2x2
+ bT̂

κ
, (34)

which differs from (29) by the factor c/η only.

F. Angular work

The work (30) done by rotating cylinders can be calculated in a closed form from (7), (9), and
(14):

�Ŵφ = 2(1 − α) − κα −
[

1 − α

x0
+ αx1+κ

0

][
2(1 − α)

x0
− ακx1+κ

0

]
, x0 ≡ r1

r2
. (35)

Now radially outward flow means κ � 0 or c � 0 [see (23)]. For this case we checked numerically
that �Wφ � 0, i.e., the cylinders always invest work. In particular, �Ŵφ = 2(1 − α)2(1 − x−2

0 ) < 0
for κ = 0. For inward flow κ < 0 there are situations, where �Wφ > 0, i.e., the work is extracted.
Note from (7) and (8) that κ < 0 means that the angular velocity vφ/r is a decreasing function of r .

G. Cooling efficiency

Any cooling process that is due to a pressure gradient can be usefully compared with the
thermodynamic entropy-conserving (adiabatic) process, where the same pressure is employed for
cooling. Let (pin,Tin) and (pout,Tout) be, respectively, the input and output pressure and temperature;

4Note from (10) that the integral
∫

∂V
d�s �μ over a closed surface ∂V is the work done by viscosity forces on

the substance enclosed in ∂V . The sign of the work is determined as follows: With the normal vector �s of ∂V

pointing outside, the integral contributes to −∂t

∫
V dV ( ρ�v2

2 + ρε) [see (10)]. Hence a positive
∫

∂V
d�s �μ means

that the fluid in V does work on external sources.
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cooling Tout < Tin is achieved due to pout < pin. For the considered ideal-gas model, the lowest
temperature Tout,ad reached adiabatically reads (see Appendix A)

Tout,ad

Tin
=

(
pout

pin

)1/ĉp

, (36)

where ĉp is defined in (16) (see also Table I). Hence one defines the cooling efficiency [42]

ξ = Tout,ad/Tout, (37)

which has the standard meaning of efficiency (result over effort), since the achieved result of cooling
is related to 1/Tout. The pressure difference is a resource and it is quantified by 1/Tout,ad, hence the
definition (37).5

When quantifying cooling, the Hilsch efficiency is sometimes employed [2,4]:

ξH = Tin − Tout

Tin − Tout,ad
. (38)

The meaning of ξH differs from that of ξ , because ξH directly accounts for the input temperature Tin;
however, they are related. As shown by (37), for Tin − Tout,ad > 0 (a natural condition for cooling),
ξ < 1 (ξ > 1) implies ξH < 1 (ξH > 1). However, ξH is less fundamental than ξ , since it does not
appear directly in the efficiency bound imposed by the second law. We discuss this bound now.

H. Second law bound for cooling efficiency

The entropy balance of the fluid reads [29]

∂t (ρs) = −�∇
[
sρ�v − λ

T
�∇T

]
+ sprod, (39)

where ρs is the entropy density and sρ�v and − λ
T

�∇T are, respectively, advective and thermal entropy
flux. The entropy production sprod > 0 is positive due to viscosity and heat conduction.6 In the
stationary situation ∂t (ρs) = 0 and (39) reads

d

dr

(
cs − λr

T

dT

dr

)
= rsprod, (40)

where we used (4). The ideal-gas entropy is (cf. Appendix A)

s = cp

(
− 1

ĉp

ln[p] + ln[T ] − ln

[
μ

R

])
, (41)

where we employed (15)–(17).
We consider two particular cases of the adiabatic process (36):

rin = r2, rout = r1, c < 0, (42)

rin = r1, rout = r2, c > 0. (43)

Now (37), (40), (42), and (43) imply

s(r2) − s(r1) = sgn[−c]cp ln[ξ ]. (44)

5Equation (37) is different from the coefficient of performance (COP) of refrigerators, which is defined via
the ratio of the heat transferred in refrigeration over the external work performed to achieve this transfer. We
do not need the COP, since in our setups the cooling is not achieved due to external work.

6The entropy production reads [29] sprod = η

2T
[

∂vj

∂xk
+ ∂vk

∂xj
− 2δjk

3
�∇�v]2 + ζ

T
[ �∇�v]2 + λ[ �∇T ]2

T 2 > 0.
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Integrating (40) over r for r1 < r < r2, using sprod > 0, (41), (36), and (44), we get from (42) and
(43) an upper bound for the efficiency (37) that applies to both (42) and (43):

|b| ln[ξ ] � r1

T (r1)

dT (r1)

dr
− r2

T (r2)

dT (r2)

dr
, (45)

where |b| is the Péclet number [see (22) and Table I]. The right-hand side of (45) is nonzero due
to heat conductivity. Hence, if the heat conduction is neglected (i.e., λ = 0) the cooling efficiency
holds ξ < 1 [see (45)]. We stress again that the inequality in (45) is due to positivity of the entropy
production: sprod > 0.

III. BOUNDARY CONDITIONS FOR COOLING AND FOR PERMEABLE WALLS

When studying cooling due to a confined gasodynamic flow one should exclude physically
uninteresting cases, where the fluid is cooled due to cold thermal baths attached to boundaries or
due to external work done by external forces. Cooling demands that the temperature of the (radially)
incoming fluid is larger than the temperature of the outgoing fluid. If there is a low-temperature
boundary bath, the flow should be thermally isolated from it (adiabatic cooling). Whenever the radial
flow is absent, thermal isolation is ensured by imposing vanishing heat flux at boundaries, e.g., at
the outer boundary

dT (r2)

dr
= 0. (46)

If there is a flow through boundaries (i.e., permeable or porous walls), (46) does not hold, because
there is a heat conductivity due to the fluid at the boundary.

In addition to known conditions for continuity of temperature and heat flux [29], there is now a
specific condition to be satisfied on the adiabatic permeable surface. To understand the origin of this
condition, let us “decompose” the macroscopically homogeneous, permeable adiabatic outer surface
into holes and solid parts. Recall that (r,φ,z) are the cylindrical coordinates. Now for (φ,z) elements
of holes and a small positive δ, we get that d

dr
T (r2 − δ; φ,z) stays finite for δ → 0+. For (φ,z)

elements of solids, d
dr

T (r2 − δ; φ,z) goes to zero for δ → 0. Hence | d
dr

T (r2 − δ)| > | d
dr

T (r2)| after
averaging over (φ,z), which recovers the macroscopically homogeneous permeable wall. Hence,
instead of (46) we obtain the boundary condition∣∣∣∣dT (r2 − δ)

dr

∣∣∣∣ >

∣∣∣∣dT (r2)

dr

∣∣∣∣, sgn

[
dT (r2)

dr

]
d2T (r2)

dr2
< 0, (47)

where sgn[a] = 1 if a � 0 and sgn[a] = −1 if a < 0, and the second inequality in (47) follows
from the first one under d

dr
T (r2) �= 0 and δ → 0+. Naturally, the first inequality in (47) also holds

for d
dr

T (r2) = 0, i.e., for an adiabatic wall. Likewise, we have, for the thermally isolated inner wall
(for δ → 0+), ∣∣∣∣dT (r1 + δ)

dr

∣∣∣∣ >

∣∣∣∣dT (r1)

dr

∣∣∣∣, sgn

[
dT (r1)

dr

]
d2T (r1)

dr2
> 0. (48)

We stress that in the present model (with or without the radial flow) it is trivial to get arbitrary
low temperatures in between two cylinders. However, generally these temperature profiles do not
hold the boundary conditions (47) and (48), i.e., such scenarios of low temperatures do not constitute
proper cooling, since they require that low temperatures preexist via boundary baths. In particular,
Appendix B works out the Couette flow (laminar flow between two infinite rotating cylinders without
radial motion), showing that the inhomogeneous temperature profile generated in this flow does not
constitute cooling.

084102-9



A. E. ALLAHVERDYAN AND S. FAUVE

Conditions similar to (47) and (48) are deduced for the radial velocity vr on a partially permeable
wall. This is similar to the previous case in that vr = 0 for an impermeable wall [see (46)]. A
derivation analogous to that of (47) and (48) produces [cf. (4)]

sgn[c]
dvr (r2)

dr
< 0, (49)

sgn[c]
dvr (r1)

dr
> 0 (50)

for the outer and inner walls, respectively.
In the present model there are no solutions that support conditions (47) and (48) and conditions

(49) and (50) for both inner and outer permeable walls, respectively. Thus we should put them on
the wall from which the cold flow is coming (to ensure that low temperatures do not exist before
cooling) and leave the other boundary as a control surface, assuming that both the velocity and
temperature on this surface are given.

IV. COOLING OF INWARD FLOW

A. Temperature profile for a weak radial flow

Recall from (21) and (9) that κ and w(x) are different dimensionless quantities although both
are nonzero due to radial flow. We assume that w(x) and its derivatives are small. Hence factors
( κ

2 + 2)w2

x2 and (χ + 4
3 )ww′

x
are neglected in (18). This can be done provided that x is not very small.

However, the influence of the radial flow on the vortex characteristics is not neglected, i.e., κ �= 0
[see (6)–(9)]. Now the remainder of (18), i.e., ( κ

2 + 1)v̂2
φ − xv̂φv̂′

φ + bT̂ − xT̂ ′ − β = 0, can be
solved explicitly as

T̂ (x) = g(x) + β

b
+ xbC, (51)

where C is a constant and

g(x) ≡ 2xκα(α − 1)

b − κ
− (1 − α)2(4 + κ)

2(2 + b)x2
− κα2x2+2κ

2(2 − b + 2κ)
. (52)

Now β and C in (51) are conveniently expressed via T̂ (1) and T̂ ′(1) and the temperature profile
reads, from (51),

T̂ (x) − T̂ (1) = xb − 1

b
[T̂ ′(1) − g′(1)] + g(x) − g(1). (53)

The approximation that led to (53) and (52) is confirmed by solving numerically full equations (18)
and (19) (see Figs. 2 and 3).

So far the weak radial flow approximation has amounted to neglecting the radial velocity vr in the
energy equation (18), but retaining it in the angular Navier-Stokes equation (2) [see also (6)–(9)].
If we neglect the radial velocity vralso in the radial Navier-Stokes equation (1) [or equivalently in
(19)] we obtain

ρ(r)v2
φ(r)/r = dp/dr. (54)
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FIG. 2. Isothermal cooling with inward flow (c < 0) and a quasisolid vortex (see Sec. IV C). Dimensionless
temperature T̂ (x) and dimensionless stagnation enthalpy Û (x) versus dimensionless distance x. Shown on
the left (right) is T̂ (x) [Û (x)] versus x = r/r2 for x ∈ [x0,1], where x0 = 0.007 347. The curves are obtained
from numerical solution of (18) and (19) for α = 1, κ = −0.5, b = −1, ĉp = 3.5, β = −1 [T̂ ′(1) = 0.124],
χ = 10, T̂ (1) = 1.126, w(1) = 10−4, and w′(1) = 0. These parameter values are consistent with experiments
[27] [see (27), (62), (72), and (74) and the related discussion]. The minimal dimensionless temperature is T̂min =
T̂ (xmin) = 1.0223 and xmin = 0.008 891. The energy values are �Ê = −0.246 99, �Ŵ = 0.482 28, �Ŵr =
−0.014 05, Q̂(x0) = −x0T̂

′(x0) = 0.111 29, and Q̂(1) = −T̂ (1) = −0.124 [cf. (29)–(33)]. The pressure p(x)
is a monotonically increasing function of x ∈ [x0,1] [cf. (55)]. In addition, T̂ad(xmin) = 0.735 56. The Hilsch
efficiency is ξH = 0.265 59 [cf. (38)]. Upon decreasing the initial temperature xmin increases while both the
magnitude and quality of cooling decrease, e.g., for T̂ (1) = 1.16 we get xmin = 0.505 97, T̂min = T̂ (xmin) =
1.130 83, and ξH = 0.130 16. Further, w(x) [and hence w(x)/x] is a monotonically decreasing function of x ∈
[x0,1]. Thus condition (50) holds for the inner wall. Condition (49) for the outer wall cannot hold simultaneously
with (50); this is why a permeable wall is not imposed at r = r2. The latter is just a control surface within which
we describe the flow.

This known equation is solved as7

p(x)

p(1)
= exp

[
−κĉp

b

∫ 1

x

dy v̂2
φ(y)

yT̂ (y)

]
, (55)

where T̂ (x) and v̂φ(x) are given by Eqs. (52) and (53) and Eqs. (7) and (8), respectively. Equation
(55) shows that the (dimensionless) pressure is a monotonically increasing function of x.

There are cases, where (52) and (53) are valid, but (54) [and (55)] is not. In Sec. VI we show an
important example of this type, where even if w(x) → 0 is imposed in the vicinity of x = 1, it does
not hold for x < 1, because w(x) grows fast.

B. Boundary conditions for inward radial flow

For inward flow c � 0 (hence b � 0 and κ � 0) we study cooling scenarios, where the higher-
temperature fluid enters into the system through the outer boundary at x ≡ r/r2 = 1. Now for
adiabatic boundary conditions, the lower-temperature fluid leaves the system through the inner
thermally isolated boundary at x = x0 < 1 [cf. (48)]:

T̂ (1) > T̂ (x0), T̂ ′′(x0) > 0. (56)

No specific conditions are put at x = 1, i.e., it is taken as a control surface.

7Let us mention the simplest (but incorrect) argument for the Ranque effect. Setting ρ(r) = const in (54) and
using the ideal gas law T (r) ∝ p(r) shows that T (r) is an increasing function of r (i.e., a radial temperature
separation is achieved), formally resembling the Ranque effect. The problem with this argument is that it
imposes a constant ρ. This may look formally consistent with other equations, but it is incorrect, e.g., because
it applies also for vr = 0 (no radial motion whatsoever), while our detailed analysis of this vr = 0 situation
shows that no cooling scenarios are possible, because the proper boundary conditions are not satisfied (see
Appendix B).
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FIG. 3. Adiabatic cooling with inward flow (c < 0) and a quasisolid vortex. Dimensionless temperature
T̂ (x) and dimensionless stagnation enthalpy Û (x) versus dimensionless distance x. Left (right) figure: T̂ (x)
[Û (x)] versus x = r/r2 for x ∈ [x0,1], where x0 = 0.1. The curves are obtained from numerical solution of (18),
(19) for α = 1, κ = −0.5, b = −0.5, ĉp = 3.5, β = −0.5, χ = 10 and T̂ (1) = 1.175, w(1) = 10−4, w′(1) = 0.
The minimal temperature is T̂ (x0) = 1.04233. As required for an adiabatic, permeable inner boundary: T̂ ′′(x0) =
1.48034; cf. (47), (48). The energy values are: �Ê = −0.291278, �Ŵ = 0.44866, Q̂(x0) = −x0T̂

′(x0) =
−0.0051, Q̂(1) = −T̂ ′(1) = −0.1625; cf. (29)–(33). Efficiency: T̂ad(x0) = 0.52012; see (36), (42). The Hilsch
efficiency is ξH = 0.2026. Pressure p(x) and w(x) hold p′(x) > 0 and w′(x) < 0 for x ∈ [x0,1].

The adiabatic boundary condition (56) relates to the isothermal situation (x0 � x � 1)

T̂ (1) = T̂ (x0) > T̂ (x), (57)

where T̂ (x) assumes a minimum at some x = xmin. Whenever (57) holds, one can take x0 � xmin

and this produces an example of (56).
Equation (57) does not refer to a practically useful situation, since no cold fluid really comes

out. Nevertheless, it is interesting, since the expected behavior of the temperature is that it is larger
inside the fluid, i.e., for T̂ (1) = T̂ (x0) we expect T̂ (x) > T̂ (1) = T̂ (x0) [29]. (The expectation is
also confirmed by the example of the Couette flow in Appendix B.) This is because viscosity, which
dissipates energy in the bulk of the fluid, generates heat that must be transported out of the boundaries
[29]. The expected behavior holds for c > 0. However, there are isothermal and adiabatic cooling
scenarios for c < 0 (see Figs. 2 and 3). We now turn to discuss them.

C. Cooling via a quasisolid vortex

Let us start with a quasisolid vortex in (7) and (8):

α = 1 or v1/v2 = (r1/r2)1+κ . (58)

The temperature for this situation reads, from (52) and (53),

T̂ (x) − T̂ (1) =
[
T̂ ′(1) + κ

2

]
[xb − 1]

b
+ κ(xb − x2+2κ )

2(2 + 2κ − b)
. (59)

Let us see to what extent (59) can hold the condition (57). Now T̂ ′(xmin) = 0 leads to

x2−b+2κ
min = 1 + (2 − b + 2κ)T̂ ′(1)

κ(1 + κ)
, (60)

T̂ ′′(xmin) = −κ(1 + κ)x2κ
min. (61)

Equation (60) means that T̂ ′(xmin) = 0 has only one solution. Since this solution ought to be a
minimum [cf. (57)], we have to require T̂ ′(1) > 0, which together with 0 � x ≡ r1

r2
� 1 leads, from
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FIG. 4. Isothermal cooling with inward flow and an α = −0.5 vortex for dimensionless temperature T̂ (x)
and dimensionless stagnation enthalpy Û (x) versus dimensionless distance x. Shown on the left (right) is T̂ (x)
[Û (x)] versus x = r/r2 for x ∈ [x0,1], where x0 = 0.639 472. The curves are obtained from numerical solution
of (18) and (19) for α = −0.5, κ = −4, b = −5, ĉp = 3.5, β = −7, χ = 10, T̂ (1) = 1.1115, w(1) = 0.01, and
w′(1) = 0. The minimal dimensionless temperature is T̂min = 1.051 66 and it is reached for xmin = 0.800 77. The
energy values are �E = −1.621 48, �W = 2.268 12, �Wr = −0.014 03, Q̂(x0) = −x0T̂

′(x0) = 0.204 143,
and Q̂(1) = −T̂ ′(1) = −0.4425. The pressure p̂(x) [w(x)] is a monotonically increasing (resp. decreasing)
functions of x ∈ [x0,1]. In addition, T̂ad(x0) = 0.952 581 [see (36) and (42)]. The Hilsch efficiency is ξH =
0.376 542 [cf. (38)].

(60) and (61), to κ(1 + κ) < 0 and 2(1 + κ) > b or, equivalently, to

− 1 < κ < 0, 0 < T̂ ′(1) < − κ(1 + κ)

2(1 + κ) − b
. (62)

Thus, under the conditions (62)and naturally x0 sufficiently smaller than xmin, we get an isothermal
cooling scenario (57). Taking x0 � xmin, we get instead an example of the adiabatic scenario (56)
[cf. the discussion after (57)].

Equations (58) and (62) imply a quasisolid vortex that is frequently observed experimentally.
Examples of the above cooling scenario are presented in Figs. 2 and 3 for isothermal and
adiabatic scenarios, respectively. Naturally, the cooling takes place in terms of both (thermodynamic)
temperature T̂ and stagnation enthalpy Û . We will see below that the conditions (58) and (62) are
sufficiently representative, i.e., the more general cooling scenarios implied from (53) are close to
those predicted by (58) and (62).

D. Magnitude and efficiency of cooling

Both adiabatic and isothermal cooling scenarios lead to relatively weak effects in the sense of

T̂ (1) − T̂ (xmin)

min[1,T̂ (1)]
� 0.01–0.1. (63)

The cooling magnitude in terms of stagnation enthalpy is larger (see Figs. 2–4).
The efficiency (37) of cooling under the condition (56) is smaller than 1:

ξ < 1. (64)

Whenever d
dr

T (r1) is sufficiently small, (64) follows directly from the second law bound (45), where
d
dr

T (r2) > 0 [cf. (42)]. Otherwise, (64) is confirmed numerically (see Figs. 2–4). Hence the Hilsch
efficiency (38) also holds ξH < 1, as shown by Figs. 2–4.

For both isothermal and adiabatic cooling scenarios we obtain, from (44) and (64), for the entropy
difference,

s(r2) − s(r1) = cp ln[ξ ] < 0. (65)

Hence the final entropy is always larger than the initial one: s(r1) > s(r2).
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E. Work and energetics

As shown by (35) and (58), the work done by rotating cylinders is positive under the conditions
(62),

�Ŵφ = −κ
(
1 − x2+2κ

0

)
> 0, (66)

which means that the work is extracted. The work Ŵr done by radial external forces is small, but
negative (i.e., it is invested), and the overall work is positive (see Figs. 2 and 3). Thus the setup
does not demand an external investment of work:8 Cooling takes place due to the initial pressure
larger than the final one, p(1) > p(x0). In other words, cooling takes place due to the initial potential
energy of the fluid.

Under isothermal boundary conditions both thermal baths (at x = 1 and x = x0, respectively)
provide heat to the system. Using (57) and (58) [and the fact that w(x) is assumed to be small], we
get, from (29) and (33),

�Ê = �Êkin = κ

2

[
1 − v̂2

φ(x0)
]
, (67)

which is negative due to (58). Hence we also get cooling in terms of the stagnation enthalpy [see
(34) and (29)]. Equations (66) and (67) are consistent with the first law (33), which for the present
situation reads �Ê + �Ŵ = |Q̂1| + |Q̂2|.

These features hold for other cases of isothermal and adiabatic cooling. Figure 4 shows an
isothermal scenario with α = −0.5, where v̂φ(x) is again a concave increasing function of x.
Figure 3 demonstrates an adiabatic cooling scenario that does not reduce to the isothermal case
(whenever the latter holds one can obtain an adiabatic scenario by taking x0 > xmin).

Let us write, from (11) and (29)–(32),

0 = [−Ê(x) + xT̂ ′(x) − Ŵφ(x) − Ŵr (x)]′. (68)

In (68) we assume that isothermal boundary conditions hold for c < 0; hence b and κ are negative.
Now [−Ê(x)]′ > 0 for xmin � x, because this means cooling in terms of the stagnation enthalpy.
One also has [xT̂ ′(x)]′ > 0 for xmin ≈ x. It appears also that [−Ŵr (x)]′ > 0 has the same sign as
[−Ê(x)]′ > 0. Moreover, it quickly prevails over other factors; this is why for c < 0 cooling exists
only in the weak radial flow situation, where Ŵr → 0.

Thus, for holding (68) and achieving cooling we need

Ŵ ′
φ(x) > 0, (69)

which, using (30), (7), and (8), is equivalent to

0 > 4(1 − α)2 + x2+κα(1 − α)κ(κ − 2) + 2x4+2κα2κ(κ + 1). (70)

Hence the validity of (69) (at least for certain values of x), i.e., the positivity of work, is a
necessary condition for both isothermal and adiabatic cooling in the regime c < 0. This condition
was obtained in [26], but its necessary character was not properly stressed, in particular, because the
heat conductivity and boundary conditions necessary for cooling were neglected. In particular, (69)
can lead to mistakes if it is taken as a sufficient condition for cooling.

8We mention another scenario of cooling, which is realized for the inward flow and the potential vortex
v̂φ(x) = 1/x [see (8) with α = 0]. This scenario is less interesting, since it is driven by external investment of
work [W ′

φ < 0, as seen from (69) and (70)], while its efficiency and magnitude hold the same constraints (64)
and (63). An interesting point of this scenario is that it is accompanied by the kinetic energy that increases in
the direction of the flow: [ |κ|

2 v̂2
φ + |b|T̂ (x)]′ � 0 in (68). Appendix D studies details of this scenario.
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FIG. 5. Dependence of the dimensionless temperature T̂ (x) profiles [see (53)] on the radial Reynolds
number, where the Prandtl number Pr = b/κ = 2 is fixed, the quasisolid vortex condition α = 1 is obeyed [see
(58)], and T̂ ′(1) = 0.1. Solid blue curves show, from top to bottom, κ = −0.5, −0.72, and −0.725. The top
curve holds condition (56) for all x0, the middle one holds condition (56) for x0 < 0.21, and the bottom curve
(with κ = −0.725) is void of physical meaning, since neither the adiabatic boundary condition (56) nor the
isothermal condition (57) is satisfied for it. Dashed black curves show, from top to bottom, κ = −0.3, −0.25,
and −0.15. For the middle curve the adiabatic boundary condition (56) holds for x0 > 0.447. The bottom curve
is void of the physical meaning, since neither (56) nor (57) holds.

F. Dependence of temperature profiles on the radial Reynolds number κ

The radial Reynolds number κ = c/η (see Table I) combines the radial flow c and the viscosity
η. Hence it is important to understand how the cooling temperature profiles depend on κ .

Now κ can change, from one fluid to another, due to c and/or due to η. We will focus on the latter
scenario, recalling that η can be an effective (eddy or turbulent) viscosity (see Sec. V for details).
Anticipating some of the discussion from Sec. V, we recall that the effective viscosity changes
together with the effective heat conductivity λ such that the Prandtl number Pr = b/κ is roughly a
constant (also in the turbulent regime) [41]. We also assume that the quasisolid condition (58) holds,
i.e., the ratio v1/v2 changes together with κ so that α = 1 is kept fixed. All these conditions are
observed in vortex tubes [4,27].

Figure 5 shows temperature profiles (53) for different values of κ . [Recall that the approximate
formula (53) is well confirmed numerically.] It can be seen that the cooling effect disappears for
both sufficiently small and sufficiently large values of κ , which we recall is negative for the outward
flow due to c < 0 (see Table I). This is because the boundary condition (56) ceases to hold. The
cooling effect is locally maximal before its disappearance (see Fig. 5).

G. Dependence of cooling on the rotation speed

Since the angular (vortical) motion is necessary for the above cooling scenarios, we turn to
studying in detail the dependence of cooling temperature profiles on the rotation speeds v1 and v2 of
cylinders. It is natural to assume that these variables change by keeping the ratio v1/v2 fixed. Now α

is a fixed parameter as well [see (9)] and hence we stay within the quasisolid vortex regime. This is
useful, because this regime is observed experimentally for a broad range of experimental parameters
[4,27].

Since now v2 is a variable we need to redefine T̂ given by (21) (see also Table I). Instead of

T̂ , we employ T̂0 = v2
2

v2
2,0

T̂ = λ

v2
2,0η

T , which equals T̂ evaluated at some fixed reference value v2,0 of

the velocity v2, i.e., T̂0 does not already have a parametric dependence on v2. Now we get, instead
of (53),

T̂0(x) − T̂0(1) = xb − 1

b
[T̂ ′

0(1) − εg′(1)] + ε[g(x) − g(1)], ε ≡ v2
2

/
v2

2,0, (71)
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FIG. 6. Dependence of temperature profiles T̂0(x) − T̂0(1) on the rotation speed according to (71). A larger
ε means a bigger deviation of v2 from its reference values. From bottom to top, ε = 0.78 [no cooling is present,
since neither (56) nor (57) holds], 0.81, 1, 1.5, and 3. The top four curves demonstrate cooling. For other
parameters we set (cf. Figs. 2 and 3) T̂ ′

0(1) = 0.1, α = 1, b = −1, and κ = −0.5.

where g(x) is still defined by (52), i.e., it does not have any parametric dependence on v2 or on ε.
According to (71), a larger ε means a bigger deviation of v2 from its reference values.

Figure 6 shows temperature profiles (71) for different values of ε and for parameters given by (58)
and (62). For given values of parameters, there is a value of v2 where the cooling effect is maximal,
i.e., the lowest temperature is reached. For the parameters of Fig. 6 this critical value is found from
ε = 0.8. When v2 decreases from this critical value, the cooling effect ceases to exist, since the
cooling boundary conditions, as given by (56) or (57), cannot hold anymore, i.e., the curve in Fig. 6
that corresponds to ε = 0.78 is void of physical meaning. When v2 increases from the critical value,
the magnitude of vortex cooling, as measured by the lowest temperature reached, monotonically
decreases. In particular, for a larger ε, we need to take a larger x0 = r1/r2 (i.e., x0 → 1) to achieve
cooling (see Fig. 6).

V. RELATION TO EXPERIMENTS

A. Effective viscosity

The actual flow in vortex tubes is highly turbulent [4]. Hence, if one uses hydrodynamic
equations (in particular, Navier-Stokes equations) with constant values of viscosities η and ζ and heat
conductivity λ, it is at very least necessary to employ there effective (i.e., turbulent or nonmolecular)
estimates for these parameters [29,41].

Taking into account that the considered flow is confined and inhomogeneous (i.e., there are radial
and angular flows), we choose to estimate the turbulent viscosity η via the Nusselt’s formula [43],
which was originally proposed for estimating the turbulent viscosity in pipes. Reference [41] found
that this formula applies for describing compressible turbulence in a sufficiently wide range of
Reynolds numbers. The formula reads [41,43]

η = 0.15ηmol[ρvφl/ηmol]
3/4, (72)

where vφ is the characteristic value of the angular velocity, l is the characteristic length, and ηmol is the
molecular viscosity, ηmol = 1.8 × 10−5 kg/ms for the air. Also, taking in (72) typical experimental
parameters for vortex tubes [27], ρ = 1.2 kg/m3, vφ � vsound = 331 m/s, and l = 0.1 m, we get
(in kg/ms)

η ∼ 0.085, (73)

which is several orders of magnitude larger than ηmol. The estimate (73) roughly coincides with an

estimate given in [22] via the mixing-length formula [41] η = ρ�2 dvφ

dr
, where � = β

dvφ

dr
/

d2vφ

dr2 is the
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mixing length and β is a suitable numerical constant. It is this specific form of the mixing-length
formula that can apply to compressible turbulence [41].

B. Comparison with experiment

Let us recall that the present model omits several physical factors that are met in realistic vortex
tubes (see Sec. I for a discussion of basic setups for vortex tubes). In particular, the axial motion
is neglected and the fluid is removed radially (in contrast to axial removal in vortex tubes). Hence
the model setup has not two, but one output temperature and the whole outgoing fluid is cooled
(in contrast to the standard Ranque tube, which has two output flows and achieves temperature
separation [4]).

Taking into account (27), the magnitude of cooling is predicted from (63) to be around 10 K.
Note that best vortex tubes provide (starting from 300 K) a larger cooling of order 70–80 K [2–4].
Though such a stronger effect is lacking in the present model, we recall that in those cases only a
part (e.g., ∼20% according to [2]) of the overall flow is strongly cooled and the remaining part is
heated up. In the present model the whole outgoing fluid is cooled.

The Hilsch efficiency ξH of cooling obtained in the present model is of order 0.1–0.4 (see
Figs. 2–4). It also agrees with experiments, though not for the most efficient vortex tubes, where ξH

can be as high 0.6–0.7 [2,4].
The magnitude of the radial flow over the angular flow, expressed by

w(1) = 10−3–10−4, (74)

also agrees with experimental measurements [4,5], though it is to be stressed that these measurements
were carried out for sufficiently long vortex tubes, where the axial velocities (neglected altogether
in the present model) are definitely larger than the radial velocities. The quasisolid vortex (58) for
v̂φ(x) is also seen experimentally, though the experimental results also indicate that for x ∼ 1, v̂φ(x)
starts to decay, i.e., the quasisolid vortex v̂φ(x) ∼ x1+κ (for our model we took κ ∼ −0.5) changes
towards the potential vortex v̂φ(x) ∼ x−1 [4,5]. This change of v̂φ(x) is given much importance in
certain theories of vortex cooling [3,4], but is not present here.

The input density is estimated from (4) and (21):

ρ(r2) = |κ|η
w(1)r2vφ(r2)

. (75)

Estimating r2 � 0.1 m (a reasonable value for the outer radius of a vortex tube), vφ(r2) � vsound,
and η for air as η � 0.085 kg/ms [see (73)], we end up with ρ(r2) � 10−3

w(1) kg/ms in (75). Estimating

from the present model w(1) � 10−4 (and recalling p = RρT/μ), we get that the input pressure is
a few times larger than the atmospheric pressure [1].

Altogether, given the limitations of the present model and complications of the flow in real vortex
tubes, one can say that the model is in fair qualitative agreement with experiments, though it is far
from predicting (and explaining) the features of the best vortex tubes, those providing the largest
efficiency or the largest magnitude of cooling. Savino and Ragsdal presented a simplified setup of
vortex cooling effect [27] that in several respects is similar to the present model. They studied two
short (compared to the diameters) concentric cylinders; the length to diameter ratio was 0.1 and
0.5 for two different samples. (For traditional Ranque-Hilsch tubes the length to diameter ratio is
20–50.) The rotating air enters radially from the whole outer permeable cylinder and leaves through
the inner (smaller) cylinder. Rotational flow was created via the outer cylinder with Mach number
�0.2. The velocity of this flow was much larger than that of the radial flow. The authors found a
cooling effect in terms of the radial variation of the stagnation enthalpy9 (no data on thermodynamic

9Recall that (due to Bernoulli’s theorem) cooling in terms of the stagnation, enthalpy cannot be explained via
adiabatic fluid dynamics.
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temperature or velocities were given). The magnitude of this cooling effect is lower than predictions
of the present model (cf. the stagnation enthalpy data in Figs. 2 and 3). They confirmed that the
radial distribution of the stagnation enthalpy is established already near the end wall of the tube and
is not affected by the weak axial flow. In particular, the axial change of the stagnation enthalpy was
much smaller than the radial one. (Hence it was legitimate to neglect the axial flow in the model.)
They found that the experimental data can be described by (54), where pressure is balanced by the
centrifugal force (this equation does not contain the viscosity explicitly). It was observed that the
pressure decreases monotonically with the radius, as confirmed by (55) of the present model.

VI. COOLING OF OUTWARD FLOW

A. Conditions for cooling

Now we assume that c > 0 (i.e., κ > 0 and b > 0) and the outer boundary of the system is
thermally isolated in the sense of (47). Hence, since the outgoing fluid is colder than incoming one,
this implies (for c > 0) that T̂ ′(1) < 0 and then (47) demands

T̂ ′′(1) > 0 (76)

at the adiabatic outer boundary. No specific conditions are imposed at the inner boundary r = r1

that can be thus considered as a control surface.
The full expression for T̂ ′′(1) is worked out from (18) and (19) [recall (25)]:

T̂ ′′(1) = bT̂ ′(1)w′(1)

ĉpw(1)
+

[
b(ĉp − 1)

ĉp

− 1

]
T̂ ′(1) −

(
χ + 1

3

)
w′(1)2

− [2w(1) − w′(1)]2 − [α(2 + κ) − 2]2. (77)

The first line of (77) contains potentially positive terms, while all the terms in the second line of
(77) are nonpositive. Hence (76) demands that the second line of (77) is sufficiently small, e.g., via
w′(1) → 0. Likewise, T̂ ′(1) cannot be very small.

If w(x) and w′(x) are sufficiently small, T̂ (x) can be approximately determined from (52)
and (53). However, (54) and (55) do not apply anymore, because the (dimensionless) pressure
p̂(x) = T̂ (x)/w(x) is now a decreasing function of x for x ∈ [x0,1]. Thus, w(x) is now essential in
(19) and it is important for determining the energetics. The physical reason for this is that the work
�Ŵr [see (31)] done by viscous radial forces is relevant, as shown below.

Figure 7 demonstrates the main outward-flow cooling scenario for α = 1 [cf. (8)]. The magnitude
of cooling is now sizable,

[T̂ (x0) − T̂ (1)]/T̂ (x0) � 10. (78)

The temperature profile T̂ (x) shown in Fig. 7 coincides with that found from (59) and (60), where
now T̂ ′(1) < 0 and xmin in (60) should be changed to xmax, because this is now the maximum of
T̂ (x). Then one should take x0 > xmax so that the temperature decreases for x0 < x < 1.

B. Energetics, entropy, and efficiency

We expectedly have

Q̂(x0) = −x0T̂
′(x0) > 0, Q̂(1) = −T̂ ′(1) > 0, (79)

i.e., the heat enters from the inner boundary x = x0 and leaves at the outer boundary x = 1 [see (48)].
We see numerically that Q̂1 � Q̂2 (see Fig. 7). Now �Ŵφ < 0 (rotating cylinders invest work), as
we discussed after (30). However, the radial external forces do extract work �Ŵr > 0 so much that
the total work is extracted (see Figs. 7 and 8):

�Ŵ = �Ŵr + �Ŵφ > 0. (80)
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FIG. 7. Adiabatic cooling with weak outward radial flow and quasisolid vortex for dimensionless
temperature T̂ (x), energy quantities, and dimensionless radial velocity w versus dimensionless distance x

(see Table I). Equations (18) and (19) are solved numerically for α = 1, κ = 0.1, b = 0.1, ĉp = 3.5, β = 11
[T̂ ′(1) = −10.7867], χ = 10, T̂ (1) = 1.295, w(1) = 0.1, and w′(1) = −0.1 in the range x = r/r2 ∈ [x0,1],
where x0 = 0.3. Shown on the left is T̂ (x) versus x = r/r2 [the dimensionless stagnation enthalpy Û (x)
behaves similarly]. A nearly identical temperature profile is obtained upon solving (18) with w(x) = w(1)
and w′(x) = 0. Shown in the middle are the dimensionless energy Ê(x) − Ê(1) (solid line), radial work
Ŵr (x) − Ŵr (1) (dashed line), and heat Q̂(x) − Q̂(1) (bold line) versus x. Shown on the right is w(x) versus x.
The condition (49) holds. It is written as w(x0) > x0w

′(x0) and w(1) > w′(1). The radial velocity proportional
to w(x)/x is a monotonically decreasing function of x. The minimal (maximal) dimensionless temperature is
T̂ (1) = 1.295 [T̂ (x0) = 13.6389] and T̂ ′′(1) = 9.98. The energy values are �Ê = −1.1925, �Êkin = 0.041 88,
�Ŵr = 0.217 43, �Ŵ = 0.1245, Q̂(x0) = −x0T̂

′(x0) = 9.7187, and Q̂(1) = −T̂ ′(1) = 10.885. The efficiency
T̂ad(1) = 6.8718 > T̂ (1) = 1.295 and the Hilsch efficiency is ξH = 1.8241. The pressure p(x) is a decreasing
function of x.

Moreover, the overall kinetic energy [see (29)] also increases, �Êkin > 0 (albeit slightly, as shown
in Fig. 7), due to the contribution κ

2 (1 − x2+2κ
0 ) of the vortex.

The most interesting aspect of this cooling scenario is that the cooling efficiency (37) is larger
than 1 (see Fig. 7):

ξ � 1, (81)

i.e., the adiabatic process provides less cooling, since now the heat transfer from the system is
essential [see after (45)]. Together with (81), the Hilsch efficiency (38) is also larger than 1: ξH > 1
(see Fig. 7).

FIG. 8. Adiabatic cooling with outward (c > 0) radial flow and without vortex motion (vφ = 0) for
dimensionless temperature T̂ (x), energy quantities, and dimensionless radial velocity w versus dimensionless
distance x (see Table I). The curves are obtained from numerical solution of (18) and (19) for κ = 1, b = 1,
ĉp = 3.5, β = 40 [T̂ ′(1) = −36.5], χ = 10, T̂ (1) = 1, w(1) = 1, and w′(1) = 0. Shown on the left is T̂ (x)
versus x = r/r2 for x ∈ [x0,1], where x0 = 0.4 [the dimensionless stagnation enthalpy Û (x) behaves similarly].
Shown in the middle are the dimensionless energy Ê(x) − Ê(1) (solid line), radial work Ŵr (x) − Ŵr (1) (dashed
line), and heat Q̂(x) − Q̂(1) (bold line) versus x. Shown on the right is w(x) versus x. The condition (49) holds
(cf. the data for Fig. 7). It also holds that [w(x)/x]′ < 0. The minimal dimensionless temperatures are T̂ (1) = 1
and T̂ ′′(1) = 6.4293. The energy values are �Êkin = −1.8809, �Ŵ = Ŵr = 0.6676, Q̂(x0) = −x0T̂

′(x0) =
12.9593, and Q̂(1) = −T̂ ′(1) = 36.5. The efficiency T̂ad(1) = 9.123 73 > T̂ (1) = 1 and the Hilsch efficiency
is ξH = 1.5719. The pressure p(x) is a decreasing function of x.
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Equation (81) is thermodynamically consistent. Recalling (39) and (43), we see that the upper
bound (45) amounts to x0T̂

′(x0)
T̂ (x0)

− T̂ ′(1)
T̂ (1)

. This expression is positive [cf. (79)]. Hence it is possible to
have (81) provided that the entropy production is sufficiently small, which appears to be the case,
as confirmed numerically. We stress again that ξ > 1 is possible due to heat conductivity [cf. the
discussion after (45)].

Due to (39) and (81), the entropy entering to the system is larger than the one that leaves it [cf.
(65)]:

s(r2) − s(r1) = cp ln[1/ξ ]. (82)

Thus we get that (without any investment of overall external work) the temperature, stagnation
enthalpy, and entropy decrease, while the kinetic energy increases. The outgoing fluid is more
ordered, since not only its thermal energy decreases, but also the kinetic energy increases.

C. Physical mechanisms of the effect and cooling without vortical motion

We saw around (68) and (69) that in order to get inward flow cooling it is necessary to have an
angular motion with the viscous forces doing work of the proper sign. Here the physical meaning of
cooling can be clarified along the same lines. We get, from (18) and (29)–(32),

0 = [Ê(x) + Q̂(x) + Ŵr (x) + Ŵφ(x)]′. (83)

Now cooling implies that outgoing fluid has lower energy: Ê′(x) < 0. Possible necessary conditions
for cooling is provided by the heat conductivity, Q̂′(x) > 0, and/or by the work done via radial
viscosity, Ŵ ′

r (x) > 0. Figures 7 and 8 show that both these conditions hold. The contribution of
Q̂′(x) > 0 is larger than that of Ŵ ′

r (x) > 0.
However, the vortex contribution has the same sign as energy: Ŵ ′

φ(x) < 0 [cf. with (69)]. Hence
a similar cooling scenario is also possible without a vortex, i.e., for v̂φ = 0 in (18) and (19). In fact,
eliminating the angular motion almost does not change the temperature profile in Fig. 7. The main
difference with the above situation is that the kinetic energy decreases, �Ekin < 0, since the vortex
motion is now absent.

Note that to eliminate the vortex from equations of motion, one should take vφ = 0 in (18) and
(19) and to suppress the last factor −α(2 + κ) + 2 + κ

2 in (25) as well as −[α(2 + κ) − 2]2 in the
second line of (77). The definitions (21)–(23) of dimensionless parameters still apply, where now
v2 = v2,0 is an arbitrary characteristic velocity (see Sec. IV G). It drops out from (18) and (19).

A simple analytical description of the temperature profile can be obtained from (18) assuming
that the change of w(x) can be neglected. [However, note that the change of w(x) within (19) cannot
be neglected.] Taking in (18) v̂φ = 0, w(x) = w(1), and w′(x) → 0, we get

T̂ (x) − T̂ (1) = γ

[
1 − 1

x2

]
+ [2γ − T̂ ′(1)]

1 − xb

b
, (84)

γ ≡ w(1)2(4 + κ)

2(2 + b)
. (85)

Now T̂ ′(x) = 0 is solved as xb+2
max = 2γ

2γ−T̂ ′(1)
. This solution exists only for T̂ ′(1) < 0 (recall that

b > 0) and it is a maximum of T̂ (x). Hence one should take x0 > xmax in order to get a monotonic
decrease of temperature T̂ (x) from x = x0 until x = 1.

One feature of this cooling scenario is that once w(1) (the boundary condition for the outward
flow) decreases, the solution of hydrodynamic equations (18) and (19) ceases to exist below a certain
critical value of w(1), because now w(x0) becomes negative. Recall from (4) that a negative w(x0) for
c > 0 is not acceptable, since it would mean a negative mass density ρ. Thus, if w(1) is decreased,
then c also has to decrease to keep the solution physical.
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Generally, the magnitude (78) of the cooling increases upon decreasing the radial flow c, i.e., for
c → 0. This can be seen from (84) or from Fig. 8. However, this limit c → 0 is not useful, since it
diminishes the cooling power b[T̂ (x0) − T̂ (1)].

D. Geometric aspects of the cooling effect

Note that the present cooling scenario (without vortex) is specific for the cylindrical geometry.
Its traces are seen in one dimension (plane geometry), but the cooling as such is negligibly weak
there (see Appendix C).

To understand the origin of this effect, let us take the situation where all the velocities vanish
(hence c = 0). Due to the cylindrical geometry, (11) shows that there is still a nontrivial stationary
temperatures profile ce = −λrT ′

0 that reads, in terms of the dimensionless temperature T̂ and
dimensionless length x = r/r2 (x0 � x � 1),

T̂0(x) − T̂0(1) = T̂ ′
0(1) ln x. (86)

Now it should be clear that (86) does not describe as such any cooling effect. Indeed, for T̂ ′
0(1) � 0

we should put a thermally isolated wall at x = 1 (to avoid assuming the existence of even colder
temperatures), which leads us to T̂ ′

0(1) = 0 and hence to a constant temperature profile.
However, there is a relation between (86) and the temperature profiles obtained above for c > 0

and illustrated in Figs. 7 and 8:

T̂0(x) > T̂ (x) if T̂ ′
0(1) = T̂ ′(1) < 0, T̂0(1) = T̂ (1), (87)

where we note from (86) that T̂ ′′
0 (1) = −T̂ ′

0(1), i.e., for T̂ ′
0(1) = T̂ ′(1) < 0, T̂ ′′

0 (1) agrees with
the boundary condition (47) required for cooling. Equation (87), which we verified numerically,
shows that the reported cooling effect is the modification of the formal temperature profile (86)
to the physical, situation with c > 0. In the one-dimensional case (plane geometry) the general
zero-velocity temperature profile [the analog of (86)] is just T0 = const, which explains why the
cooling effect is negligible there (see Appendix C).

VII. SUMMARY

We worked out a tractable model for describing gasodynamic cooling. The model extends the
standard Couette flow between two coaxial cylinders by adding there a radial flow (hence demanding
that cylinders are permeable). Only the radial dependence of relevant quantities is retained and the
axial flow is neglected.

The model accounts for viscosity, heat conductivity, and compressibility (see Sec. II). They are
generally important for gasodynamic cooling and there are at least two reasons for keeping each
of them in the description. Viscosity is to be retained, first since we should achieve cooling also
in terms of the stagnation enthalpy (as observed experimentally [27]) and second since, due to
turbulence, the actual viscosity is much larger than its molecular value. Heat conductivity is to be
considered simultaneously with viscosity since the Prandtl number of air is close to 1. It is also
important for ensuring boundary conditions of cooling. Compressibility is needed because we need
the proper relation between fluid mechanics and thermodynamics and also because the involved
angular velocities are sonic.

The emphasis of our study is not so much in describing details of the vortex cooling effect as
observed in experimental examples of vortex tubes, but rather in showing how a hydrodynamic
model can account for cooling via specific boundary conditions (see Sec. III) and how already the
simplest model can provide new (and thermodynamically consistent) predictions for cooling with
efficiency larger than 1. We showed that the model predicts a vortex cooling effect for an inward
radial flow (see Sec. IV). Though the general cause of cooling is in the pressure gradient that drives
the flow, the local cause is related to the work done by viscous forces. The cooling effect comes in two
versions, adiabatic and isothermal, that are closely related, but differ from each other by the boundary
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conditions. In several ways the obtained cooling effect is similar to what was experimentally seen
in Ref. [27] for a short uniflow vortex tube. In accord with experimental results, the model predicts
that the efficiency of vortex cooling is generically smaller than 1 (see Sec. II G), though the concrete
values for the efficiency and for the magnitude of cooling are lower than what was observed for best
vortex tubes.

The model predicts as well a cooling effect that so far has not been observed experimentally (see
Sec. VI). This effect is realized for an outward flow and it does not need an angular (vortical) motion.
Its cooling efficiency is larger than 1, i.e., for the given gradient of pressure, this cooling is more
efficient than the adiabatic (i.e., entropy conserving) thermodynamic process. This cooling effect is
consistent with the second law and it is possible due to heat conductivity. It has partly a geometric
origin, since it is negligible for the plane geometry.

There is an experimental report on the Hilsch efficiency being larger than 1 for a counterflow
tube (where only a part of the air is cooled) [44]. However, this result was not reproducible in [6].
According to the author of Ref. [6], the report concerned externally cooled vortex tubes (cf. our
discussion in Sec. III). Hence we conclude by stressing that cooling with an efficiency larger than 1
is an open problem.

APPENDIX A: IDEAL GAS THERMODYNAMICS

We briefly recall ideal-gas formulas as applied in hydrodynamics. Thermodynamic relations of
hydrodynamics are written for extensive quantities, which are divided by the overall number N of
involved particles and by the mass m of a single particle. Thus the extensive ideal gas entropy

S = kBCv ln[p] + kBCp ln[V/Nm], (A1)

where Cv and Cp are heat capacities and V is the volume, becomes

s = S

Nm
= kB

m

Cv

N
ln[p] + kB

m

Cp

N
ln[V/Nm] = kBNA

NAm
ĉv ln[p] − kBNA

NAm
ĉp ln[ρ], (A2)

where ρ = Nm/V is the mass density, NA is the Avogadro number, and ĉv and ĉp are dimensionless
numbers of order 1:

ĉp − ĉv = 1. (A3)

After defining

kBNA = R, NAm = μ, (A4)

where R = 8.314 J/K is the gas constant and μ is the molar mass, (A2) reads

s = cv ln[p] − cp ln[ρ], (A5)

cv = (R/μ)ĉv,cp = (R/μ)ĉp. (A6)

The full entropy S (and similarly other extensive quantities) is obtained as S = ∫
V

d3x ρs. Noting
that the temperature T is measured in degrees Kelvin, the ideal gas equation of state pV = kBNT

becomes

p = (R/μ)ρT . (A7)

For purposes of dimensionless analysis, we write (A5) as

s = cp

(
− 1

ĉp

ln[p] + ln[T ] − ln

[
μ

R

])
. (A8)
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Equation (A8) implies that if the pressure and temperature adiabatically (i.e., for a constant entropy)
change as p → p′ and T → T ′, then

T ′/T = (p′/p)1/ĉp . (A9)

APPENDIX B: VORTEX FLOW WITHOUT RADIAL MOTION (COUETTE FLOW)

Consider the distribution of temperature inside the vortex (7) when the radial motion is absent.
This is one of standard problems of hydrodynamics (the Couette flow) and it has been studied in
many places (see, e.g., [29,45]). We reconsider this problem here because we want to understand
why specifically this situation does not contain any interesting stationary cooling scenario (contrary
to remarks given in [45]). For

vr = c = w = κ = b = 0, (B1)

we get ( κ
2 + 1)v̂2

φ − xv̂φv̂′
φ + bT̂ − xT̂ ′ − β = 0 from (18). This equation integrates and determines

temperature inside the vortex (x ≡ r/r2)

T̂ (x) = T̂ (1) − (1 − α)2

(
1

x2
− 1

)
+ [T̂ ′(1) − 2(1 − α)2] ln x, x0 ≡ r1

r2
� x � 1, (B2)

where we employed (25) and (B1) for expressing β via T̂ ′(1) and α is given by (9) under κ = 0:

α = 1 − v1r1/v2r2

1 − (r1/r2)2
. (B3)

Note that taking the inner radius r1 to zero, r1 → 0, does not lead to anything interesting: In this limit
we get α → 1 and (B2) implies T̂ (x) = T̂ (1) + T̂ ′(1) ln x, but we have to assume also T̂ ′(1) = 0 to
prevent the singularity at x → 0. Then T̂ (x) does not depend on x. Hence r1 should be kept finite.

Interesting (stationary) cooling scenarios are those where the low temperatures created inside
the fluid are not due to even lower temperatures imposed on its boundary. In particular, if one
of the boundaries is left without thermal isolation, so there is an active thermal bath working
at this boundary, then the inside temperature should be lower than the temperature of this
bath.

Let us start with the case, where no thermal isolation is imposed for both boundaries. Then T̂ (x)
should have a local minimum at some x ∈ (x0,1). Equation (B2) shows that there is only one solution
x = xmax of T̂ ′(x) = 0:

xmax =
√

2(1 − α)2

2(1 − α)2 − T̂ ′(1)
. (B4)

If 0 < xmax < 1 [for which it is necessary and sufficient that T̂ ′(1) < 0], then xmax is the local
maximum (not minimum) of T̂ (x). Hence we get no cooling for this case.

Next let us thermally isolate the outer boundary T̂ ′(1) = 0. We get, from (B2),

T̂ (x) − T̂ (1) = −(1 − α)2

(
1

x2
− 1 − ln

[
1

x2

])
. (B5)

Then T̂ (x) is a monotonically increasing function of x, i.e., the inside temperature T̂ (x) is larger
than the (inner) bath temperature T̂ (x0). For a thermally isolated inner boundary T̂ ′(x0) = 0,
T̂ (x) is a monotonically decreasing function of x [see (B4)], i.e., again we get no interesting
scenarios of cooling. There are no solutions when both boundaries are thermally isolated
[see (B2)].
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The absence of interesting cooling scenarios is confirmed by looking at the total work produced
by external forces that rotate the cylinders. It reads, from (35) (with κ = 0),

Ŵφ = 2(1 − α)2

(
1 − 1

x2
0

)
< 0. (B6)

The negativity of (B6) means that the work is invested externally and dissipated to overcome the
viscous forces. This work leaves the system as heat.

Thus three regimes are impossible for the considered Couette flow.
(i) It cannot cool the fluid isothermally, i.e., when both boundaries are kept at the same temperature.
(ii) It cannot cool the fluid adiabatically: No regime exists when one boundary is thermally

isolated while another one is subject to a thermal bath and it is necessary to get the fluid colder
than the active bath temperature. Hence low temperatures present in the system according to (B2)
do not constitute any nontrivial cooling: They are due to the low-temperature bath present at one of
boundaries. Put differently, for the Couette flow the active bath is the one with the lower temperature.

The above two conclusions seem to hold rather generally for stationary hydrodynamic systems
without mass flow, though we so far did not get a general argument for their validity. At any rate
they hold for the (generalized) Couette (sometimes also called Taylor-Dean) flow, where the fluid
is subject to azimuthal driving with a volume force �f , where only the φ component fφ(r) of �f is
nonzero, but it is an arbitrary function of r .

(iii) The Couette flow cannot also function as a heat engine since, irrespectively of the values of
T (r2) and T (r1), the work is always dissipated [see (B6)].

APPENDIX C: EXAMPLE OF WEAK ADIABATIC COOLING

Consider a one-dimensional flow (from left to right) between two permeable plates separated by
distance L. Continuity of mass leads to

ρv = c1 = const. (C1)

One-dimensional Navier-Stokes and energy equations read, in dimensionless form,

κv̂2(x) + b

ĉp

T̂ (x) −
(

χ + 4

3

)
v̂(x)v̂′(x) = γ v̂(x), (C2)

κ

2
v̂2(x) + bT̂ (x) −

(
χ + 4

3

)
v̂(x)v̂′(x) − T̂ ′ = β, (C3)

where 0 � x � 1, L is the distance between two plates, β and γ are constants, and we introduced
the dimensionless parameters

T̂ = λ

v2
2η

T , v̂(x) = v(x)

v(L)
, (C4)

b = c1cpL

λ
, κ = c1L

η
, (C5)

χ = ζ

η
, ĉp = cp(μ/R). (C6)

The constants β and γ can be expressed via, respectively, v̂′(1) and T̂ ′(1):

γ = κ + b

ĉp

T̂ (1) −
(

χ + 4

3

)
v̂′(1), (C7)

β = 1

2
κ + bT̂ (1) −

(
χ + 4

3

)
v̂′(1) − T̂ ′(1). (C8)
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We obtain, from (C4)–(C7),

T̂ ′′(1) = bT̂ ′(1)

(
1 − 1

ĉp

)
−

(
χ + 4

3

)
v̂′(1)2 + b

ĉp

T̂ (1)v̂′(1). (C9)

Let us now look at conditions for adiabatic cooling. Now c1 > 0 (hence b > 0 and κ > 0) and
v̂ > 0 from (C1). Hence we look for

T̂ (0) > T̂ (1), T̂ ′′(1) > 0. (C10)

The temperature profiles appear to be monotonic so that the first condition in (C10) can be written
as T̂ ′(1) < 0. Then the first and second terms on the right-hand side of (C9) are negative. Hence
T̂ ′′(1) > 0 can be satisfied only due to sufficiently large b

ĉp
T̂ (1)v̂′(1) > 0. This implies limitations

on T (1) (which cannot be sufficiently small) and on |T̂ ′(1)| (which cannot be sufficiently large).
Eventually, the adiabatic cooling appears to be a relatively small effect, though it is still possible in this
model. For example, under χ = 10, b = κ = 10, ĉp = 3.5, T̂ (1) = 1, T̂ ′(1) = −0.1, and v̂′(1) = 0.1
[we have v̂(1) = 1 by definition] we get for the cooling magnitude [T̂ (0) − T̂ (1)]/T̂ (0) = 0.037.

APPENDIX D: POTENTIAL VORTEX

Another familiar type of vortex in (7) and (8) is

α = 0 or
v1

v2
= r2

r1
. (D1)

Equations (52) and (53) imply

T̂ (x) − T̂ (1) =
[
T̂ ′(1) − κ + 4

b + 2

]
xb − 1

b
+ κ + 4

2(b + 2)
(1 − x−2). (D2)

Now T̂ ′(x) = 0 is solved as

x−2−b = 1 − (b + 2)T ′(1)

(w2(1) + 1)(κ + 4)
. (D3)

Hence the minimum of T̂ (x) for T̂ ′(1) > 0 can exist only for

κ < −4, (D4)

i.e., only for radially inward flowing fluid (c < 0).
Now the isothermal cooling is driven by the work done for rotating cylinders. Equations (35) and

(D1) imply

Ŵφ = 2
(
1 − x−2

0

)
< 0, (D5)

while the kinetic energy change is now larger than zero [see (67) and (D1)]. Due to this, Û (x0) >

Û (1). In other respects the two scenarios of cooling (quasisolid and potential) are similar to each
other: Both have roughly the same magnitude, both need small radial velocities, and both have
efficiency ξ smaller than 1.
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